package core import ( "bytes" "encoding/binary" "fmt" "sync/atomic" "time" "github.com/CityOfZion/neo-go/config" "github.com/CityOfZion/neo-go/pkg/core/storage" "github.com/CityOfZion/neo-go/pkg/core/transaction" "github.com/CityOfZion/neo-go/pkg/util" log "github.com/sirupsen/logrus" ) // tuning parameters const ( secondsPerBlock = 15 headerBatchCount = 2000 version = "0.0.1" ) var ( genAmount = []int{8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} decrementInterval = 2000000 persistInterval = 5 * time.Second ) // Blockchain represents the blockchain. type Blockchain struct { config config.ProtocolConfiguration // Any object that satisfies the BlockchainStorer interface. storage.Store // Current index/height of the highest block. // Read access should always be called by BlockHeight(). // Write access should only happen in persist(). blockHeight uint32 // Number of headers stored in the chain file. storedHeaderCount uint32 blockCache *Cache // All operation on headerList must be called from an // headersOp to be routine safe. headerList *HeaderHashList // Only for operating on the headerList. headersOp chan headersOpFunc headersOpDone chan struct{} // Whether we will verify received blocks. verifyBlocks bool } type headersOpFunc func(headerList *HeaderHashList) // NewBlockchain return a new blockchain object the will use the // given Store as its underlying storage. func NewBlockchain(s storage.Store, cfg config.ProtocolConfiguration) (*Blockchain, error) { bc := &Blockchain{ config: cfg, Store: s, headersOp: make(chan headersOpFunc), headersOpDone: make(chan struct{}), blockCache: NewCache(), verifyBlocks: false, } go bc.run() if err := bc.init(); err != nil { return nil, err } return bc, nil } func (bc *Blockchain) init() error { genesisBlock, err := createGenesisBlock(bc.config) if err != nil { return err } bc.headerList = NewHeaderHashList(genesisBlock.Hash()) // Look in the storage for a version. If we could not the version key // there is nothing stored. if version, err := bc.Get(storage.SYSVersion.Bytes()); err != nil { bc.Put(storage.SYSVersion.Bytes(), []byte(version)) if err := bc.persistBlock(genesisBlock); err != nil { return err } return nil } // At this point there was no version found in the storage which // implies a creating fresh storage with the version specified // and the genesis block as first block. log.Infof("restoring blockchain with storage version: %s", version) currBlockBytes, err := bc.Get(storage.SYSCurrentBlock.Bytes()) if err != nil { return err } bc.blockHeight = binary.LittleEndian.Uint32(currBlockBytes[32:36]) hashes, err := readStoredHeaderHashes(bc.Store) if err != nil { return err } for _, hash := range hashes { if !genesisBlock.Hash().Equals(hash) { bc.headerList.Add(hash) bc.storedHeaderCount++ } } currHeaderBytes, err := bc.Get(storage.SYSCurrentHeader.Bytes()) if err != nil { return err } currHeaderHeight := binary.LittleEndian.Uint32(currHeaderBytes[32:36]) currHeaderHash, err := util.Uint256DecodeBytes(currHeaderBytes[:32]) if err != nil { return err } // Their is a high chance that the Node is stopped before the next // batch of 2000 headers was stored. Via the currentHeaders stored we can sync // that with stored blocks. if currHeaderHeight > bc.storedHeaderCount { hash := currHeaderHash targetHash := bc.headerList.Get(bc.headerList.Len() - 1) headers := []*Header{} for hash != targetHash { header, err := bc.getHeader(hash) if err != nil { return fmt.Errorf("could not get header %s: %s", hash, err) } headers = append(headers, header) hash = header.PrevHash } headerSliceReverse(headers) if err := bc.AddHeaders(headers...); err != nil { return err } } return nil } func (bc *Blockchain) run() { persistTimer := time.NewTimer(persistInterval) for { select { case op := <-bc.headersOp: op(bc.headerList) bc.headersOpDone <- struct{}{} case <-persistTimer.C: go bc.persist() persistTimer.Reset(persistInterval) } } } // For now this will return a hardcoded hash of the NEO governing token. func (bc *Blockchain) governingToken() util.Uint256 { neoNativeAsset := "c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b" val, _ := util.Uint256DecodeString(neoNativeAsset) return val } // AddBlock processes the given block and will add it to the cache so it // can be persisted. func (bc *Blockchain) AddBlock(block *Block) error { if !bc.blockCache.Has(block.Hash()) { bc.blockCache.Add(block.Hash(), block) } headerLen := bc.headerListLen() if int(block.Index-1) >= headerLen { return nil } if int(block.Index) == headerLen { if bc.verifyBlocks && !block.Verify(false) { return fmt.Errorf("block %s is invalid", block.Hash()) } return bc.AddHeaders(block.Header()) } return nil } // AddHeaders will process the given headers and add them to the // HeaderHashList. func (bc *Blockchain) AddHeaders(headers ...*Header) (err error) { var ( start = time.Now() batch = bc.Batch() ) bc.headersOp <- func(headerList *HeaderHashList) { for _, h := range headers { if int(h.Index-1) >= headerList.Len() { err = fmt.Errorf( "height of received header %d is higher then the current header %d", h.Index, headerList.Len(), ) return } if int(h.Index) < headerList.Len() { continue } if !h.Verify() { err = fmt.Errorf("header %v is invalid", h) return } if err = bc.processHeader(h, batch, headerList); err != nil { return } } if batch.Len() > 0 { if err = bc.PutBatch(batch); err != nil { return } log.WithFields(log.Fields{ "headerIndex": headerList.Len() - 1, "blockHeight": bc.BlockHeight(), "took": time.Since(start), }).Debug("done processing headers") } } <-bc.headersOpDone return err } // processHeader processes the given header. Note that this is only thread safe // if executed in headers operation. func (bc *Blockchain) processHeader(h *Header, batch storage.Batch, headerList *HeaderHashList) error { headerList.Add(h.Hash()) buf := new(bytes.Buffer) for int(h.Index)-headerBatchCount >= int(bc.storedHeaderCount) { if err := headerList.Write(buf, int(bc.storedHeaderCount), headerBatchCount); err != nil { return err } key := storage.AppendPrefixInt(storage.IXHeaderHashList, int(bc.storedHeaderCount)) batch.Put(key, buf.Bytes()) bc.storedHeaderCount += headerBatchCount buf.Reset() } buf.Reset() if err := h.EncodeBinary(buf); err != nil { return err } key := storage.AppendPrefix(storage.DataBlock, h.Hash().BytesReverse()) batch.Put(key, buf.Bytes()) batch.Put(storage.SYSCurrentHeader.Bytes(), hashAndIndexToBytes(h.Hash(), h.Index)) return nil } // TODO: persistBlock needs some more love, its implemented as in the original // project. This for the sake of development speed and understanding of what // is happening here, quite allot as you can see :). If things are wired together // and all tests are in place, we can make a more optimized and cleaner implementation. func (bc *Blockchain) persistBlock(block *Block) error { var ( batch = bc.Batch() unspentCoins = make(UnspentCoins) accounts = make(Accounts) ) storeAsBlock(batch, block, 0) storeAsCurrentBlock(batch, block) for _, tx := range block.Transactions { storeAsTransaction(batch, tx, block.Index) // Add CoinStateConfirmed for each tx output. unspent := make([]CoinState, len(tx.Outputs)) for i := 0; i < len(tx.Outputs); i++ { unspent[i] = CoinStateConfirmed } unspentCoins[tx.Hash()] = &UnspentCoinState{unspent} // Process TX outputs. for _, output := range tx.Outputs { account, err := accounts.getAndChange(bc.Store, output.ScriptHash) if err != nil { return err } if _, ok := account.Balances[output.AssetID]; ok { account.Balances[output.AssetID] += output.Amount } else { account.Balances[output.AssetID] = output.Amount } if output.AssetID.Equals(bc.governingToken()) && len(account.Votes) > 0 { // TODO } } // Process TX inputs that are grouped by previous hash. for prevHash, inputs := range tx.GroupInputsByPrevHash() { prevTX, _, err := bc.GetTransaction(prevHash) if err != nil { return fmt.Errorf("could not find previous TX: %s", prevHash) } for _, input := range inputs { unspent, err := unspentCoins.getAndChange(bc.Store, input.PrevHash) if err != nil { return err } unspent.states[input.PrevIndex] = CoinStateSpent prevTXOutput := prevTX.Outputs[input.PrevIndex] account, err := accounts.getAndChange(bc.Store, prevTXOutput.ScriptHash) if err != nil { return err } if prevTXOutput.AssetID.Equals(bc.governingToken()) { // TODO } account.Balances[prevTXOutput.AssetID] -= prevTXOutput.Amount } } // Process the underlying type of the TX. switch tx.Data.(type) { case *transaction.RegisterTX: case *transaction.IssueTX: case *transaction.ClaimTX: case *transaction.EnrollmentTX: case *transaction.StateTX: case *transaction.PublishTX: case *transaction.InvocationTX: log.Warn("invocation TX but we have no VM, o noo :(") } } // Persist all to storage. if err := accounts.commit(batch); err != nil { return err } if err := unspentCoins.commit(batch); err != nil { return err } if err := bc.PutBatch(batch); err != nil { return err } atomic.StoreUint32(&bc.blockHeight, block.Index) return nil } func (bc *Blockchain) persist() (err error) { var ( start = time.Now() persisted = 0 lenCache = bc.blockCache.Len() ) bc.headersOp <- func(headerList *HeaderHashList) { for i := 0; i < lenCache; i++ { if uint32(headerList.Len()) <= bc.BlockHeight() { return } hash := headerList.Get(int(bc.BlockHeight() + 1)) if block, ok := bc.blockCache.GetBlock(hash); ok { if err = bc.persistBlock(block); err != nil { log.Warnf("failed to persist blocks: %s", err) return } bc.blockCache.Delete(hash) persisted++ } } } <-bc.headersOpDone if persisted > 0 { log.WithFields(log.Fields{ "persisted": persisted, "blockHeight": bc.BlockHeight(), "took": time.Since(start), }).Info("blockchain persist completed") } return } func (bc *Blockchain) headerListLen() (n int) { bc.headersOp <- func(headerList *HeaderHashList) { n = headerList.Len() } <-bc.headersOpDone return } // GetTransaction returns a TX and its height by the given hash. func (bc *Blockchain) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) { key := storage.AppendPrefix(storage.DataTransaction, hash.BytesReverse()) b, err := bc.Get(key) if err != nil { return nil, 0, err } r := bytes.NewReader(b) var height uint32 if err := binary.Read(r, binary.LittleEndian, &height); err != nil { return nil, 0, err } tx := &transaction.Transaction{} if err := tx.DecodeBinary(r); err != nil { return nil, 0, err } return tx, height, nil } // GetBlock returns a Block by the given hash. func (bc *Blockchain) GetBlock(hash util.Uint256) (*Block, error) { key := storage.AppendPrefix(storage.DataBlock, hash.BytesReverse()) b, err := bc.Get(key) if err != nil { return nil, err } block, err := NewBlockFromTrimmedBytes(b) if err != nil { return nil, err } // TODO: persist TX first before we can handle this logic. //if len(block.Transactions) == 0 { // return nil, fmt.Errorf("block has no TX") //} return block, nil } func (bc *Blockchain) getHeader(hash util.Uint256) (*Header, error) { b, err := bc.Get(storage.AppendPrefix(storage.DataBlock, hash.BytesReverse())) if err != nil { return nil, err } block, err := NewBlockFromTrimmedBytes(b) if err != nil { return nil, err } return block.Header(), nil } // HasBlock return true if the blockchain contains he given // transaction hash. func (bc *Blockchain) HasTransaction(hash util.Uint256) bool { return false } // HasBlock return true if the blockchain contains the given // block hash. func (bc *Blockchain) HasBlock(hash util.Uint256) bool { if header, err := bc.getHeader(hash); err == nil { return header.Index <= bc.BlockHeight() } return false } // CurrentBlockHash returns the heighest processed block hash. func (bc *Blockchain) CurrentBlockHash() (hash util.Uint256) { bc.headersOp <- func(headerList *HeaderHashList) { hash = headerList.Get(int(bc.BlockHeight())) } <-bc.headersOpDone return } // CurrentHeaderHash returns the hash of the latest known header. func (bc *Blockchain) CurrentHeaderHash() (hash util.Uint256) { bc.headersOp <- func(headerList *HeaderHashList) { hash = headerList.Last() } <-bc.headersOpDone return } // GetHeaderHash return the hash from the headerList by its // height/index. func (bc *Blockchain) GetHeaderHash(i int) (hash util.Uint256) { bc.headersOp <- func(headerList *HeaderHashList) { hash = headerList.Get(i) } <-bc.headersOpDone return } // BlockHeight returns the height/index of the highest block. func (bc *Blockchain) BlockHeight() uint32 { return atomic.LoadUint32(&bc.blockHeight) } // HeaderHeight returns the index/height of the highest header. func (bc *Blockchain) HeaderHeight() uint32 { return uint32(bc.headerListLen() - 1) } func hashAndIndexToBytes(h util.Uint256, index uint32) []byte { buf := make([]byte, 4) binary.LittleEndian.PutUint32(buf, index) return append(h.BytesReverse(), buf...) }