package keys import ( "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/sha256" "crypto/x509" "encoding/hex" "fmt" "math/big" "github.com/nspcc-dev/neo-go/pkg/util" "github.com/nspcc-dev/rfc6979" ) // PrivateKey represents a NEO private key and provides a high level API around // ecdsa.PrivateKey. type PrivateKey struct { ecdsa.PrivateKey } // NewPrivateKey creates a new random Secp256k1 private key. func NewPrivateKey() (*PrivateKey, error) { priv, x, y, err := elliptic.GenerateKey(elliptic.P256(), rand.Reader) if err != nil { return nil, err } return &PrivateKey{ ecdsa.PrivateKey{ PublicKey: ecdsa.PublicKey{ Curve: elliptic.P256(), X: x, Y: y, }, D: new(big.Int).SetBytes(priv), }, }, nil } // NewPrivateKeyFromHex returns a Secp256k1 PrivateKey created from the // given hex string. func NewPrivateKeyFromHex(str string) (*PrivateKey, error) { b, err := hex.DecodeString(str) if err != nil { return nil, err } return NewPrivateKeyFromBytes(b) } // NewPrivateKeyFromBytes returns a NEO Secp256r1 PrivateKey from the given // byte slice. func NewPrivateKeyFromBytes(b []byte) (*PrivateKey, error) { if len(b) != 32 { return nil, fmt.Errorf( "invalid byte length: expected %d bytes got %d", 32, len(b), ) } var ( c = elliptic.P256() d = new(big.Int).SetBytes(b) ) x, y := c.ScalarBaseMult(d.Bytes()) return &PrivateKey{ ecdsa.PrivateKey{ PublicKey: ecdsa.PublicKey{ Curve: c, X: x, Y: y, }, D: d, }, }, nil } // NewPrivateKeyFromASN1 returns a NEO Secp256k1 PrivateKey from the ASN.1 // serialized key. func NewPrivateKeyFromASN1(b []byte) (*PrivateKey, error) { privkey, err := x509.ParseECPrivateKey(b) if err != nil { return nil, err } return NewPrivateKeyFromBytes(privkey.D.Bytes()) } // PublicKey derives the public key from the private key. func (p *PrivateKey) PublicKey() *PublicKey { result := PublicKey(p.PrivateKey.PublicKey) return &result } // NewPrivateKeyFromWIF returns a NEO PrivateKey from the given // WIF (wallet import format). func NewPrivateKeyFromWIF(wif string) (*PrivateKey, error) { w, err := WIFDecode(wif, WIFVersion) if err != nil { return nil, err } return w.PrivateKey, nil } // WIF returns the (wallet import format) of the PrivateKey. // Good documentation about this process can be found here: // https://en.bitcoin.it/wiki/Wallet_import_format func (p *PrivateKey) WIF() string { w, err := WIFEncode(p.Bytes(), WIFVersion, true) // The only way WIFEncode() can fail is if we're to give it a key of // wrong size, but we have a proper key here, aren't we? if err != nil { panic(err) } return w } // Address derives the public NEO address that is coupled with the private key, and // returns it as a string. func (p *PrivateKey) Address() string { pk := p.PublicKey() return pk.Address() } // GetScriptHash returns verification script hash for public key associated with // the private key. func (p *PrivateKey) GetScriptHash() util.Uint160 { pk := p.PublicKey() return pk.GetScriptHash() } // Sign signs arbitrary length data using the private key. func (p *PrivateKey) Sign(data []byte) []byte { var ( privateKey = &p.PrivateKey digest = sha256.Sum256(data) ) r, s := rfc6979.SignECDSA(privateKey, digest[:], sha256.New) params := privateKey.Curve.Params() curveOrderByteSize := params.P.BitLen() / 8 rBytes, sBytes := r.Bytes(), s.Bytes() signature := make([]byte, curveOrderByteSize*2) copy(signature[curveOrderByteSize-len(rBytes):], rBytes) copy(signature[curveOrderByteSize*2-len(sBytes):], sBytes) return signature } // String implements the stringer interface. func (p *PrivateKey) String() string { return hex.EncodeToString(p.Bytes()) } // Bytes returns the underlying bytes of the PrivateKey. func (p *PrivateKey) Bytes() []byte { bytes := p.D.Bytes() result := make([]byte, 32) copy(result[32-len(bytes):], bytes) return result }