package compiler import ( "encoding/json" "errors" "fmt" "go/ast" "go/parser" "go/token" "go/types" "io" "os" "path/filepath" "strings" "github.com/nspcc-dev/neo-go/pkg/smartcontract" "github.com/nspcc-dev/neo-go/pkg/smartcontract/binding" "github.com/nspcc-dev/neo-go/pkg/smartcontract/manifest" "github.com/nspcc-dev/neo-go/pkg/smartcontract/manifest/standard" "github.com/nspcc-dev/neo-go/pkg/smartcontract/nef" "github.com/nspcc-dev/neo-go/pkg/smartcontract/rpcbinding" "github.com/nspcc-dev/neo-go/pkg/util" "golang.org/x/tools/go/packages" "gopkg.in/yaml.v3" ) const fileExt = "nef" // Options contains all the parameters that affect the behavior of the compiler. type Options struct { // The extension of the output file default set to .nef Ext string // The name of the output file. Outfile string // The name of the output for debug info. DebugInfo string // The name of the output for contract manifest file. ManifestFile string // NoEventsCheck specifies if events emitted by contract needs to be present in manifest. // This setting has effect only if manifest is emitted. NoEventsCheck bool // NoStandardCheck specifies if supported standards compliance needs to be checked. // This setting has effect only if manifest is emitted. NoStandardCheck bool // NoPermissionsCheck specifies if permissions in YAML config need to be checked // against invocations performed by the contract. // This setting has effect only if manifest is emitted. NoPermissionsCheck bool // GuessEventTypes specifies if types of runtime notifications need to be guessed // from the usage context. These types are used for RPC binding generation only and // can be defined for events with name known at the compilation time and without // variadic args usages. If some type is specified via config file, then the config's // one is preferable. Currently, event's parameter type is defined from the first // occurrence of event call. GuessEventTypes bool // Name is a contract's name to be written to manifest. Name string // SourceURL is a contract's source URL to be written to manifest. SourceURL string // Runtime notifications declared in the contract configuration file. ContractEvents []HybridEvent // DeclaredNamedTypes is the set of named types that were declared in the // contract configuration type and are the part of manifest events. DeclaredNamedTypes map[string]binding.ExtendedType // The list of standards supported by the contract. ContractSupportedStandards []string // SafeMethods contains a list of methods which will be marked as safe in manifest. SafeMethods []string // Overloads contains mapping from the compiled method name to the name emitted in manifest. // It can be used to provide method overloads as Go doesn't have such capability. Overloads map[string]string // Permissions is a list of permissions for every contract method. Permissions []manifest.Permission // BindingsFile contains configuration for smart-contract bindings generator. BindingsFile string } // HybridEvent represents the description of event emitted by the contract squashed // with extended event's parameters description. We have it as a separate type for // the user's convenience. It is applied for the smart contract configuration file // only. type HybridEvent struct { Name string `json:"name"` Parameters []HybridParameter `json:"parameters"` } // HybridParameter contains the manifest's event parameter description united with // the extended type description for this parameter. It is applied for the smart // contract configuration file only. type HybridParameter struct { manifest.Parameter `yaml:",inline"` ExtendedType *binding.ExtendedType `yaml:"extendedtype,omitempty"` } type buildInfo struct { config *packages.Config program []*packages.Package options *Options } // ForEachPackage executes fn on each package used in the current program // in the order they should be initialized. func (c *codegen) ForEachPackage(fn func(*packages.Package)) { for _, pkgPath := range c.packages { p := c.packageCache[pkgPath] c.typeInfo = p.TypesInfo c.currPkg = p fn(p) } } // ForEachFile executes fn on each file used in the current program. func (c *codegen) ForEachFile(fn func(*ast.File, *types.Package)) { c.ForEachPackage(func(pkg *packages.Package) { for _, f := range pkg.Syntax { c.fillImportMap(f, pkg) fn(f, pkg.Types) } }) } // fillImportMap fills import map for f. func (c *codegen) fillImportMap(f *ast.File, pkg *packages.Package) { c.importMap = map[string]string{"": pkg.PkgPath} for _, imp := range f.Imports { // We need to load find package metadata because // name specified in `package ...` decl, can be in // conflict with package path. pkgPath := strings.Trim(imp.Path.Value, `"`) realPkg := pkg.Imports[pkgPath] name := realPkg.Name if imp.Name != nil { name = imp.Name.Name } c.importMap[name] = realPkg.PkgPath } } func getBuildInfo(name string, src any) (*buildInfo, error) { dir, err := filepath.Abs(name) if err != nil { return nil, err } absName := dir singleFile := strings.HasSuffix(absName, ".go") if singleFile { dir = filepath.Dir(dir) } conf := &packages.Config{ Mode: packages.NeedName | packages.NeedImports | packages.NeedDeps | packages.NeedTypes | packages.NeedSyntax | packages.NeedTypesInfo, Fset: token.NewFileSet(), Dir: dir, Overlay: make(map[string][]byte), } var names []string if src != nil { var buf []byte var err error switch s := src.(type) { case string: buf = []byte(s) case io.Reader: buf, err = io.ReadAll(s) if err != nil { return nil, err } default: panic(fmt.Sprintf("unsupported src type: %T", s)) } names = append(names, name) conf.Overlay[absName] = buf } else { if strings.HasSuffix(name, ".go") { names = append(names, "file="+absName) } else { names = append(names, "pattern="+absName) } } conf.ParseFile = func(fset *token.FileSet, filename string, src []byte) (*ast.File, error) { // When compiling a single file we can or can not load other files from the same package. // Here we chose the latter which is consistent with `go run` behavior. // Other dependencies should still be processed. if singleFile && filepath.Dir(filename) == filepath.Dir(absName) && filename != absName { return nil, nil } const mode = parser.AllErrors return parser.ParseFile(fset, filename, src, mode) } prog, err := packages.Load(conf, names...) if err != nil { return nil, err } for _, p := range prog { if len(p.Errors) != 0 { return nil, p.Errors[0] } } return &buildInfo{ config: conf, program: prog, }, nil } // Compile compiles a Go program into a bytecode that can run on the Neo virtual machine. // If `r != nil`, `name` is interpreted as a filename, and `r` as file contents. // Otherwise `name` is either a file name or a name of the directory containing source files. func Compile(name string, r io.Reader) ([]byte, error) { f, _, err := CompileWithOptions(name, r, nil) if err != nil { return nil, err } return f.Script, nil } // CompileWithOptions compiles a Go program into bytecode with the provided compiler options. func CompileWithOptions(name string, r io.Reader, o *Options) (*nef.File, *DebugInfo, error) { ctx, err := getBuildInfo(name, r) if err != nil { return nil, nil, err } ctx.options = o return codeGen(ctx) } // CompileAndSave will compile and save the file to disk in the NEF format. func CompileAndSave(src string, o *Options) ([]byte, error) { o.Outfile = strings.TrimSuffix(o.Outfile, fmt.Sprintf(".%s", fileExt)) if len(o.Outfile) == 0 { if strings.HasSuffix(src, ".go") { o.Outfile = strings.TrimSuffix(src, ".go") } else { o.Outfile = "out" } } if len(o.Ext) == 0 { o.Ext = fileExt } f, di, err := CompileWithOptions(src, nil, o) if err != nil { return nil, fmt.Errorf("error while trying to compile smart contract file: %w", err) } if o.SourceURL != "" { if len(o.SourceURL) > nef.MaxSourceURLLength { return nil, errors.New("too long source URL") } f.Source = o.SourceURL f.Checksum = f.CalculateChecksum() } bytes, err := f.Bytes() if err != nil { return nil, fmt.Errorf("error while serializing .nef file: %w", err) } out := fmt.Sprintf("%s.%s", o.Outfile, o.Ext) err = os.WriteFile(out, bytes, os.ModePerm) if err != nil { return f.Script, err } if o.DebugInfo == "" && o.ManifestFile == "" && o.BindingsFile == "" { return f.Script, nil } if o.DebugInfo != "" { di.Events = make([]EventDebugInfo, len(o.ContractEvents)) for i, e := range o.ContractEvents { params := make([]DebugParam, len(e.Parameters)) for j, p := range e.Parameters { params[j] = DebugParam{ Name: p.Name, Type: p.Type.String(), } } di.Events[i] = EventDebugInfo{ ID: e.Name, // DebugInfo event name should be at the format {namespace},{name} // but we don't provide namespace via .yml config Name: "," + e.Name, Parameters: params, } } data, err := json.Marshal(di) if err != nil { return f.Script, err } if err := os.WriteFile(o.DebugInfo, data, os.ModePerm); err != nil { return f.Script, err } } if o.BindingsFile != "" { cfg := binding.NewConfig() cfg.Package = di.MainPkg for _, m := range di.Methods { if !m.IsExported { continue } for _, p := range m.Parameters { pname := m.Name.Name + "." + p.Name if p.RealType.TypeName != "" { cfg.Overrides[pname] = p.RealType } if p.ExtendedType != nil { cfg.Types[pname] = *p.ExtendedType } } if m.ReturnTypeReal.TypeName != "" { cfg.Overrides[m.Name.Name] = m.ReturnTypeReal } if m.ReturnTypeExtended != nil { cfg.Types[m.Name.Name] = *m.ReturnTypeExtended } } if len(di.NamedTypes) > 0 { cfg.NamedTypes = di.NamedTypes } for name, et := range o.DeclaredNamedTypes { // TODO: handle name conflict (it can happen due to invalid user input e.g.) cfg.NamedTypes[name] = et } for _, e := range o.ContractEvents { eStructName := rpcbinding.ToEventBindingName(e.Name) for _, p := range e.Parameters { pStructName := rpcbinding.ToParameterBindingName(p.Name) if p.ExtendedType != nil { pName := eStructName + "." + pStructName cfg.Types[pName] = *p.ExtendedType } } } if o.GuessEventTypes { if len(di.EmittedEvents) > 0 { for eventName, eventUsages := range di.EmittedEvents { var manifestEvent HybridEvent for _, e := range o.ContractEvents { if e.Name == eventName { manifestEvent = e break } } if len(manifestEvent.Name) == 0 { return nil, fmt.Errorf("inconsistent usages of event `%s`: not declared in the contract config", eventName) } exampleUsage := eventUsages[0] for _, usage := range eventUsages { if len(usage.Params) != len(manifestEvent.Parameters) { return nil, fmt.Errorf("inconsistent usages of event `%s` against config: number of params mismatch: %d vs %d", eventName, len(exampleUsage.Params), len(manifestEvent.Parameters)) } for i, actual := range usage.Params { mParam := manifestEvent.Parameters[i] // TODO: see the TestCompile_GuessEventTypes, "SC parameter type mismatch" section, // do we want to compare with actual.RealType? The conversion code is emitted by the // compiler for it, so we expect the parameter to be of the proper type. if !(mParam.Type == smartcontract.AnyType || actual.TypeSC == mParam.Type) { return nil, fmt.Errorf("inconsistent usages of event `%s` against config: SC type of param #%d mismatch: %s vs %s", eventName, i, actual.TypeSC, mParam.Type) } expected := exampleUsage.Params[i] if !actual.ExtendedType.Equals(expected.ExtendedType) { return nil, fmt.Errorf("inconsistent usages of event `%s`: extended type of param #%d mismatch", eventName, i) } } } eBindingName := rpcbinding.ToEventBindingName(eventName) for typeName, extType := range exampleUsage.ExtTypes { if _, ok := cfg.NamedTypes[typeName]; !ok { cfg.NamedTypes[typeName] = extType } } for _, p := range exampleUsage.Params { pBindingName := rpcbinding.ToParameterBindingName(p.Name) pname := eBindingName + "." + pBindingName if p.RealType.TypeName != "" { if _, ok := cfg.Overrides[pname]; !ok { cfg.Overrides[pname] = p.RealType } } if p.ExtendedType != nil { if _, ok := cfg.Types[pname]; !ok { cfg.Types[pname] = *p.ExtendedType } } } } } } data, err := yaml.Marshal(&cfg) if err != nil { return nil, fmt.Errorf("can't marshal bindings configuration: %w", err) } err = os.WriteFile(o.BindingsFile, data, os.ModePerm) if err != nil { return nil, fmt.Errorf("can't write bindings configuration: %w", err) } } if o.ManifestFile != "" { m, err := CreateManifest(di, o) if err != nil { return f.Script, err } mData, err := json.Marshal(m) if err != nil { return f.Script, fmt.Errorf("failed to marshal manifest to JSON: %w", err) } return f.Script, os.WriteFile(o.ManifestFile, mData, os.ModePerm) } return f.Script, nil } // CreateManifest creates manifest and checks that is is valid. func CreateManifest(di *DebugInfo, o *Options) (*manifest.Manifest, error) { m, err := di.ConvertToManifest(o) if err != nil { return m, fmt.Errorf("failed to convert debug info to manifest: %w", err) } for _, name := range o.SafeMethods { if m.ABI.GetMethod(name, -1) == nil { return m, fmt.Errorf("method %s is marked as safe but missing from manifest", name) } } err = m.IsValid(util.Uint160{}) // Check as much as possible without hash. if err != nil { return m, fmt.Errorf("manifest is invalid: %w", err) } if !o.NoStandardCheck { if err := standard.CheckABI(m, o.ContractSupportedStandards...); err != nil { return m, err } if m.ABI.GetMethod(manifest.MethodOnNEP11Payment, -1) != nil { if err := standard.CheckABI(m, manifest.NEP11Payable); err != nil { return m, err } } if m.ABI.GetMethod(manifest.MethodOnNEP17Payment, -1) != nil { if err := standard.CheckABI(m, manifest.NEP17Payable); err != nil { return m, err } } } if !o.NoEventsCheck { for name := range di.EmittedEvents { expected := m.ABI.GetEvent(name) if expected == nil { return nil, fmt.Errorf("event '%s' is emitted but not specified in manifest", name) } for _, emitted := range di.EmittedEvents[name] { if len(emitted.Params) != len(expected.Parameters) { return nil, fmt.Errorf("event '%s' should have %d parameters but has %d", name, len(expected.Parameters), len(emitted.Params)) } for j := range expected.Parameters { if expected.Parameters[j].Type == smartcontract.AnyType { continue } expectedT := expected.Parameters[j].Type if emitted.Params[j].TypeSC != expectedT { return nil, fmt.Errorf("event '%s' should have '%s' as type of %d parameter, "+ "got: %s", name, expectedT, j+1, emitted.Params[j].TypeSC) } } } } } if !o.NoPermissionsCheck { // We can't perform full check for 2 reasons: // 1. Contract hash may not be available at compile time. // 2. Permission may be specified for a group of contracts by public key. // Thus only basic checks are performed. for h, methods := range di.InvokedContracts { knownHash := !h.Equals(util.Uint160{}) methodLoop: for _, m := range methods { for _, p := range o.Permissions { // Group or wildcard permission is ok to try. if knownHash && p.Contract.Type == manifest.PermissionHash && !p.Contract.Hash().Equals(h) { continue } if p.Methods.Contains(m) { continue methodLoop } } if knownHash { return nil, fmt.Errorf("method '%s' of contract %s is invoked but"+ " corresponding permission is missing", m, h.StringLE()) } return nil, fmt.Errorf("method '%s' is invoked but"+ " corresponding permission is missing", m) } } } return m, nil }