package core import ( "bytes" "encoding/binary" "errors" "fmt" "math" "math/big" "sort" "sync" "sync/atomic" "time" "github.com/nspcc-dev/neo-go/pkg/config" "github.com/nspcc-dev/neo-go/pkg/config/limits" "github.com/nspcc-dev/neo-go/pkg/core/block" "github.com/nspcc-dev/neo-go/pkg/core/dao" "github.com/nspcc-dev/neo-go/pkg/core/interop" "github.com/nspcc-dev/neo-go/pkg/core/interop/contract" "github.com/nspcc-dev/neo-go/pkg/core/mempool" "github.com/nspcc-dev/neo-go/pkg/core/mpt" "github.com/nspcc-dev/neo-go/pkg/core/native" "github.com/nspcc-dev/neo-go/pkg/core/native/noderoles" "github.com/nspcc-dev/neo-go/pkg/core/state" "github.com/nspcc-dev/neo-go/pkg/core/stateroot" "github.com/nspcc-dev/neo-go/pkg/core/statesync" "github.com/nspcc-dev/neo-go/pkg/core/storage" "github.com/nspcc-dev/neo-go/pkg/core/transaction" "github.com/nspcc-dev/neo-go/pkg/crypto/hash" "github.com/nspcc-dev/neo-go/pkg/crypto/keys" "github.com/nspcc-dev/neo-go/pkg/encoding/fixedn" "github.com/nspcc-dev/neo-go/pkg/io" "github.com/nspcc-dev/neo-go/pkg/smartcontract" "github.com/nspcc-dev/neo-go/pkg/smartcontract/callflag" "github.com/nspcc-dev/neo-go/pkg/smartcontract/manifest" "github.com/nspcc-dev/neo-go/pkg/smartcontract/trigger" "github.com/nspcc-dev/neo-go/pkg/util" "github.com/nspcc-dev/neo-go/pkg/util/slice" "github.com/nspcc-dev/neo-go/pkg/vm" "github.com/nspcc-dev/neo-go/pkg/vm/stackitem" "github.com/nspcc-dev/neo-go/pkg/vm/vmstate" "go.uber.org/zap" ) // Tuning parameters. const ( version = "0.2.10" // DefaultInitialGAS is the default amount of GAS emitted to the standby validators // multisignature account during native GAS contract initialization. DefaultInitialGAS = 52000000_00000000 defaultGCPeriod = 10000 defaultMemPoolSize = 50000 defaultP2PNotaryRequestPayloadPoolSize = 1000 defaultMaxBlockSize = 262144 defaultMaxBlockSystemFee = 900000000000 defaultMaxTraceableBlocks = 2102400 // 1 year of 15s blocks defaultMaxTransactionsPerBlock = 512 defaultTimePerBlock = 15 * time.Second // HeaderVerificationGasLimit is the maximum amount of GAS for block header verification. HeaderVerificationGasLimit = 3_00000000 // 3 GAS defaultStateSyncInterval = 40000 ) // stateChangeStage denotes the stage of state modification process. type stateChangeStage byte // A set of stages used to split state jump / state reset into atomic operations. const ( // none means that no state jump or state reset process was initiated yet. none stateChangeStage = 1 << iota // stateJumpStarted means that state jump was just initiated, but outdated storage items // were not yet removed. stateJumpStarted // newStorageItemsAdded means that contract storage items are up-to-date with the current // state. newStorageItemsAdded // staleBlocksRemoved means that state corresponding to the stale blocks (genesis block in // in case of state jump) was removed from the storage. staleBlocksRemoved // headersReset denotes stale SYS-prefixed and IX-prefixed information was removed from // the storage (applicable to state reset only). headersReset // transfersReset denotes NEP transfers were successfully updated (applicable to state reset only). transfersReset // stateResetBit represents a bit identifier for state reset process. If this bit is not set, then // it's an unfinished state jump. stateResetBit byte = 1 << 7 ) var ( // ErrAlreadyExists is returned when trying to add some transaction // that already exists on chain. ErrAlreadyExists = errors.New("already exists in blockchain") // ErrAlreadyInPool is returned when trying to add some already existing // transaction into the mempool. ErrAlreadyInPool = errors.New("already exists in mempool") // ErrOOM is returned when adding transaction to the memory pool because // it reached its full capacity. ErrOOM = errors.New("no space left in the memory pool") // ErrPolicy is returned on attempt to add transaction that doesn't // comply with node's configured policy into the mempool. ErrPolicy = errors.New("not allowed by policy") // ErrInvalidBlockIndex is returned when trying to add block with index // other than expected height of the blockchain. ErrInvalidBlockIndex = errors.New("invalid block index") // ErrHasConflicts is returned when trying to add some transaction which // conflicts with other transaction in the chain or pool according to // Conflicts attribute. ErrHasConflicts = errors.New("has conflicts") ) var ( persistInterval = 1 * time.Second ) // Blockchain represents the blockchain. It maintans internal state representing // the state of the ledger that can be accessed in various ways and changed by // adding new blocks or headers. type Blockchain struct { HeaderHashes config config.Blockchain // The only way chain state changes is by adding blocks, so we can't // allow concurrent block additions. It differs from the next lock in // that it's only for AddBlock method itself, the chain state is // protected by the lock below, but holding it during all of AddBlock // is too expensive (because the state only changes when persisting // change cache). addLock sync.Mutex // This lock ensures blockchain immutability for operations that need // that while performing their tasks. It's mostly used as a read lock // with the only writer being the block addition logic. lock sync.RWMutex // Data access object for CRUD operations around storage. It's write-cached. dao *dao.Simple // persistent is the same DB as dao, but we never write to it, so all reads // are directly from underlying persistent store. persistent *dao.Simple // Underlying persistent store. store storage.Store // Current index/height of the highest block. // Read access should always be called by BlockHeight(). // Write access should only happen in storeBlock(). blockHeight uint32 // Current top Block wrapped in an atomic.Value for safe access. topBlock atomic.Value // Current persisted block count. persistedHeight uint32 // Stop synchronization mechanisms. stopCh chan struct{} runToExitCh chan struct{} // isRunning denotes whether blockchain routines are currently running. isRunning atomic.Value memPool *mempool.Pool // postBlock is a set of callback methods which should be run under the Blockchain lock after new block is persisted. // Block's transactions are passed via mempool. postBlock []func(func(*transaction.Transaction, *mempool.Pool, bool) bool, *mempool.Pool, *block.Block) log *zap.Logger lastBatch *storage.MemBatch contracts native.Contracts extensible atomic.Value // knownValidatorsCount is the latest known validators count used // for defaultBlockWitness. knownValidatorsCount atomic.Value // defaultBlockWitness stores transaction.Witness with m out of n multisig, // where n = knownValidatorsCount. defaultBlockWitness atomic.Value stateRoot *stateroot.Module // Notification subsystem. events chan bcEvent subCh chan any unsubCh chan any } // StateRoot represents local state root module. type StateRoot interface { CurrentLocalHeight() uint32 CurrentLocalStateRoot() util.Uint256 CurrentValidatedHeight() uint32 FindStates(root util.Uint256, prefix, start []byte, max int) ([]storage.KeyValue, error) SeekStates(root util.Uint256, prefix []byte, f func(k, v []byte) bool) GetState(root util.Uint256, key []byte) ([]byte, error) GetStateProof(root util.Uint256, key []byte) ([][]byte, error) GetStateRoot(height uint32) (*state.MPTRoot, error) GetLatestStateHeight(root util.Uint256) (uint32, error) } // bcEvent is an internal event generated by the Blockchain and then // broadcasted to other parties. It joins the new block and associated // invocation logs, all the other events visible from outside can be produced // from this combination. type bcEvent struct { block *block.Block appExecResults []*state.AppExecResult } // transferData is used for transfer caching during storeBlock. type transferData struct { Info state.TokenTransferInfo Log11 state.TokenTransferLog Log17 state.TokenTransferLog } // NewBlockchain returns a new blockchain object the will use the // given Store as its underlying storage. For it to work correctly you need // to spawn a goroutine for its Run method after this initialization. func NewBlockchain(s storage.Store, cfg config.Blockchain, log *zap.Logger) (*Blockchain, error) { if log == nil { return nil, errors.New("empty logger") } // Protocol configuration fixups/checks. if cfg.InitialGASSupply <= 0 { cfg.InitialGASSupply = fixedn.Fixed8(DefaultInitialGAS) log.Info("initial gas supply is not set or wrong, setting default value", zap.Stringer("InitialGASSupply", cfg.InitialGASSupply)) } if cfg.MemPoolSize <= 0 { cfg.MemPoolSize = defaultMemPoolSize log.Info("mempool size is not set or wrong, setting default value", zap.Int("MemPoolSize", cfg.MemPoolSize)) } if cfg.P2PSigExtensions && cfg.P2PNotaryRequestPayloadPoolSize <= 0 { cfg.P2PNotaryRequestPayloadPoolSize = defaultP2PNotaryRequestPayloadPoolSize log.Info("P2PNotaryRequestPayloadPool size is not set or wrong, setting default value", zap.Int("P2PNotaryRequestPayloadPoolSize", cfg.P2PNotaryRequestPayloadPoolSize)) } if cfg.MaxBlockSize == 0 { cfg.MaxBlockSize = defaultMaxBlockSize log.Info("MaxBlockSize is not set or wrong, setting default value", zap.Uint32("MaxBlockSize", cfg.MaxBlockSize)) } if cfg.MaxBlockSystemFee <= 0 { cfg.MaxBlockSystemFee = defaultMaxBlockSystemFee log.Info("MaxBlockSystemFee is not set or wrong, setting default value", zap.Int64("MaxBlockSystemFee", cfg.MaxBlockSystemFee)) } if cfg.MaxTraceableBlocks == 0 { cfg.MaxTraceableBlocks = defaultMaxTraceableBlocks log.Info("MaxTraceableBlocks is not set or wrong, using default value", zap.Uint32("MaxTraceableBlocks", cfg.MaxTraceableBlocks)) } if cfg.MaxTransactionsPerBlock == 0 { cfg.MaxTransactionsPerBlock = defaultMaxTransactionsPerBlock log.Info("MaxTransactionsPerBlock is not set or wrong, using default value", zap.Uint16("MaxTransactionsPerBlock", cfg.MaxTransactionsPerBlock)) } if cfg.TimePerBlock <= 0 { cfg.TimePerBlock = defaultTimePerBlock log.Info("TimePerBlock is not set or wrong, using default value", zap.Duration("TimePerBlock", cfg.TimePerBlock)) } if cfg.MaxValidUntilBlockIncrement == 0 { const timePerDay = 24 * time.Hour cfg.MaxValidUntilBlockIncrement = uint32(timePerDay / cfg.TimePerBlock) log.Info("MaxValidUntilBlockIncrement is not set or wrong, using default value", zap.Uint32("MaxValidUntilBlockIncrement", cfg.MaxValidUntilBlockIncrement)) } if cfg.P2PStateExchangeExtensions { if !cfg.StateRootInHeader { return nil, errors.New("P2PStatesExchangeExtensions are enabled, but StateRootInHeader is off") } if cfg.KeepOnlyLatestState && !cfg.RemoveUntraceableBlocks { return nil, errors.New("P2PStateExchangeExtensions can be enabled either on MPT-complete node (KeepOnlyLatestState=false) or on light GC-enabled node (RemoveUntraceableBlocks=true)") } if cfg.StateSyncInterval <= 0 { cfg.StateSyncInterval = defaultStateSyncInterval log.Info("StateSyncInterval is not set or wrong, using default value", zap.Int("StateSyncInterval", cfg.StateSyncInterval)) } } if cfg.Hardforks == nil { cfg.Hardforks = map[string]uint32{} for _, hf := range config.Hardforks { cfg.Hardforks[hf.String()] = 0 } log.Info("Hardforks are not set, using default value") } else { // Explicitly set the height of all old omitted hardforks to 0 for proper // IsHardforkEnabled behaviour. for _, hf := range config.Hardforks { if _, ok := cfg.Hardforks[hf.String()]; !ok { cfg.Hardforks[hf.String()] = 0 continue } break } } // Local config consistency checks. if cfg.Ledger.RemoveUntraceableBlocks && cfg.Ledger.GarbageCollectionPeriod == 0 { cfg.Ledger.GarbageCollectionPeriod = defaultGCPeriod log.Info("GarbageCollectionPeriod is not set or wrong, using default value", zap.Uint32("GarbageCollectionPeriod", cfg.Ledger.GarbageCollectionPeriod)) } bc := &Blockchain{ config: cfg, dao: dao.NewSimple(s, cfg.StateRootInHeader), persistent: dao.NewSimple(s, cfg.StateRootInHeader), store: s, stopCh: make(chan struct{}), runToExitCh: make(chan struct{}), memPool: mempool.New(cfg.MemPoolSize, 0, false, updateMempoolMetrics), log: log, events: make(chan bcEvent), subCh: make(chan any), unsubCh: make(chan any), contracts: *native.NewContracts(cfg.ProtocolConfiguration), } bc.stateRoot = stateroot.NewModule(cfg, bc.VerifyWitness, bc.log, bc.dao.Store) bc.contracts.Designate.StateRootService = bc.stateRoot if err := bc.init(); err != nil { return nil, err } bc.isRunning.Store(false) return bc, nil } // GetDesignatedByRole returns a set of designated public keys for the given role // relevant for the next block. func (bc *Blockchain) GetDesignatedByRole(r noderoles.Role) (keys.PublicKeys, uint32, error) { // Retrieve designated nodes starting from the next block, because the current // block is already stored, thus, dependant services can't use PostPersist callback // to fetch relevant information at their start. res, h, err := bc.contracts.Designate.GetDesignatedByRole(bc.dao, r, bc.BlockHeight()+1) return res, h, err } // SetOracle sets oracle module. It can safely be called on the running blockchain. // To unregister Oracle service use SetOracle(nil). func (bc *Blockchain) SetOracle(mod native.OracleService) { orc := bc.contracts.Oracle if mod != nil { md, ok := orc.GetMethod(manifest.MethodVerify, -1) if !ok { panic(fmt.Errorf("%s method not found", manifest.MethodVerify)) } mod.UpdateNativeContract(orc.NEF.Script, orc.GetOracleResponseScript(), orc.Hash, md.MD.Offset) keys, _, err := bc.GetDesignatedByRole(noderoles.Oracle) if err != nil { bc.log.Error("failed to get oracle key list") return } mod.UpdateOracleNodes(keys) reqs, err := bc.contracts.Oracle.GetRequests(bc.dao) if err != nil { bc.log.Error("failed to get current oracle request list") return } mod.AddRequests(reqs) } orc.Module.Store(&mod) bc.contracts.Designate.OracleService.Store(&mod) } // SetNotary sets notary module. It may safely be called on the running blockchain. // To unregister Notary service use SetNotary(nil). func (bc *Blockchain) SetNotary(mod native.NotaryService) { if mod != nil { keys, _, err := bc.GetDesignatedByRole(noderoles.P2PNotary) if err != nil { bc.log.Error("failed to get notary key list") return } mod.UpdateNotaryNodes(keys) } bc.contracts.Designate.NotaryService.Store(&mod) } func (bc *Blockchain) init() error { // If we could not find the version in the Store, we know that there is nothing stored. ver, err := bc.dao.GetVersion() if err != nil { bc.log.Info("no storage version found! creating genesis block") ver = dao.Version{ StoragePrefix: storage.STStorage, StateRootInHeader: bc.config.StateRootInHeader, P2PSigExtensions: bc.config.P2PSigExtensions, P2PStateExchangeExtensions: bc.config.P2PStateExchangeExtensions, KeepOnlyLatestState: bc.config.Ledger.KeepOnlyLatestState, Magic: uint32(bc.config.Magic), Value: version, } bc.dao.PutVersion(ver) bc.dao.Version = ver bc.persistent.Version = ver genesisBlock, err := CreateGenesisBlock(bc.config.ProtocolConfiguration) if err != nil { return err } bc.HeaderHashes.initGenesis(bc.dao, genesisBlock.Hash()) if err := bc.stateRoot.Init(0); err != nil { return fmt.Errorf("can't init MPT: %w", err) } return bc.storeBlock(genesisBlock, nil) } if ver.Value != version { return fmt.Errorf("storage version mismatch (expected=%s, actual=%s)", version, ver.Value) } if ver.StateRootInHeader != bc.config.StateRootInHeader { return fmt.Errorf("StateRootInHeader setting mismatch (config=%t, db=%t)", bc.config.StateRootInHeader, ver.StateRootInHeader) } if ver.P2PSigExtensions != bc.config.P2PSigExtensions { return fmt.Errorf("P2PSigExtensions setting mismatch (old=%t, new=%t)", ver.P2PSigExtensions, bc.config.P2PSigExtensions) } if ver.P2PStateExchangeExtensions != bc.config.P2PStateExchangeExtensions { return fmt.Errorf("P2PStateExchangeExtensions setting mismatch (old=%t, new=%t)", ver.P2PStateExchangeExtensions, bc.config.P2PStateExchangeExtensions) } if ver.KeepOnlyLatestState != bc.config.Ledger.KeepOnlyLatestState { return fmt.Errorf("KeepOnlyLatestState setting mismatch (old=%v, new=%v)", ver.KeepOnlyLatestState, bc.config.Ledger.KeepOnlyLatestState) } if ver.Magic != uint32(bc.config.Magic) { return fmt.Errorf("protocol configuration Magic mismatch (old=%v, new=%v)", ver.Magic, bc.config.Magic) } bc.dao.Version = ver bc.persistent.Version = ver // At this point there was no version found in the storage which // implies a creating fresh storage with the version specified // and the genesis block as first block. bc.log.Info("restoring blockchain", zap.String("version", version)) err = bc.HeaderHashes.init(bc.dao) if err != nil { return err } // Check whether StateChangeState stage is in the storage and continue interrupted state jump / state reset if so. stateChStage, err := bc.dao.Store.Get([]byte{byte(storage.SYSStateChangeStage)}) if err == nil { if len(stateChStage) != 1 { return fmt.Errorf("invalid state jump stage format") } // State jump / state reset wasn't finished yet, thus continue it. stateSyncPoint, err := bc.dao.GetStateSyncPoint() if err != nil { return fmt.Errorf("failed to get state sync point from the storage") } if (stateChStage[0] & stateResetBit) != 0 { return bc.resetStateInternal(stateSyncPoint, stateChangeStage(stateChStage[0]&(^stateResetBit))) } if !(bc.config.P2PStateExchangeExtensions && bc.config.Ledger.RemoveUntraceableBlocks) { return errors.New("state jump was not completed, but P2PStateExchangeExtensions are disabled or archival node capability is on. " + "To start an archival node drop the database manually and restart the node") } return bc.jumpToStateInternal(stateSyncPoint, stateChangeStage(stateChStage[0])) } bHeight, err := bc.dao.GetCurrentBlockHeight() if err != nil { return fmt.Errorf("failed to retrieve current block height: %w", err) } bc.blockHeight = bHeight bc.persistedHeight = bHeight bc.log.Debug("initializing caches", zap.Uint32("blockHeight", bHeight)) if err = bc.stateRoot.Init(bHeight); err != nil { return fmt.Errorf("can't init MPT at height %d: %w", bHeight, err) } err = bc.initializeNativeCache(bc.blockHeight, bc.dao) if err != nil { return fmt.Errorf("can't init natives cache: %w", err) } // Check autogenerated native contracts' manifests and NEFs against the stored ones. // Need to be done after native Management cache initialization to be able to get // contract state from DAO via high-level bc API. for _, c := range bc.contracts.Contracts { md := c.Metadata() storedCS := bc.GetContractState(md.Hash) // Check that contract was deployed. if !bc.isHardforkEnabled(c.ActiveIn(), bHeight) { if storedCS != nil { return fmt.Errorf("native contract %s is already stored, but marked as inactive for height %d in config", md.Name, bHeight) } continue } if storedCS == nil { return fmt.Errorf("native contract %s is not stored, but should be active at height %d according to config", md.Name, bHeight) } storedCSBytes, err := stackitem.SerializeConvertible(storedCS) if err != nil { return fmt.Errorf("failed to check native %s state against autogenerated one: %w", md.Name, err) } autogenCS := &state.Contract{ ContractBase: md.ContractBase, UpdateCounter: storedCS.UpdateCounter, // it can be restored only from the DB, so use the stored value. } autogenCSBytes, err := stackitem.SerializeConvertible(autogenCS) if err != nil { return fmt.Errorf("failed to check native %s state against autogenerated one: %w", md.Name, err) } if !bytes.Equal(storedCSBytes, autogenCSBytes) { return fmt.Errorf("native %s: version mismatch (stored contract state differs from autogenerated one), "+ "try to resynchronize the node from the genesis", md.Name) } } updateBlockHeightMetric(bHeight) updatePersistedHeightMetric(bHeight) updateHeaderHeightMetric(bc.HeaderHeight()) return bc.updateExtensibleWhitelist(bHeight) } // jumpToState is an atomic operation that changes Blockchain state to the one // specified by the state sync point p. All the data needed for the jump must be // collected by the state sync module. func (bc *Blockchain) jumpToState(p uint32) error { bc.addLock.Lock() bc.lock.Lock() defer bc.lock.Unlock() defer bc.addLock.Unlock() return bc.jumpToStateInternal(p, none) } // jumpToStateInternal is an internal representation of jumpToState callback that // changes Blockchain state to the one specified by state sync point p and state // jump stage. All the data needed for the jump must be in the DB, otherwise an // error is returned. It is not protected by mutex. func (bc *Blockchain) jumpToStateInternal(p uint32, stage stateChangeStage) error { if p >= bc.HeaderHeight() { return fmt.Errorf("invalid state sync point %d: headerHeignt is %d", p, bc.HeaderHeight()) } bc.log.Info("jumping to state sync point", zap.Uint32("state sync point", p)) jumpStageKey := []byte{byte(storage.SYSStateChangeStage)} switch stage { case none: bc.dao.Store.Put(jumpStageKey, []byte{byte(stateJumpStarted)}) fallthrough case stateJumpStarted: newPrefix := statesync.TemporaryPrefix(bc.dao.Version.StoragePrefix) v, err := bc.dao.GetVersion() if err != nil { return fmt.Errorf("failed to get dao.Version: %w", err) } v.StoragePrefix = newPrefix bc.dao.PutVersion(v) bc.persistent.Version = v bc.dao.Store.Put(jumpStageKey, []byte{byte(newStorageItemsAdded)}) fallthrough case newStorageItemsAdded: cache := bc.dao.GetPrivate() prefix := statesync.TemporaryPrefix(bc.dao.Version.StoragePrefix) bc.dao.Store.Seek(storage.SeekRange{Prefix: []byte{byte(prefix)}}, func(k, _ []byte) bool { // #1468, but don't need to copy here, because it is done by Store. cache.Store.Delete(k) return true }) // After current state is updated, we need to remove outdated state-related data if so. // The only outdated data we might have is genesis-related data, so check it. if p-bc.config.MaxTraceableBlocks > 0 { err := cache.DeleteBlock(bc.GetHeaderHash(0)) if err != nil { return fmt.Errorf("failed to remove outdated state data for the genesis block: %w", err) } prefixes := []byte{byte(storage.STNEP11Transfers), byte(storage.STNEP17Transfers), byte(storage.STTokenTransferInfo)} for i := range prefixes { cache.Store.Seek(storage.SeekRange{Prefix: prefixes[i : i+1]}, func(k, v []byte) bool { cache.Store.Delete(k) return true }) } } // Update SYS-prefixed info. block, err := bc.dao.GetBlock(bc.GetHeaderHash(p)) if err != nil { return fmt.Errorf("failed to get current block: %w", err) } cache.StoreAsCurrentBlock(block) cache.Store.Put(jumpStageKey, []byte{byte(staleBlocksRemoved)}) _, err = cache.Persist() if err != nil { return fmt.Errorf("failed to persist old items removal: %w", err) } case staleBlocksRemoved: // there's nothing to do after that, so just continue with common operations // and remove state jump stage in the end. default: return fmt.Errorf("unknown state jump stage: %d", stage) } block, err := bc.dao.GetBlock(bc.GetHeaderHash(p + 1)) if err != nil { return fmt.Errorf("failed to get block to init MPT: %w", err) } bc.stateRoot.JumpToState(&state.MPTRoot{ Index: p, Root: block.PrevStateRoot, }) bc.dao.Store.Delete(jumpStageKey) err = bc.resetRAMState(p, false) if err != nil { return fmt.Errorf("failed to update in-memory blockchain data: %w", err) } return nil } // resetRAMState resets in-memory cached info. func (bc *Blockchain) resetRAMState(height uint32, resetHeaders bool) error { if resetHeaders { err := bc.HeaderHashes.init(bc.dao) if err != nil { return err } } block, err := bc.dao.GetBlock(bc.GetHeaderHash(height)) if err != nil { return fmt.Errorf("failed to get current block: %w", err) } bc.topBlock.Store(block) atomic.StoreUint32(&bc.blockHeight, height) atomic.StoreUint32(&bc.persistedHeight, height) err = bc.initializeNativeCache(block.Index, bc.dao) if err != nil { return fmt.Errorf("failed to initialize natives cache: %w", err) } if err := bc.updateExtensibleWhitelist(height); err != nil { return fmt.Errorf("failed to update extensible whitelist: %w", err) } updateBlockHeightMetric(height) updatePersistedHeightMetric(height) updateHeaderHeightMetric(bc.HeaderHeight()) return nil } // Reset resets chain state to the specified height if possible. This method // performs direct DB changes and can be called on non-running Blockchain only. func (bc *Blockchain) Reset(height uint32) error { if bc.isRunning.Load().(bool) { return errors.New("can't reset state of the running blockchain") } bc.dao.PutStateSyncPoint(height) return bc.resetStateInternal(height, none) } func (bc *Blockchain) resetStateInternal(height uint32, stage stateChangeStage) error { // Cache isn't yet initialized, so retrieve block height right from DAO. currHeight, err := bc.dao.GetCurrentBlockHeight() if err != nil { return fmt.Errorf("failed to retrieve current block height: %w", err) } // Headers are already initialized by this moment, thus may use chain's API. hHeight := bc.HeaderHeight() // State reset may already be started by this moment, so perform these checks only if it wasn't. if stage == none { if height > currHeight { return fmt.Errorf("current block height is %d, can't reset state to height %d", currHeight, height) } if height == currHeight && hHeight == currHeight { bc.log.Info("chain is at the proper state", zap.Uint32("height", height)) return nil } if bc.config.Ledger.KeepOnlyLatestState { return fmt.Errorf("KeepOnlyLatestState is enabled, state for height %d is outdated and removed from the storage", height) } if bc.config.Ledger.RemoveUntraceableBlocks && currHeight >= bc.config.MaxTraceableBlocks { return fmt.Errorf("RemoveUntraceableBlocks is enabled, a necessary batch of traceable blocks has already been removed") } } // Retrieve necessary state before the DB modification. b, err := bc.GetBlock(bc.GetHeaderHash(height)) if err != nil { return fmt.Errorf("failed to retrieve block %d: %w", height, err) } sr, err := bc.stateRoot.GetStateRoot(height) if err != nil { return fmt.Errorf("failed to retrieve stateroot for height %d: %w", height, err) } v := bc.dao.Version // dao is MemCachedStore over DB, we use dao directly to persist cached changes // right to the underlying DB. cache := bc.dao // upperCache is a private MemCachedStore over cache. During each of the state // sync stages we put the data inside the upperCache; in the end of each stage // we persist changes from upperCache to cache. Changes from cache are persisted // directly to the underlying persistent storage (boltDB, levelDB, etc.). // upperCache/cache segregation is needed to keep the DB state clean and to // persist data from different stages separately. upperCache := cache.GetPrivate() bc.log.Info("initializing state reset", zap.Uint32("target height", height)) start := time.Now() p := start // Start batch persisting routine, it will be used for blocks/txs/AERs/storage items batches persist. type postPersist func(persistedKeys int, err error) error var ( persistCh = make(chan postPersist) persistToExitCh = make(chan struct{}) ) go func() { for { f, ok := <-persistCh if !ok { break } persistErr := f(cache.Persist()) if persistErr != nil { bc.log.Fatal("persist failed", zap.Error(persistErr)) panic(persistErr) } } close(persistToExitCh) }() defer func() { close(persistCh) <-persistToExitCh bc.log.Info("reset finished successfully", zap.Duration("took", time.Since(start))) }() resetStageKey := []byte{byte(storage.SYSStateChangeStage)} switch stage { case none: upperCache.Store.Put(resetStageKey, []byte{stateResetBit | byte(stateJumpStarted)}) // Technically, there's no difference between Persist() and PersistSync() for the private // MemCached storage, but we'd better use the sync version in case of some further code changes. _, uerr := upperCache.PersistSync() if uerr != nil { panic(uerr) } upperCache = cache.GetPrivate() persistCh <- func(persistedKeys int, err error) error { if err != nil { return fmt.Errorf("failed to persist state reset start marker to the DB: %w", err) } return nil } fallthrough case stateJumpStarted: bc.log.Debug("trying to reset blocks, transactions and AERs") // Remove blocks/transactions/aers from currHeight down to height (not including height itself). // Keep headers for now, they'll be removed later. It's hard to handle the whole set of changes in // one stage, so persist periodically. const persistBatchSize = 100 * headerBatchCount // count blocks only, should be enough to avoid OOM killer even for large blocks var ( pBlocksStart = p blocksCnt, batchCnt int keysCnt = new(int) ) for i := height + 1; i <= currHeight; i++ { err := upperCache.DeleteBlock(bc.GetHeaderHash(i)) if err != nil { return fmt.Errorf("error while removing block %d: %w", i, err) } blocksCnt++ if blocksCnt == persistBatchSize { blocksCnt = 0 batchCnt++ bc.log.Info("intermediate batch of removed blocks, transactions and AERs is collected", zap.Int("batch", batchCnt), zap.Duration("took", time.Since(p))) persistStart := time.Now() persistBatch := batchCnt _, uerr := upperCache.PersistSync() if uerr != nil { panic(uerr) } upperCache = cache.GetPrivate() persistCh <- func(persistedKeys int, err error) error { if err != nil { return fmt.Errorf("failed to persist intermediate batch of removed blocks, transactions and AERs: %w", err) } *keysCnt += persistedKeys bc.log.Debug("intermediate batch of removed blocks, transactions and AERs is persisted", zap.Int("batch", persistBatch), zap.Duration("took", time.Since(persistStart)), zap.Int("keys", persistedKeys)) return nil } p = time.Now() } } upperCache.Store.Put(resetStageKey, []byte{stateResetBit | byte(staleBlocksRemoved)}) batchCnt++ bc.log.Info("last batch of removed blocks, transactions and AERs is collected", zap.Int("batch", batchCnt), zap.Duration("took", time.Since(p))) bc.log.Info("blocks, transactions ans AERs are reset", zap.Duration("took", time.Since(pBlocksStart))) persistStart := time.Now() persistBatch := batchCnt _, uerr := upperCache.PersistSync() if uerr != nil { panic(uerr) } upperCache = cache.GetPrivate() persistCh <- func(persistedKeys int, err error) error { if err != nil { return fmt.Errorf("failed to persist last batch of removed blocks, transactions ans AERs: %w", err) } *keysCnt += persistedKeys bc.log.Debug("last batch of removed blocks, transactions and AERs is persisted", zap.Int("batch", persistBatch), zap.Duration("took", time.Since(persistStart)), zap.Int("keys", persistedKeys)) return nil } p = time.Now() fallthrough case staleBlocksRemoved: // Completely remove contract IDs to update them later. bc.log.Debug("trying to reset contract storage items") pStorageStart := p p = time.Now() var mode = mpt.ModeAll if bc.config.Ledger.RemoveUntraceableBlocks { mode |= mpt.ModeGCFlag } trieStore := mpt.NewTrieStore(sr.Root, mode, upperCache.Store) oldStoragePrefix := v.StoragePrefix newStoragePrefix := statesync.TemporaryPrefix(oldStoragePrefix) const persistBatchSize = 200000 var cnt, storageItmsCnt, batchCnt int trieStore.Seek(storage.SeekRange{Prefix: []byte{byte(oldStoragePrefix)}}, func(k, v []byte) bool { if cnt >= persistBatchSize { cnt = 0 batchCnt++ bc.log.Info("intermediate batch of contract storage items and IDs is collected", zap.Int("batch", batchCnt), zap.Duration("took", time.Since(p))) persistStart := time.Now() persistBatch := batchCnt _, uerr := upperCache.PersistSync() if uerr != nil { panic(uerr) } upperCache = cache.GetPrivate() persistCh <- func(persistedKeys int, err error) error { if err != nil { return fmt.Errorf("failed to persist intermediate batch of contract storage items: %w", err) } bc.log.Debug("intermediate batch of contract storage items is persisted", zap.Int("batch", persistBatch), zap.Duration("took", time.Since(persistStart)), zap.Int("keys", persistedKeys)) return nil } p = time.Now() } // May safely omit KV copying. k[0] = byte(newStoragePrefix) upperCache.Store.Put(k, v) cnt++ storageItmsCnt++ return true }) trieStore.Close() upperCache.Store.Put(resetStageKey, []byte{stateResetBit | byte(newStorageItemsAdded)}) batchCnt++ persistBatch := batchCnt bc.log.Info("last batch of contract storage items is collected", zap.Int("batch", batchCnt), zap.Duration("took", time.Since(p))) bc.log.Info("contract storage items are reset", zap.Duration("took", time.Since(pStorageStart)), zap.Int("keys", storageItmsCnt)) lastStart := time.Now() _, uerr := upperCache.PersistSync() if uerr != nil { panic(uerr) } upperCache = cache.GetPrivate() persistCh <- func(persistedKeys int, err error) error { if err != nil { return fmt.Errorf("failed to persist contract storage items and IDs changes to the DB: %w", err) } bc.log.Debug("last batch of contract storage items and IDs is persisted", zap.Int("batch", persistBatch), zap.Duration("took", time.Since(lastStart)), zap.Int("keys", persistedKeys)) return nil } p = time.Now() fallthrough case newStorageItemsAdded: // Reset SYS-prefixed and IX-prefixed information. bc.log.Debug("trying to reset headers information") for i := height + 1; i <= hHeight; i++ { upperCache.PurgeHeader(bc.GetHeaderHash(i)) } upperCache.DeleteHeaderHashes(height+1, headerBatchCount) upperCache.StoreAsCurrentBlock(b) upperCache.PutCurrentHeader(b.Hash(), height) v.StoragePrefix = statesync.TemporaryPrefix(v.StoragePrefix) upperCache.PutVersion(v) // It's important to manually change the cache's Version at this stage, so that native cache // can be properly initialized (with the correct contract storage data prefix) at the final // stage of the state reset. At the same time, DB's SYSVersion-prefixed data will be persisted // from upperCache to cache in a standard way (several lines below). cache.Version = v bc.persistent.Version = v upperCache.Store.Put(resetStageKey, []byte{stateResetBit | byte(headersReset)}) bc.log.Info("headers information is reset", zap.Duration("took", time.Since(p))) persistStart := time.Now() _, uerr := upperCache.PersistSync() if uerr != nil { panic(uerr) } upperCache = cache.GetPrivate() persistCh <- func(persistedKeys int, err error) error { if err != nil { return fmt.Errorf("failed to persist headers changes to the DB: %w", err) } bc.log.Debug("headers information is persisted", zap.Duration("took", time.Since(persistStart)), zap.Int("keys", persistedKeys)) return nil } p = time.Now() fallthrough case headersReset: // Reset MPT. bc.log.Debug("trying to reset state root information and NEP transfers") err = bc.stateRoot.ResetState(height, upperCache.Store) if err != nil { return fmt.Errorf("failed to rollback MPT state: %w", err) } // Reset transfers. err = bc.resetTransfers(upperCache, height) if err != nil { return fmt.Errorf("failed to strip transfer log / transfer info: %w", err) } upperCache.Store.Put(resetStageKey, []byte{stateResetBit | byte(transfersReset)}) bc.log.Info("state root information and NEP transfers are reset", zap.Duration("took", time.Since(p))) persistStart := time.Now() _, uerr := upperCache.PersistSync() if uerr != nil { panic(uerr) } upperCache = cache.GetPrivate() persistCh <- func(persistedKeys int, err error) error { if err != nil { return fmt.Errorf("failed to persist contract storage items changes to the DB: %w", err) } bc.log.Debug("state root information and NEP transfers are persisted", zap.Duration("took", time.Since(persistStart)), zap.Int("keys", persistedKeys)) return nil } p = time.Now() fallthrough case transfersReset: // there's nothing to do after that, so just continue with common operations // and remove state reset stage in the end. default: return fmt.Errorf("unknown state reset stage: %d", stage) } // Direct (cache-less) DB operation: remove stale storage items. bc.log.Debug("trying to remove stale storage items") keys := 0 err = bc.store.SeekGC(storage.SeekRange{ Prefix: []byte{byte(statesync.TemporaryPrefix(v.StoragePrefix))}, }, func(_, _ []byte) bool { keys++ return false }) if err != nil { return fmt.Errorf("faield to remove stale storage items from DB: %w", err) } bc.log.Info("stale storage items are reset", zap.Duration("took", time.Since(p)), zap.Int("keys", keys)) p = time.Now() bc.log.Debug("trying to remove state reset point") upperCache.Store.Delete(resetStageKey) // Unlike the state jump, state sync point must be removed as we have complete state for this height. upperCache.Store.Delete([]byte{byte(storage.SYSStateSyncPoint)}) bc.log.Info("state reset point is removed", zap.Duration("took", time.Since(p))) persistStart := time.Now() _, uerr := upperCache.PersistSync() if uerr != nil { panic(uerr) } persistCh <- func(persistedKeys int, err error) error { if err != nil { return fmt.Errorf("failed to persist state reset stage to DAO: %w", err) } bc.log.Info("state reset point information is persisted", zap.Duration("took", time.Since(persistStart)), zap.Int("keys", persistedKeys)) return nil } p = time.Now() err = bc.resetRAMState(height, true) if err != nil { return fmt.Errorf("failed to update in-memory blockchain data: %w", err) } return nil } func (bc *Blockchain) initializeNativeCache(blockHeight uint32, d *dao.Simple) error { for _, c := range bc.contracts.Contracts { // Check that contract was deployed. if !bc.isHardforkEnabled(c.ActiveIn(), blockHeight) { continue } err := c.InitializeCache(blockHeight, d) if err != nil { return fmt.Errorf("failed to initialize cache for %s: %w", c.Metadata().Name, err) } } return nil } // isHardforkEnabled returns true if the specified hardfork is enabled at the // given height. nil hardfork is treated as always enabled. func (bc *Blockchain) isHardforkEnabled(hf *config.Hardfork, blockHeight uint32) bool { hfs := bc.config.Hardforks if hf != nil { start, ok := hfs[hf.String()] if !ok || start < blockHeight { return false } } return true } // Run runs chain loop, it needs to be run as goroutine and executing it is // critical for correct Blockchain operation. func (bc *Blockchain) Run() { bc.isRunning.Store(true) persistTimer := time.NewTimer(persistInterval) defer func() { persistTimer.Stop() if _, err := bc.persist(true); err != nil { bc.log.Warn("failed to persist", zap.Error(err)) } if err := bc.dao.Store.Close(); err != nil { bc.log.Warn("failed to close db", zap.Error(err)) } bc.isRunning.Store(false) close(bc.runToExitCh) }() go bc.notificationDispatcher() var nextSync bool for { select { case <-bc.stopCh: return case <-persistTimer.C: var oldPersisted uint32 var gcDur time.Duration if bc.config.Ledger.RemoveUntraceableBlocks { oldPersisted = atomic.LoadUint32(&bc.persistedHeight) } dur, err := bc.persist(nextSync) if err != nil { bc.log.Warn("failed to persist blockchain", zap.Error(err)) } if bc.config.Ledger.RemoveUntraceableBlocks { gcDur = bc.tryRunGC(oldPersisted) } nextSync = dur > persistInterval*2 interval := persistInterval - dur - gcDur if interval <= 0 { interval = time.Microsecond // Reset doesn't work with zero value } persistTimer.Reset(interval) } } } func (bc *Blockchain) tryRunGC(oldHeight uint32) time.Duration { var dur time.Duration newHeight := atomic.LoadUint32(&bc.persistedHeight) var tgtBlock = int64(newHeight) tgtBlock -= int64(bc.config.MaxTraceableBlocks) if bc.config.P2PStateExchangeExtensions { syncP := newHeight / uint32(bc.config.StateSyncInterval) syncP-- syncP *= uint32(bc.config.StateSyncInterval) if tgtBlock > int64(syncP) { tgtBlock = int64(syncP) } } // Always round to the GCP. tgtBlock /= int64(bc.config.Ledger.GarbageCollectionPeriod) tgtBlock *= int64(bc.config.Ledger.GarbageCollectionPeriod) // Count periods. oldHeight /= bc.config.Ledger.GarbageCollectionPeriod newHeight /= bc.config.Ledger.GarbageCollectionPeriod if tgtBlock > int64(bc.config.Ledger.GarbageCollectionPeriod) && newHeight != oldHeight { tgtBlock /= int64(bc.config.Ledger.GarbageCollectionPeriod) tgtBlock *= int64(bc.config.Ledger.GarbageCollectionPeriod) dur = bc.stateRoot.GC(uint32(tgtBlock), bc.store) dur += bc.removeOldTransfers(uint32(tgtBlock)) } return dur } // resetTransfers is a helper function that strips the top newest NEP17 and NEP11 transfer logs // down to the given height (not including the height itself) and updates corresponding token // transfer info. func (bc *Blockchain) resetTransfers(cache *dao.Simple, height uint32) error { // Completely remove transfer info, updating it takes too much effort. We'll gather new // transfer info on-the-fly later. cache.Store.Seek(storage.SeekRange{ Prefix: []byte{byte(storage.STTokenTransferInfo)}, }, func(k, v []byte) bool { cache.Store.Delete(k) return true }) // Look inside each transfer batch and iterate over the batch transfers, picking those that // not newer than the given height. Also, for each suitable transfer update transfer info // flushing changes after complete account's transfers processing. prefixes := []byte{byte(storage.STNEP11Transfers), byte(storage.STNEP17Transfers)} for i := range prefixes { var ( acc util.Uint160 trInfo *state.TokenTransferInfo removeFollowing bool seekErr error ) cache.Store.Seek(storage.SeekRange{ Prefix: prefixes[i : i+1], Backwards: false, // From oldest to newest batch. }, func(k, v []byte) bool { var batchAcc util.Uint160 copy(batchAcc[:], k[1:]) if batchAcc != acc { // Some new account we're iterating over. if trInfo != nil { seekErr = cache.PutTokenTransferInfo(acc, trInfo) if seekErr != nil { return false } } acc = batchAcc trInfo = nil removeFollowing = false } else if removeFollowing { cache.Store.Delete(slice.Copy(k)) return seekErr == nil } r := io.NewBinReaderFromBuf(v[1:]) l := len(v) bytesRead := 1 // 1 is for batch size byte which is read by default. var ( oldBatchSize = v[0] newBatchSize byte ) for i := byte(0); i < v[0]; i++ { // From oldest to newest transfer of the batch. var t *state.NEP17Transfer if k[0] == byte(storage.STNEP11Transfers) { tr := new(state.NEP11Transfer) tr.DecodeBinary(r) t = &tr.NEP17Transfer } else { t = new(state.NEP17Transfer) t.DecodeBinary(r) } if r.Err != nil { seekErr = fmt.Errorf("failed to decode subsequent transfer: %w", r.Err) break } if t.Block > height { break } bytesRead = l - r.Len() // Including batch size byte. newBatchSize++ if trInfo == nil { var err error trInfo, err = cache.GetTokenTransferInfo(batchAcc) if err != nil { seekErr = fmt.Errorf("failed to retrieve token transfer info for %s: %w", batchAcc.StringLE(), r.Err) return false } } appendTokenTransferInfo(trInfo, t.Asset, t.Block, t.Timestamp, k[0] == byte(storage.STNEP11Transfers), newBatchSize >= state.TokenTransferBatchSize) } if newBatchSize == oldBatchSize { // The batch is already in storage and doesn't need to be changed. return seekErr == nil } if newBatchSize > 0 { v[0] = newBatchSize cache.Store.Put(k, v[:bytesRead]) } else { cache.Store.Delete(k) removeFollowing = true } return seekErr == nil }) if seekErr != nil { return seekErr } if trInfo != nil { // Flush the last batch of transfer info changes. err := cache.PutTokenTransferInfo(acc, trInfo) if err != nil { return err } } } return nil } // appendTokenTransferInfo is a helper for resetTransfers that updates token transfer info // wrt the given transfer that was added to the subsequent transfer batch. func appendTokenTransferInfo(transferData *state.TokenTransferInfo, token int32, bIndex uint32, bTimestamp uint64, isNEP11 bool, lastTransferInBatch bool) { var ( newBatch *bool nextBatch *uint32 currTimestamp *uint64 ) if !isNEP11 { newBatch = &transferData.NewNEP17Batch nextBatch = &transferData.NextNEP17Batch currTimestamp = &transferData.NextNEP17NewestTimestamp } else { newBatch = &transferData.NewNEP11Batch nextBatch = &transferData.NextNEP11Batch currTimestamp = &transferData.NextNEP11NewestTimestamp } transferData.LastUpdated[token] = bIndex *newBatch = lastTransferInBatch if *newBatch { *nextBatch++ *currTimestamp = bTimestamp } } func (bc *Blockchain) removeOldTransfers(index uint32) time.Duration { bc.log.Info("starting transfer data garbage collection", zap.Uint32("index", index)) start := time.Now() h, err := bc.GetHeader(bc.GetHeaderHash(index)) if err != nil { dur := time.Since(start) bc.log.Error("failed to find block header for transfer GC", zap.Duration("time", dur), zap.Error(err)) return dur } var removed, kept int64 var ts = h.Timestamp prefixes := []byte{byte(storage.STNEP11Transfers), byte(storage.STNEP17Transfers)} for i := range prefixes { var acc util.Uint160 var canDrop bool err = bc.store.SeekGC(storage.SeekRange{ Prefix: prefixes[i : i+1], Backwards: true, // From new to old. }, func(k, v []byte) bool { // We don't look inside of the batches, it requires too much effort, instead // we drop batches that are confirmed to contain outdated entries. var batchAcc util.Uint160 var batchTs = binary.BigEndian.Uint64(k[1+util.Uint160Size:]) copy(batchAcc[:], k[1:]) if batchAcc != acc { // Some new account we're iterating over. acc = batchAcc } else if canDrop { // We've seen this account and all entries in this batch are guaranteed to be outdated. removed++ return false } // We don't know what's inside, so keep the current // batch anyway, but allow to drop older ones. canDrop = batchTs <= ts kept++ return true }) if err != nil { break } } dur := time.Since(start) if err != nil { bc.log.Error("failed to flush transfer data GC changeset", zap.Duration("time", dur), zap.Error(err)) } else { bc.log.Info("finished transfer data garbage collection", zap.Int64("removed", removed), zap.Int64("kept", kept), zap.Duration("time", dur)) } return dur } // notificationDispatcher manages subscription to events and broadcasts new events. func (bc *Blockchain) notificationDispatcher() { var ( // These are just sets of subscribers, though modelled as maps // for ease of management (not a lot of subscriptions is really // expected, but maps are convenient for adding/deleting elements). blockFeed = make(map[chan *block.Block]bool) txFeed = make(map[chan *transaction.Transaction]bool) notificationFeed = make(map[chan *state.ContainedNotificationEvent]bool) executionFeed = make(map[chan *state.AppExecResult]bool) ) for { select { case <-bc.stopCh: return case sub := <-bc.subCh: switch ch := sub.(type) { case chan *block.Block: blockFeed[ch] = true case chan *transaction.Transaction: txFeed[ch] = true case chan *state.ContainedNotificationEvent: notificationFeed[ch] = true case chan *state.AppExecResult: executionFeed[ch] = true default: panic(fmt.Sprintf("bad subscription: %T", sub)) } case unsub := <-bc.unsubCh: switch ch := unsub.(type) { case chan *block.Block: delete(blockFeed, ch) case chan *transaction.Transaction: delete(txFeed, ch) case chan *state.ContainedNotificationEvent: delete(notificationFeed, ch) case chan *state.AppExecResult: delete(executionFeed, ch) default: panic(fmt.Sprintf("bad unsubscription: %T", unsub)) } case event := <-bc.events: // We don't want to waste time looping through transactions when there are no // subscribers. if len(txFeed) != 0 || len(notificationFeed) != 0 || len(executionFeed) != 0 { aer := event.appExecResults[0] if !aer.Container.Equals(event.block.Hash()) { panic("inconsistent application execution results") } for ch := range executionFeed { ch <- aer } for i := range aer.Events { for ch := range notificationFeed { ch <- &state.ContainedNotificationEvent{ Container: aer.Container, NotificationEvent: aer.Events[i], } } } aerIdx := 1 for _, tx := range event.block.Transactions { aer := event.appExecResults[aerIdx] if !aer.Container.Equals(tx.Hash()) { panic("inconsistent application execution results") } aerIdx++ for ch := range executionFeed { ch <- aer } if aer.VMState == vmstate.Halt { for i := range aer.Events { for ch := range notificationFeed { ch <- &state.ContainedNotificationEvent{ Container: aer.Container, NotificationEvent: aer.Events[i], } } } } for ch := range txFeed { ch <- tx } } aer = event.appExecResults[aerIdx] if !aer.Container.Equals(event.block.Hash()) { panic("inconsistent application execution results") } for ch := range executionFeed { ch <- aer } for i := range aer.Events { for ch := range notificationFeed { ch <- &state.ContainedNotificationEvent{ Container: aer.Container, NotificationEvent: aer.Events[i], } } } } for ch := range blockFeed { ch <- event.block } } } } // Close stops Blockchain's internal loop, syncs changes to persistent storage // and closes it. The Blockchain is no longer functional after the call to Close. func (bc *Blockchain) Close() { // If there is a block addition in progress, wait for it to finish and // don't allow new ones. bc.addLock.Lock() close(bc.stopCh) <-bc.runToExitCh bc.addLock.Unlock() } // AddBlock accepts successive block for the Blockchain, verifies it and // stores internally. Eventually it will be persisted to the backing storage. func (bc *Blockchain) AddBlock(block *block.Block) error { bc.addLock.Lock() defer bc.addLock.Unlock() var mp *mempool.Pool expectedHeight := bc.BlockHeight() + 1 if expectedHeight != block.Index { return fmt.Errorf("expected %d, got %d: %w", expectedHeight, block.Index, ErrInvalidBlockIndex) } if bc.config.StateRootInHeader != block.StateRootEnabled { return fmt.Errorf("%w: %v != %v", ErrHdrStateRootSetting, bc.config.StateRootInHeader, block.StateRootEnabled) } if block.Index == bc.HeaderHeight()+1 { err := bc.addHeaders(!bc.config.SkipBlockVerification, &block.Header) if err != nil { return err } } if !bc.config.SkipBlockVerification { merkle := block.ComputeMerkleRoot() if !block.MerkleRoot.Equals(merkle) { return errors.New("invalid block: MerkleRoot mismatch") } mp = mempool.New(len(block.Transactions), 0, false, nil) for _, tx := range block.Transactions { var err error // Transactions are verified before adding them // into the pool, so there is no point in doing // it again even if we're verifying in-block transactions. if bc.memPool.ContainsKey(tx.Hash()) { err = mp.Add(tx, bc) if err == nil { continue } } else { err = bc.verifyAndPoolTx(tx, mp, bc) } if err != nil && bc.config.VerifyTransactions { return fmt.Errorf("transaction %s failed to verify: %w", tx.Hash().StringLE(), err) } } } return bc.storeBlock(block, mp) } // AddHeaders processes the given headers and add them to the // HeaderHashList. It expects headers to be sorted by index. func (bc *Blockchain) AddHeaders(headers ...*block.Header) error { return bc.addHeaders(!bc.config.SkipBlockVerification, headers...) } // addHeaders is an internal implementation of AddHeaders (`verify` parameter // tells it to verify or not verify given headers). func (bc *Blockchain) addHeaders(verify bool, headers ...*block.Header) error { var ( start = time.Now() err error ) if len(headers) > 0 { var i int curHeight := bc.HeaderHeight() for i = range headers { if headers[i].Index > curHeight { break } } headers = headers[i:] } if len(headers) == 0 { return nil } else if verify { // Verify that the chain of the headers is consistent. var lastHeader *block.Header if lastHeader, err = bc.GetHeader(headers[0].PrevHash); err != nil { return fmt.Errorf("previous header was not found: %w", err) } for _, h := range headers { if err = bc.verifyHeader(h, lastHeader); err != nil { return err } lastHeader = h } } res := bc.HeaderHashes.addHeaders(headers...) if res == nil { bc.log.Debug("done processing headers", zap.Uint32("headerIndex", bc.HeaderHeight()), zap.Uint32("blockHeight", bc.BlockHeight()), zap.Duration("took", time.Since(start))) } return res } // GetStateRoot returns state root for the given height. func (bc *Blockchain) GetStateRoot(height uint32) (*state.MPTRoot, error) { return bc.stateRoot.GetStateRoot(height) } // GetStateModule returns state root service instance. func (bc *Blockchain) GetStateModule() StateRoot { return bc.stateRoot } // GetStateSyncModule returns new state sync service instance. func (bc *Blockchain) GetStateSyncModule() *statesync.Module { return statesync.NewModule(bc, bc.stateRoot, bc.log, bc.dao, bc.jumpToState) } // storeBlock performs chain update using the block given, it executes all // transactions with all appropriate side-effects and updates Blockchain state. // This is the only way to change Blockchain state. func (bc *Blockchain) storeBlock(block *block.Block, txpool *mempool.Pool) error { var ( cache = bc.dao.GetPrivate() aerCache = bc.dao.GetPrivate() appExecResults = make([]*state.AppExecResult, 0, 2+len(block.Transactions)) aerchan = make(chan *state.AppExecResult, len(block.Transactions)/8) // Tested 8 and 4 with no practical difference, but feel free to test more and tune. aerdone = make(chan error) ) go func() { var ( kvcache = aerCache err error txCnt int baer1, baer2 *state.AppExecResult transCache = make(map[util.Uint160]transferData) ) kvcache.StoreAsCurrentBlock(block) if bc.config.Ledger.RemoveUntraceableBlocks { var start, stop uint32 if bc.config.P2PStateExchangeExtensions { // remove batch of old blocks starting from P2-MaxTraceableBlocks-StateSyncInterval up to P2-MaxTraceableBlocks if block.Index >= 2*uint32(bc.config.StateSyncInterval) && block.Index >= uint32(bc.config.StateSyncInterval)+bc.config.MaxTraceableBlocks && // check this in case if MaxTraceableBlocks>StateSyncInterval int(block.Index)%bc.config.StateSyncInterval == 0 { stop = block.Index - uint32(bc.config.StateSyncInterval) - bc.config.MaxTraceableBlocks if stop > uint32(bc.config.StateSyncInterval) { start = stop - uint32(bc.config.StateSyncInterval) } } } else if block.Index > bc.config.MaxTraceableBlocks { start = block.Index - bc.config.MaxTraceableBlocks // is at least 1 stop = start + 1 } for index := start; index < stop; index++ { err := kvcache.DeleteBlock(bc.GetHeaderHash(index)) if err != nil { bc.log.Warn("error while removing old block", zap.Uint32("index", index), zap.Error(err)) } } } for aer := range aerchan { if aer.Container == block.Hash() { if baer1 == nil { baer1 = aer } else { baer2 = aer } } else { err = kvcache.StoreAsTransaction(block.Transactions[txCnt], block.Index, aer) txCnt++ } if err != nil { err = fmt.Errorf("failed to store exec result: %w", err) break } if aer.Execution.VMState == vmstate.Halt { for j := range aer.Execution.Events { bc.handleNotification(&aer.Execution.Events[j], kvcache, transCache, block, aer.Container) } } } if err != nil { aerdone <- err return } if err := kvcache.StoreAsBlock(block, baer1, baer2); err != nil { aerdone <- err return } for acc, trData := range transCache { err = kvcache.PutTokenTransferInfo(acc, &trData.Info) if err != nil { aerdone <- err return } if !trData.Info.NewNEP11Batch { kvcache.PutTokenTransferLog(acc, trData.Info.NextNEP11NewestTimestamp, trData.Info.NextNEP11Batch, true, &trData.Log11) } if !trData.Info.NewNEP17Batch { kvcache.PutTokenTransferLog(acc, trData.Info.NextNEP17NewestTimestamp, trData.Info.NextNEP17Batch, false, &trData.Log17) } } close(aerdone) }() _ = cache.GetItemCtx() // Prime serialization context cache (it'll be reused by upper layer DAOs). aer, v, err := bc.runPersist(bc.contracts.GetPersistScript(), block, cache, trigger.OnPersist, nil) if err != nil { // Release goroutines, don't care about errors, we already have one. close(aerchan) <-aerdone return fmt.Errorf("onPersist failed: %w", err) } appExecResults = append(appExecResults, aer) aerchan <- aer for _, tx := range block.Transactions { systemInterop := bc.newInteropContext(trigger.Application, cache, block, tx) systemInterop.ReuseVM(v) v.LoadScriptWithFlags(tx.Script, callflag.All) v.GasLimit = tx.SystemFee err := systemInterop.Exec() var faultException string if !v.HasFailed() { _, err := systemInterop.DAO.Persist() if err != nil { // Release goroutines, don't care about errors, we already have one. close(aerchan) <-aerdone return fmt.Errorf("failed to persist invocation results: %w", err) } } else { bc.log.Warn("contract invocation failed", zap.String("tx", tx.Hash().StringLE()), zap.Uint32("block", block.Index), zap.Error(err)) faultException = err.Error() } aer := &state.AppExecResult{ Container: tx.Hash(), Execution: state.Execution{ Trigger: trigger.Application, VMState: v.State(), GasConsumed: v.GasConsumed(), Stack: v.Estack().ToArray(), Events: systemInterop.Notifications, FaultException: faultException, }, } appExecResults = append(appExecResults, aer) aerchan <- aer } aer, _, err = bc.runPersist(bc.contracts.GetPostPersistScript(), block, cache, trigger.PostPersist, v) if err != nil { // Release goroutines, don't care about errors, we already have one. close(aerchan) <-aerdone return fmt.Errorf("postPersist failed: %w", err) } appExecResults = append(appExecResults, aer) aerchan <- aer close(aerchan) b := mpt.MapToMPTBatch(cache.Store.GetStorageChanges()) mpt, sr, err := bc.stateRoot.AddMPTBatch(block.Index, b, cache.Store) if err != nil { // Release goroutines, don't care about errors, we already have one. <-aerdone // Here MPT can be left in a half-applied state. // However if this error occurs, this is a bug somewhere in code // because changes applied are the ones from HALTed transactions. return fmt.Errorf("error while trying to apply MPT changes: %w", err) } if bc.config.StateRootInHeader && bc.HeaderHeight() > sr.Index { h, err := bc.GetHeader(bc.GetHeaderHash(sr.Index + 1)) if err != nil { err = fmt.Errorf("failed to get next header: %w", err) } else if h.PrevStateRoot != sr.Root { err = fmt.Errorf("local stateroot and next header's PrevStateRoot mismatch: %s vs %s", sr.Root.StringBE(), h.PrevStateRoot.StringBE()) } if err != nil { // Release goroutines, don't care about errors, we already have one. <-aerdone return err } } if bc.config.Ledger.SaveStorageBatch { bc.lastBatch = cache.GetBatch() } // Every persist cycle we also compact our in-memory MPT. It's flushed // already in AddMPTBatch, so collapsing it is safe. persistedHeight := atomic.LoadUint32(&bc.persistedHeight) if persistedHeight == block.Index-1 { // 10 is good and roughly estimated to fit remaining trie into 1M of memory. mpt.Collapse(10) } aererr := <-aerdone if aererr != nil { return aererr } bc.lock.Lock() _, err = aerCache.Persist() if err != nil { bc.lock.Unlock() return err } _, err = cache.Persist() if err != nil { bc.lock.Unlock() return err } mpt.Store = bc.dao.Store bc.stateRoot.UpdateCurrentLocal(mpt, sr) bc.topBlock.Store(block) atomic.StoreUint32(&bc.blockHeight, block.Index) bc.memPool.RemoveStale(func(tx *transaction.Transaction) bool { return bc.IsTxStillRelevant(tx, txpool, false) }, bc) for _, f := range bc.postBlock { f(bc.IsTxStillRelevant, txpool, block) } if err := bc.updateExtensibleWhitelist(block.Index); err != nil { bc.lock.Unlock() return err } bc.lock.Unlock() updateBlockHeightMetric(block.Index) // Genesis block is stored when Blockchain is not yet running, so there // is no one to read this event. And it doesn't make much sense as event // anyway. if block.Index != 0 { bc.events <- bcEvent{block, appExecResults} } return nil } func (bc *Blockchain) updateExtensibleWhitelist(height uint32) error { updateCommittee := bc.config.ShouldUpdateCommitteeAt(height) stateVals, sh, err := bc.contracts.Designate.GetDesignatedByRole(bc.dao, noderoles.StateValidator, height) if err != nil { return err } if bc.extensible.Load() != nil && !updateCommittee && sh != height { return nil } newList := []util.Uint160{bc.contracts.NEO.GetCommitteeAddress(bc.dao)} nextVals := bc.contracts.NEO.GetNextBlockValidatorsInternal(bc.dao) script, err := smartcontract.CreateDefaultMultiSigRedeemScript(nextVals) if err != nil { return err } newList = append(newList, hash.Hash160(script)) bc.updateExtensibleList(&newList, bc.contracts.NEO.GetNextBlockValidatorsInternal(bc.dao)) if len(stateVals) > 0 { h, err := bc.contracts.Designate.GetLastDesignatedHash(bc.dao, noderoles.StateValidator) if err != nil { return err } newList = append(newList, h) bc.updateExtensibleList(&newList, stateVals) } sort.Slice(newList, func(i, j int) bool { return newList[i].Less(newList[j]) }) bc.extensible.Store(newList) return nil } func (bc *Blockchain) updateExtensibleList(s *[]util.Uint160, pubs keys.PublicKeys) { for _, pub := range pubs { *s = append(*s, pub.GetScriptHash()) } } // IsExtensibleAllowed determines if script hash is allowed to send extensible payloads. func (bc *Blockchain) IsExtensibleAllowed(u util.Uint160) bool { us := bc.extensible.Load().([]util.Uint160) n := sort.Search(len(us), func(i int) bool { return !us[i].Less(u) }) return n < len(us) } func (bc *Blockchain) runPersist(script []byte, block *block.Block, cache *dao.Simple, trig trigger.Type, v *vm.VM) (*state.AppExecResult, *vm.VM, error) { systemInterop := bc.newInteropContext(trig, cache, block, nil) if v == nil { v = systemInterop.SpawnVM() } else { systemInterop.ReuseVM(v) } v.LoadScriptWithFlags(script, callflag.All) if err := systemInterop.Exec(); err != nil { return nil, v, fmt.Errorf("VM has failed: %w", err) } else if _, err := systemInterop.DAO.Persist(); err != nil { return nil, v, fmt.Errorf("can't save changes: %w", err) } return &state.AppExecResult{ Container: block.Hash(), // application logs can be retrieved by block hash Execution: state.Execution{ Trigger: trig, VMState: v.State(), GasConsumed: v.GasConsumed(), Stack: v.Estack().ToArray(), Events: systemInterop.Notifications, }, }, v, nil } func (bc *Blockchain) handleNotification(note *state.NotificationEvent, d *dao.Simple, transCache map[util.Uint160]transferData, b *block.Block, h util.Uint256) { if note.Name != "Transfer" { return } arr, ok := note.Item.Value().([]stackitem.Item) if !ok || !(len(arr) == 3 || len(arr) == 4) { return } from, err := parseUint160(arr[0]) if err != nil { return } to, err := parseUint160(arr[1]) if err != nil { return } amount, err := arr[2].TryInteger() if err != nil { return } var id []byte if len(arr) == 4 { id, err = arr[3].TryBytes() if err != nil || len(id) > limits.MaxStorageKeyLen { return } } bc.processTokenTransfer(d, transCache, h, b, note.ScriptHash, from, to, amount, id) } func parseUint160(itm stackitem.Item) (util.Uint160, error) { _, ok := itm.(stackitem.Null) // Minting or burning. if ok { return util.Uint160{}, nil } bytes, err := itm.TryBytes() if err != nil { return util.Uint160{}, err } return util.Uint160DecodeBytesBE(bytes) } func (bc *Blockchain) processTokenTransfer(cache *dao.Simple, transCache map[util.Uint160]transferData, h util.Uint256, b *block.Block, sc util.Uint160, from util.Uint160, to util.Uint160, amount *big.Int, tokenID []byte) { var id int32 nativeContract := bc.contracts.ByHash(sc) if nativeContract != nil { id = nativeContract.Metadata().ID } else { assetContract, err := native.GetContract(cache, sc) if err != nil { return } id = assetContract.ID } var transfer io.Serializable var nep17xfer *state.NEP17Transfer var isNEP11 = (tokenID != nil) if !isNEP11 { nep17xfer = &state.NEP17Transfer{ Asset: id, Amount: amount, Block: b.Index, Counterparty: to, Timestamp: b.Timestamp, Tx: h, } transfer = nep17xfer } else { nep11xfer := &state.NEP11Transfer{ NEP17Transfer: state.NEP17Transfer{ Asset: id, Amount: amount, Block: b.Index, Counterparty: to, Timestamp: b.Timestamp, Tx: h, }, ID: tokenID, } transfer = nep11xfer nep17xfer = &nep11xfer.NEP17Transfer } if !from.Equals(util.Uint160{}) { _ = nep17xfer.Amount.Neg(nep17xfer.Amount) err := appendTokenTransfer(cache, transCache, from, transfer, id, b.Index, b.Timestamp, isNEP11) _ = nep17xfer.Amount.Neg(nep17xfer.Amount) if err != nil { return } } if !to.Equals(util.Uint160{}) { nep17xfer.Counterparty = from _ = appendTokenTransfer(cache, transCache, to, transfer, id, b.Index, b.Timestamp, isNEP11) // Nothing useful we can do. } } func appendTokenTransfer(cache *dao.Simple, transCache map[util.Uint160]transferData, addr util.Uint160, transfer io.Serializable, token int32, bIndex uint32, bTimestamp uint64, isNEP11 bool) error { transferData, ok := transCache[addr] if !ok { balances, err := cache.GetTokenTransferInfo(addr) if err != nil { return err } if !balances.NewNEP11Batch { trLog, err := cache.GetTokenTransferLog(addr, balances.NextNEP11NewestTimestamp, balances.NextNEP11Batch, true) if err != nil { return err } transferData.Log11 = *trLog } if !balances.NewNEP17Batch { trLog, err := cache.GetTokenTransferLog(addr, balances.NextNEP17NewestTimestamp, balances.NextNEP17Batch, false) if err != nil { return err } transferData.Log17 = *trLog } transferData.Info = *balances } var ( log *state.TokenTransferLog nextBatch uint32 currTimestamp uint64 ) if !isNEP11 { log = &transferData.Log17 nextBatch = transferData.Info.NextNEP17Batch currTimestamp = transferData.Info.NextNEP17NewestTimestamp } else { log = &transferData.Log11 nextBatch = transferData.Info.NextNEP11Batch currTimestamp = transferData.Info.NextNEP11NewestTimestamp } err := log.Append(transfer) if err != nil { return err } newBatch := log.Size() >= state.TokenTransferBatchSize if newBatch { cache.PutTokenTransferLog(addr, currTimestamp, nextBatch, isNEP11, log) // Put makes a copy of it anyway. log.Reset() } appendTokenTransferInfo(&transferData.Info, token, bIndex, bTimestamp, isNEP11, newBatch) transCache[addr] = transferData return nil } // ForEachNEP17Transfer executes f for each NEP-17 transfer in log starting from // the transfer with the newest timestamp up to the oldest transfer. It continues // iteration until false is returned from f. The last non-nil error is returned. func (bc *Blockchain) ForEachNEP17Transfer(acc util.Uint160, newestTimestamp uint64, f func(*state.NEP17Transfer) (bool, error)) error { return bc.dao.SeekNEP17TransferLog(acc, newestTimestamp, f) } // ForEachNEP11Transfer executes f for each NEP-11 transfer in log starting from // the transfer with the newest timestamp up to the oldest transfer. It continues // iteration until false is returned from f. The last non-nil error is returned. func (bc *Blockchain) ForEachNEP11Transfer(acc util.Uint160, newestTimestamp uint64, f func(*state.NEP11Transfer) (bool, error)) error { return bc.dao.SeekNEP11TransferLog(acc, newestTimestamp, f) } // GetNEP17Contracts returns the list of deployed NEP-17 contracts. func (bc *Blockchain) GetNEP17Contracts() []util.Uint160 { return bc.contracts.Management.GetNEP17Contracts(bc.dao) } // GetNEP11Contracts returns the list of deployed NEP-11 contracts. func (bc *Blockchain) GetNEP11Contracts() []util.Uint160 { return bc.contracts.Management.GetNEP11Contracts(bc.dao) } // GetTokenLastUpdated returns a set of contract ids with the corresponding last updated // block indexes. In case of an empty account, latest stored state synchronisation point // is returned under Math.MinInt32 key. func (bc *Blockchain) GetTokenLastUpdated(acc util.Uint160) (map[int32]uint32, error) { info, err := bc.dao.GetTokenTransferInfo(acc) if err != nil { return nil, err } if bc.config.P2PStateExchangeExtensions && bc.config.Ledger.RemoveUntraceableBlocks { if _, ok := info.LastUpdated[bc.contracts.NEO.ID]; !ok { nBalance, lub := bc.contracts.NEO.BalanceOf(bc.dao, acc) if nBalance.Sign() != 0 { info.LastUpdated[bc.contracts.NEO.ID] = lub } } } stateSyncPoint, err := bc.dao.GetStateSyncPoint() if err == nil { info.LastUpdated[math.MinInt32] = stateSyncPoint } return info.LastUpdated, nil } // GetUtilityTokenBalance returns utility token (GAS) balance for the acc. func (bc *Blockchain) GetUtilityTokenBalance(acc util.Uint160) *big.Int { bs := bc.contracts.GAS.BalanceOf(bc.dao, acc) if bs == nil { return big.NewInt(0) } return bs } // GetGoverningTokenBalance returns governing token (NEO) balance and the height // of the last balance change for the account. func (bc *Blockchain) GetGoverningTokenBalance(acc util.Uint160) (*big.Int, uint32) { return bc.contracts.NEO.BalanceOf(bc.dao, acc) } // GetNotaryBalance returns Notary deposit amount for the specified account. func (bc *Blockchain) GetNotaryBalance(acc util.Uint160) *big.Int { return bc.contracts.Notary.BalanceOf(bc.dao, acc) } // GetNotaryServiceFeePerKey returns a NotaryAssisted transaction attribute fee // per key which is a reward per notary request key for designated notary nodes. func (bc *Blockchain) GetNotaryServiceFeePerKey() int64 { return bc.contracts.Policy.GetAttributeFeeInternal(bc.dao, transaction.NotaryAssistedT) } // GetNotaryContractScriptHash returns Notary native contract hash. func (bc *Blockchain) GetNotaryContractScriptHash() util.Uint160 { if bc.P2PSigExtensionsEnabled() { return bc.contracts.Notary.Hash } return util.Uint160{} } // GetNotaryDepositExpiration returns Notary deposit expiration height for the specified account. func (bc *Blockchain) GetNotaryDepositExpiration(acc util.Uint160) uint32 { return bc.contracts.Notary.ExpirationOf(bc.dao, acc) } // LastBatch returns last persisted storage batch. func (bc *Blockchain) LastBatch() *storage.MemBatch { return bc.lastBatch } // persist flushes current in-memory Store contents to the persistent storage. func (bc *Blockchain) persist(isSync bool) (time.Duration, error) { var ( start = time.Now() duration time.Duration persisted int err error ) if isSync { persisted, err = bc.dao.PersistSync() } else { persisted, err = bc.dao.Persist() } if err != nil { return 0, err } if persisted > 0 { bHeight, err := bc.persistent.GetCurrentBlockHeight() if err != nil { return 0, err } oldHeight := atomic.SwapUint32(&bc.persistedHeight, bHeight) diff := bHeight - oldHeight storedHeaderHeight, _, err := bc.persistent.GetCurrentHeaderHeight() if err != nil { return 0, err } duration = time.Since(start) bc.log.Info("persisted to disk", zap.Uint32("blocks", diff), zap.Int("keys", persisted), zap.Uint32("headerHeight", storedHeaderHeight), zap.Uint32("blockHeight", bHeight), zap.Duration("took", duration)) // update monitoring metrics. updatePersistedHeightMetric(bHeight) } return duration, nil } // GetTransaction returns a TX and its height by the given hash. The height is MaxUint32 if tx is in the mempool. func (bc *Blockchain) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) { if tx, ok := bc.memPool.TryGetValue(hash); ok { return tx, math.MaxUint32, nil // the height is not actually defined for memPool transaction. } return bc.dao.GetTransaction(hash) } // GetAppExecResults returns application execution results with the specified trigger by the given // tx hash or block hash. func (bc *Blockchain) GetAppExecResults(hash util.Uint256, trig trigger.Type) ([]state.AppExecResult, error) { return bc.dao.GetAppExecResults(hash, trig) } // GetStorageItem returns an item from storage. func (bc *Blockchain) GetStorageItem(id int32, key []byte) state.StorageItem { return bc.dao.GetStorageItem(id, key) } // SeekStorage performs seek operation over contract storage. Prefix is trimmed in the resulting pair's key. func (bc *Blockchain) SeekStorage(id int32, prefix []byte, cont func(k, v []byte) bool) { bc.dao.Seek(id, storage.SeekRange{Prefix: prefix}, cont) } // GetBlock returns a Block by the given hash. func (bc *Blockchain) GetBlock(hash util.Uint256) (*block.Block, error) { topBlock := bc.topBlock.Load() if topBlock != nil { tb := topBlock.(*block.Block) if tb.Hash().Equals(hash) { return tb, nil } } block, err := bc.dao.GetBlock(hash) if err != nil { return nil, err } if !block.MerkleRoot.Equals(util.Uint256{}) && len(block.Transactions) == 0 { return nil, errors.New("only header is found") } for _, tx := range block.Transactions { stx, _, err := bc.dao.GetTransaction(tx.Hash()) if err != nil { return nil, err } *tx = *stx } return block, nil } // GetHeader returns data block header identified with the given hash value. func (bc *Blockchain) GetHeader(hash util.Uint256) (*block.Header, error) { topBlock := bc.topBlock.Load() if topBlock != nil { tb := topBlock.(*block.Block) if tb.Hash().Equals(hash) { return &tb.Header, nil } } block, err := bc.dao.GetBlock(hash) if err != nil { return nil, err } return &block.Header, nil } // HasBlock returns true if the blockchain contains the given // block hash. func (bc *Blockchain) HasBlock(hash util.Uint256) bool { if bc.HeaderHashes.haveRecentHash(hash, bc.BlockHeight()) { return true } if header, err := bc.GetHeader(hash); err == nil { return header.Index <= bc.BlockHeight() } return false } // CurrentBlockHash returns the highest processed block hash. func (bc *Blockchain) CurrentBlockHash() util.Uint256 { topBlock := bc.topBlock.Load() if topBlock != nil { tb := topBlock.(*block.Block) return tb.Hash() } return bc.GetHeaderHash(bc.BlockHeight()) } // BlockHeight returns the height/index of the highest block. func (bc *Blockchain) BlockHeight() uint32 { return atomic.LoadUint32(&bc.blockHeight) } // GetContractState returns contract by its script hash. func (bc *Blockchain) GetContractState(hash util.Uint160) *state.Contract { contract, err := native.GetContract(bc.dao, hash) if contract == nil && !errors.Is(err, storage.ErrKeyNotFound) { bc.log.Warn("failed to get contract state", zap.Error(err)) } return contract } // GetContractScriptHash returns contract script hash by its ID. func (bc *Blockchain) GetContractScriptHash(id int32) (util.Uint160, error) { return native.GetContractScriptHash(bc.dao, id) } // GetNativeContractScriptHash returns native contract script hash by its name. func (bc *Blockchain) GetNativeContractScriptHash(name string) (util.Uint160, error) { c := bc.contracts.ByName(name) if c != nil { return c.Metadata().Hash, nil } return util.Uint160{}, errors.New("Unknown native contract") } // GetNatives returns list of native contracts. func (bc *Blockchain) GetNatives() []state.NativeContract { res := make([]state.NativeContract, 0, len(bc.contracts.Contracts)) for _, c := range bc.contracts.Contracts { res = append(res, c.Metadata().NativeContract) } return res } // GetConfig returns the config stored in the blockchain. func (bc *Blockchain) GetConfig() config.Blockchain { return bc.config } // SubscribeForBlocks adds given channel to new block event broadcasting, so when // there is a new block added to the chain you'll receive it via this channel. // Make sure it's read from regularly as not reading these events might affect // other Blockchain functions. Make sure you're not changing the received blocks, // as it may affect the functionality of Blockchain and other subscribers. func (bc *Blockchain) SubscribeForBlocks(ch chan *block.Block) { bc.subCh <- ch } // SubscribeForTransactions adds given channel to new transaction event // broadcasting, so when there is a new transaction added to the chain (in a // block) you'll receive it via this channel. Make sure it's read from regularly // as not reading these events might affect other Blockchain functions. Make sure // you're not changing the received transactions, as it may affect the // functionality of Blockchain and other subscribers. func (bc *Blockchain) SubscribeForTransactions(ch chan *transaction.Transaction) { bc.subCh <- ch } // SubscribeForNotifications adds given channel to new notifications event // broadcasting, so when an in-block transaction execution generates a // notification you'll receive it via this channel. Only notifications from // successful transactions are broadcasted, if you're interested in failed // transactions use SubscribeForExecutions instead. Make sure this channel is // read from regularly as not reading these events might affect other Blockchain // functions. Make sure you're not changing the received notification events, as // it may affect the functionality of Blockchain and other subscribers. func (bc *Blockchain) SubscribeForNotifications(ch chan *state.ContainedNotificationEvent) { bc.subCh <- ch } // SubscribeForExecutions adds given channel to new transaction execution event // broadcasting, so when an in-block transaction execution happens you'll receive // the result of it via this channel. Make sure it's read from regularly as not // reading these events might affect other Blockchain functions. Make sure you're // not changing the received execution results, as it may affect the // functionality of Blockchain and other subscribers. func (bc *Blockchain) SubscribeForExecutions(ch chan *state.AppExecResult) { bc.subCh <- ch } // UnsubscribeFromBlocks unsubscribes given channel from new block notifications, // you can close it afterwards. Passing non-subscribed channel is a no-op, but // the method can read from this channel (discarding any read data). func (bc *Blockchain) UnsubscribeFromBlocks(ch chan *block.Block) { unsubloop: for { select { case <-ch: case bc.unsubCh <- ch: break unsubloop } } } // UnsubscribeFromTransactions unsubscribes given channel from new transaction // notifications, you can close it afterwards. Passing non-subscribed channel is // a no-op, but the method can read from this channel (discarding any read data). func (bc *Blockchain) UnsubscribeFromTransactions(ch chan *transaction.Transaction) { unsubloop: for { select { case <-ch: case bc.unsubCh <- ch: break unsubloop } } } // UnsubscribeFromNotifications unsubscribes given channel from new // execution-generated notifications, you can close it afterwards. Passing // non-subscribed channel is a no-op, but the method can read from this channel // (discarding any read data). func (bc *Blockchain) UnsubscribeFromNotifications(ch chan *state.ContainedNotificationEvent) { unsubloop: for { select { case <-ch: case bc.unsubCh <- ch: break unsubloop } } } // UnsubscribeFromExecutions unsubscribes given channel from new execution // notifications, you can close it afterwards. Passing non-subscribed channel is // a no-op, but the method can read from this channel (discarding any read data). func (bc *Blockchain) UnsubscribeFromExecutions(ch chan *state.AppExecResult) { unsubloop: for { select { case <-ch: case bc.unsubCh <- ch: break unsubloop } } } // CalculateClaimable calculates the amount of GAS generated by owning specified // amount of NEO between specified blocks. func (bc *Blockchain) CalculateClaimable(acc util.Uint160, endHeight uint32) (*big.Int, error) { nextBlock, err := bc.getFakeNextBlock(bc.BlockHeight() + 1) if err != nil { return nil, err } ic := bc.newInteropContext(trigger.Application, bc.dao, nextBlock, nil) return bc.contracts.NEO.CalculateBonus(ic, acc, endHeight) } // FeePerByte returns transaction network fee per byte. func (bc *Blockchain) FeePerByte() int64 { return bc.contracts.Policy.GetFeePerByteInternal(bc.dao) } // GetMemPool returns the memory pool of the blockchain. func (bc *Blockchain) GetMemPool() *mempool.Pool { return bc.memPool } // ApplyPolicyToTxSet applies configured policies to given transaction set. It // expects slice to be ordered by fee and returns a subslice of it. func (bc *Blockchain) ApplyPolicyToTxSet(txes []*transaction.Transaction) []*transaction.Transaction { maxTx := bc.config.MaxTransactionsPerBlock if maxTx != 0 && len(txes) > int(maxTx) { txes = txes[:maxTx] } maxBlockSize := bc.config.MaxBlockSize maxBlockSysFee := bc.config.MaxBlockSystemFee oldVC := bc.knownValidatorsCount.Load() defaultWitness := bc.defaultBlockWitness.Load() curVC := bc.config.GetNumOfCNs(bc.BlockHeight() + 1) if oldVC == nil || oldVC != curVC { m := smartcontract.GetDefaultHonestNodeCount(curVC) verification, _ := smartcontract.CreateDefaultMultiSigRedeemScript(bc.contracts.NEO.GetNextBlockValidatorsInternal(bc.dao)) defaultWitness = transaction.Witness{ InvocationScript: make([]byte, 66*m), VerificationScript: verification, } bc.knownValidatorsCount.Store(curVC) bc.defaultBlockWitness.Store(defaultWitness) } var ( b = &block.Block{Header: block.Header{Script: defaultWitness.(transaction.Witness)}} blockSize = uint32(b.GetExpectedBlockSizeWithoutTransactions(len(txes))) blockSysFee int64 ) for i, tx := range txes { blockSize += uint32(tx.Size()) blockSysFee += tx.SystemFee if blockSize > maxBlockSize || blockSysFee > maxBlockSysFee { txes = txes[:i] break } } return txes } // Various errors that could be returns upon header verification. var ( ErrHdrHashMismatch = errors.New("previous header hash doesn't match") ErrHdrIndexMismatch = errors.New("previous header index doesn't match") ErrHdrInvalidTimestamp = errors.New("block is not newer than the previous one") ErrHdrStateRootSetting = errors.New("state root setting mismatch") ErrHdrInvalidStateRoot = errors.New("state root for previous block is invalid") ) func (bc *Blockchain) verifyHeader(currHeader, prevHeader *block.Header) error { if bc.config.StateRootInHeader { if bc.stateRoot.CurrentLocalHeight() == prevHeader.Index { if sr := bc.stateRoot.CurrentLocalStateRoot(); currHeader.PrevStateRoot != sr { return fmt.Errorf("%w: %s != %s", ErrHdrInvalidStateRoot, currHeader.PrevStateRoot.StringLE(), sr.StringLE()) } } } if prevHeader.Hash() != currHeader.PrevHash { return ErrHdrHashMismatch } if prevHeader.Index+1 != currHeader.Index { return ErrHdrIndexMismatch } if prevHeader.Timestamp >= currHeader.Timestamp { return ErrHdrInvalidTimestamp } return bc.verifyHeaderWitnesses(currHeader, prevHeader) } // Various errors that could be returned upon verification. var ( ErrTxExpired = errors.New("transaction has expired") ErrInsufficientFunds = errors.New("insufficient funds") ErrTxSmallNetworkFee = errors.New("too small network fee") ErrTxTooBig = errors.New("too big transaction") ErrMemPoolConflict = errors.New("invalid transaction due to conflicts with the memory pool") ErrInvalidScript = errors.New("invalid script") ErrInvalidAttribute = errors.New("invalid attribute") ) // verifyAndPoolTx verifies whether a transaction is bonafide or not and tries // to add it to the mempool given. func (bc *Blockchain) verifyAndPoolTx(t *transaction.Transaction, pool *mempool.Pool, feer mempool.Feer, data ...any) error { // This code can technically be moved out of here, because it doesn't // really require a chain lock. err := vm.IsScriptCorrect(t.Script, nil) if err != nil { return fmt.Errorf("%w: %v", ErrInvalidScript, err) //nolint:errorlint // errorlint: non-wrapping format verb for fmt.Errorf. Use `%w` to format errors } height := bc.BlockHeight() isPartialTx := data != nil if t.ValidUntilBlock <= height || !isPartialTx && t.ValidUntilBlock > height+bc.config.MaxValidUntilBlockIncrement { return fmt.Errorf("%w: ValidUntilBlock = %d, current height = %d", ErrTxExpired, t.ValidUntilBlock, height) } // Policying. if err := bc.contracts.Policy.CheckPolicy(bc.dao, t); err != nil { // Only one %w can be used. return fmt.Errorf("%w: %v", ErrPolicy, err) //nolint:errorlint // errorlint: non-wrapping format verb for fmt.Errorf. Use `%w` to format errors } if t.SystemFee > bc.config.MaxBlockSystemFee { return fmt.Errorf("%w: too big system fee (%d > MaxBlockSystemFee %d)", ErrPolicy, t.SystemFee, bc.config.MaxBlockSystemFee) } size := t.Size() if size > transaction.MaxTransactionSize { return fmt.Errorf("%w: (%d > MaxTransactionSize %d)", ErrTxTooBig, size, transaction.MaxTransactionSize) } needNetworkFee := int64(size)*bc.FeePerByte() + bc.CalculateAttributesFee(t) netFee := t.NetworkFee - needNetworkFee if netFee < 0 { return fmt.Errorf("%w: net fee is %v, need %v", ErrTxSmallNetworkFee, t.NetworkFee, needNetworkFee) } // check that current tx wasn't included in the conflicts attributes of some other transaction which is already in the chain if err := bc.dao.HasTransaction(t.Hash(), t.Signers, height, bc.config.MaxTraceableBlocks); err != nil { switch { case errors.Is(err, dao.ErrAlreadyExists): return ErrAlreadyExists case errors.Is(err, dao.ErrHasConflicts): return fmt.Errorf("blockchain: %w", ErrHasConflicts) default: return err } } err = bc.verifyTxWitnesses(t, nil, isPartialTx, netFee) if err != nil { return err } if err := bc.verifyTxAttributes(bc.dao, t, isPartialTx); err != nil { return err } err = pool.Add(t, feer, data...) if err != nil { switch { case errors.Is(err, mempool.ErrConflict): return ErrMemPoolConflict case errors.Is(err, mempool.ErrDup): return ErrAlreadyInPool case errors.Is(err, mempool.ErrInsufficientFunds): return ErrInsufficientFunds case errors.Is(err, mempool.ErrOOM): return ErrOOM case errors.Is(err, mempool.ErrConflictsAttribute): return fmt.Errorf("mempool: %w: %s", ErrHasConflicts, err) //nolint:errorlint // errorlint: non-wrapping format verb for fmt.Errorf. Use `%w` to format errors default: return err } } return nil } // CalculateAttributesFee returns network fee for all transaction attributes that should be // paid according to native Policy. func (bc *Blockchain) CalculateAttributesFee(tx *transaction.Transaction) int64 { var feeSum int64 for _, attr := range tx.Attributes { base := bc.contracts.Policy.GetAttributeFeeInternal(bc.dao, attr.Type) switch attr.Type { case transaction.ConflictsT: feeSum += base * int64(len(tx.Signers)) case transaction.NotaryAssistedT: if bc.P2PSigExtensionsEnabled() { na := attr.Value.(*transaction.NotaryAssisted) feeSum += base * (int64(na.NKeys) + 1) } default: feeSum += base } } return feeSum } func (bc *Blockchain) verifyTxAttributes(d *dao.Simple, tx *transaction.Transaction, isPartialTx bool) error { for i := range tx.Attributes { switch attrType := tx.Attributes[i].Type; attrType { case transaction.HighPriority: h := bc.contracts.NEO.GetCommitteeAddress(d) if !tx.HasSigner(h) { return fmt.Errorf("%w: high priority tx is not signed by committee", ErrInvalidAttribute) } case transaction.OracleResponseT: h, err := bc.contracts.Oracle.GetScriptHash(bc.dao) if err != nil || h.Equals(util.Uint160{}) { return fmt.Errorf("%w: %v", ErrInvalidAttribute, err) //nolint:errorlint // errorlint: non-wrapping format verb for fmt.Errorf. Use `%w` to format errors } hasOracle := false for i := range tx.Signers { if tx.Signers[i].Scopes != transaction.None { return fmt.Errorf("%w: oracle tx has invalid signer scope", ErrInvalidAttribute) } if tx.Signers[i].Account.Equals(h) { hasOracle = true } } if !hasOracle { return fmt.Errorf("%w: oracle tx is not signed by oracle nodes", ErrInvalidAttribute) } if !bytes.Equal(tx.Script, bc.contracts.Oracle.GetOracleResponseScript()) { return fmt.Errorf("%w: oracle tx has invalid script", ErrInvalidAttribute) } resp := tx.Attributes[i].Value.(*transaction.OracleResponse) req, err := bc.contracts.Oracle.GetRequestInternal(bc.dao, resp.ID) if err != nil { return fmt.Errorf("%w: oracle tx points to invalid request: %v", ErrInvalidAttribute, err) //nolint:errorlint // errorlint: non-wrapping format verb for fmt.Errorf. Use `%w` to format errors } if uint64(tx.NetworkFee+tx.SystemFee) < req.GasForResponse { return fmt.Errorf("%w: oracle tx has insufficient gas", ErrInvalidAttribute) } case transaction.NotValidBeforeT: nvb := tx.Attributes[i].Value.(*transaction.NotValidBefore).Height curHeight := bc.BlockHeight() if isPartialTx { maxNVBDelta, err := bc.GetMaxNotValidBeforeDelta() if err != nil { return fmt.Errorf("%w: failed to retrieve MaxNotValidBeforeDelta value from native Notary contract: %v", ErrInvalidAttribute, err) //nolint:errorlint // errorlint: non-wrapping format verb for fmt.Errorf. Use `%w` to format errors } if curHeight+maxNVBDelta < nvb { return fmt.Errorf("%w: NotValidBefore (%d) bigger than MaxNVBDelta (%d) allows at height %d", ErrInvalidAttribute, nvb, maxNVBDelta, curHeight) } if nvb+maxNVBDelta < tx.ValidUntilBlock { return fmt.Errorf("%w: NotValidBefore (%d) set more than MaxNVBDelta (%d) away from VUB (%d)", ErrInvalidAttribute, nvb, maxNVBDelta, tx.ValidUntilBlock) } } else { if curHeight < nvb { return fmt.Errorf("%w: transaction is not yet valid: NotValidBefore = %d, current height = %d", ErrInvalidAttribute, nvb, curHeight) } } case transaction.ConflictsT: conflicts := tx.Attributes[i].Value.(*transaction.Conflicts) // Only fully-qualified dao.ErrAlreadyExists error bothers us here, thus, we // can safely omit the signers, current index and MTB arguments to HasTransaction call to improve performance a bit. if err := bc.dao.HasTransaction(conflicts.Hash, nil, 0, 0); errors.Is(err, dao.ErrAlreadyExists) { return fmt.Errorf("%w: conflicting transaction %s is already on chain", ErrInvalidAttribute, conflicts.Hash.StringLE()) } case transaction.NotaryAssistedT: if !bc.config.P2PSigExtensions { return fmt.Errorf("%w: NotaryAssisted attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute) } if !tx.HasSigner(bc.contracts.Notary.Hash) { return fmt.Errorf("%w: NotaryAssisted attribute was found, but transaction is not signed by the Notary native contract", ErrInvalidAttribute) } default: if !bc.config.ReservedAttributes && attrType >= transaction.ReservedLowerBound && attrType <= transaction.ReservedUpperBound { return fmt.Errorf("%w: attribute of reserved type was found, but ReservedAttributes are disabled", ErrInvalidAttribute) } } } return nil } // IsTxStillRelevant is a callback for mempool transaction filtering after the // new block addition. It returns false for transactions added by the new block // (passed via txpool) and does witness reverification for non-standard // contracts. It operates under the assumption that full transaction verification // was already done so we don't need to check basic things like size, input/output // correctness, presence in blocks before the new one, etc. func (bc *Blockchain) IsTxStillRelevant(t *transaction.Transaction, txpool *mempool.Pool, isPartialTx bool) bool { var ( recheckWitness bool curheight = bc.BlockHeight() ) if t.ValidUntilBlock <= curheight { return false } if txpool == nil { if bc.dao.HasTransaction(t.Hash(), t.Signers, curheight, bc.config.MaxTraceableBlocks) != nil { return false } } else if txpool.HasConflicts(t, bc) { return false } if err := bc.verifyTxAttributes(bc.dao, t, isPartialTx); err != nil { return false } for i := range t.Scripts { if !vm.IsStandardContract(t.Scripts[i].VerificationScript) { recheckWitness = true break } } if recheckWitness { return bc.verifyTxWitnesses(t, nil, isPartialTx) == nil } return true } // VerifyTx verifies whether transaction is bonafide or not relative to the // current blockchain state. Note that this verification is completely isolated // from the main node's mempool. func (bc *Blockchain) VerifyTx(t *transaction.Transaction) error { var mp = mempool.New(1, 0, false, nil) bc.lock.RLock() defer bc.lock.RUnlock() return bc.verifyAndPoolTx(t, mp, bc) } // PoolTx verifies and tries to add given transaction into the mempool. If not // given, the default mempool is used. Passing multiple pools is not supported. func (bc *Blockchain) PoolTx(t *transaction.Transaction, pools ...*mempool.Pool) error { var pool = bc.memPool bc.lock.RLock() defer bc.lock.RUnlock() // Programmer error. if len(pools) > 1 { panic("too many pools given") } if len(pools) == 1 { pool = pools[0] } return bc.verifyAndPoolTx(t, pool, bc) } // PoolTxWithData verifies and tries to add given transaction with additional data into the mempool. func (bc *Blockchain) PoolTxWithData(t *transaction.Transaction, data any, mp *mempool.Pool, feer mempool.Feer, verificationFunction func(tx *transaction.Transaction, data any) error) error { bc.lock.RLock() defer bc.lock.RUnlock() if verificationFunction != nil { err := verificationFunction(t, data) if err != nil { return err } } return bc.verifyAndPoolTx(t, mp, feer, data) } // GetCommittee returns the sorted list of public keys of nodes in committee. func (bc *Blockchain) GetCommittee() (keys.PublicKeys, error) { pubs := bc.contracts.NEO.GetCommitteeMembers(bc.dao) sort.Sort(pubs) return pubs, nil } // ComputeNextBlockValidators returns current validators. Validators list // returned from this method is updated once per CommitteeSize number of blocks. // For the last block in the dBFT epoch this method returns the list of validators // recalculated from the latest relevant information about NEO votes; in this case // list of validators may differ from the one returned by GetNextBlockValidators. // For the not-last block of dBFT epoch this method returns the same list as // GetNextBlockValidators. func (bc *Blockchain) ComputeNextBlockValidators() []*keys.PublicKey { return bc.contracts.NEO.ComputeNextBlockValidators(bc.dao) } // GetNextBlockValidators returns next block validators. Validators list returned // from this method is the sorted top NumOfCNs number of public keys from the // committee of the current dBFT round (that was calculated once for the // CommitteeSize number of blocks), thus, validators list returned from this // method is being updated once per (committee size) number of blocks, but not // every block. func (bc *Blockchain) GetNextBlockValidators() ([]*keys.PublicKey, error) { return bc.contracts.NEO.GetNextBlockValidatorsInternal(bc.dao), nil } // GetEnrollments returns all registered validators. func (bc *Blockchain) GetEnrollments() ([]state.Validator, error) { return bc.contracts.NEO.GetCandidates(bc.dao) } // GetTestVM returns an interop context with VM set up for a test run. func (bc *Blockchain) GetTestVM(t trigger.Type, tx *transaction.Transaction, b *block.Block) (*interop.Context, error) { if b == nil { var err error h := bc.BlockHeight() + 1 b, err = bc.getFakeNextBlock(h) if err != nil { return nil, fmt.Errorf("failed to create fake block for height %d: %w", h, err) } } systemInterop := bc.newInteropContext(t, bc.dao, b, tx) _ = systemInterop.SpawnVM() // All the other code suppose that the VM is ready. return systemInterop, nil } // GetTestHistoricVM returns an interop context with VM set up for a test run. func (bc *Blockchain) GetTestHistoricVM(t trigger.Type, tx *transaction.Transaction, nextBlockHeight uint32) (*interop.Context, error) { if bc.config.Ledger.KeepOnlyLatestState { return nil, errors.New("only latest state is supported") } b, err := bc.getFakeNextBlock(nextBlockHeight) if err != nil { return nil, fmt.Errorf("failed to create fake block for height %d: %w", nextBlockHeight, err) } var mode = mpt.ModeAll if bc.config.Ledger.RemoveUntraceableBlocks { if b.Index < bc.BlockHeight()-bc.config.MaxTraceableBlocks { return nil, fmt.Errorf("state for height %d is outdated and removed from the storage", b.Index) } mode |= mpt.ModeGCFlag } if b.Index < 1 || b.Index > bc.BlockHeight()+1 { return nil, fmt.Errorf("unsupported historic chain's height: requested state for %d, chain height %d", b.Index, bc.blockHeight) } // Assuming that block N-th is processing during historic call, the historic invocation should be based on the storage state of height N-1. sr, err := bc.stateRoot.GetStateRoot(b.Index - 1) if err != nil { return nil, fmt.Errorf("failed to retrieve stateroot for height %d: %w", b.Index, err) } s := mpt.NewTrieStore(sr.Root, mode, storage.NewPrivateMemCachedStore(bc.dao.Store)) dTrie := dao.NewSimple(s, bc.config.StateRootInHeader) dTrie.Version = bc.dao.Version // Initialize native cache before passing DAO to interop context constructor, because // the constructor will call BaseExecFee/StoragePrice policy methods on the passed DAO. err = bc.initializeNativeCache(b.Index, dTrie) if err != nil { return nil, fmt.Errorf("failed to initialize native cache backed by historic DAO: %w", err) } systemInterop := bc.newInteropContext(t, dTrie, b, tx) _ = systemInterop.SpawnVM() // All the other code suppose that the VM is ready. return systemInterop, nil } // getFakeNextBlock returns fake block with the specified index and pre-filled Timestamp field. func (bc *Blockchain) getFakeNextBlock(nextBlockHeight uint32) (*block.Block, error) { b := block.New(bc.config.StateRootInHeader) b.Index = nextBlockHeight hdr, err := bc.GetHeader(bc.GetHeaderHash(nextBlockHeight - 1)) if err != nil { return nil, err } b.Timestamp = hdr.Timestamp + uint64(bc.config.TimePerBlock/time.Millisecond) return b, nil } // Various witness verification errors. var ( ErrWitnessHashMismatch = errors.New("witness hash mismatch") ErrNativeContractWitness = errors.New("native contract witness must have empty verification script") ErrVerificationFailed = errors.New("signature check failed") ErrInvalidInvocationScript = errors.New("invalid invocation script") ErrInvalidSignature = fmt.Errorf("%w: invalid signature", ErrVerificationFailed) ErrInvalidVerificationScript = errors.New("invalid verification script") ErrUnknownVerificationContract = errors.New("unknown verification contract") ErrInvalidVerificationContract = errors.New("verification contract is missing `verify` method or `verify` method has unexpected return value") ) // InitVerificationContext initializes context for witness check. func (bc *Blockchain) InitVerificationContext(ic *interop.Context, hash util.Uint160, witness *transaction.Witness) error { if len(witness.VerificationScript) != 0 { if witness.ScriptHash() != hash { return ErrWitnessHashMismatch } if bc.contracts.ByHash(hash) != nil { return ErrNativeContractWitness } err := vm.IsScriptCorrect(witness.VerificationScript, nil) if err != nil { return fmt.Errorf("%w: %v", ErrInvalidVerificationScript, err) //nolint:errorlint // errorlint: non-wrapping format verb for fmt.Errorf. Use `%w` to format errors } ic.VM.LoadScriptWithHash(witness.VerificationScript, hash, callflag.ReadOnly) } else { cs, err := ic.GetContract(hash) if err != nil { return ErrUnknownVerificationContract } md := cs.Manifest.ABI.GetMethod(manifest.MethodVerify, -1) if md == nil || md.ReturnType != smartcontract.BoolType { return ErrInvalidVerificationContract } verifyOffset := md.Offset initOffset := -1 md = cs.Manifest.ABI.GetMethod(manifest.MethodInit, 0) if md != nil { initOffset = md.Offset } ic.Invocations[cs.Hash]++ ic.VM.LoadNEFMethod(&cs.NEF, util.Uint160{}, hash, callflag.ReadOnly, true, verifyOffset, initOffset, nil) } if len(witness.InvocationScript) != 0 { err := vm.IsScriptCorrect(witness.InvocationScript, nil) if err != nil { return fmt.Errorf("%w: %v", ErrInvalidInvocationScript, err) //nolint:errorlint // errorlint: non-wrapping format verb for fmt.Errorf. Use `%w` to format errors } ic.VM.LoadScript(witness.InvocationScript) } return nil } // VerifyWitness checks that w is a correct witness for c signed by h. It returns // the amount of GAS consumed during verification and an error. func (bc *Blockchain) VerifyWitness(h util.Uint160, c hash.Hashable, w *transaction.Witness, gas int64) (int64, error) { ic := bc.newInteropContext(trigger.Verification, bc.dao, nil, nil) ic.Container = c if tx, ok := c.(*transaction.Transaction); ok { ic.Tx = tx } return bc.verifyHashAgainstScript(h, w, ic, gas) } // verifyHashAgainstScript verifies given hash against the given witness and returns the amount of GAS consumed. func (bc *Blockchain) verifyHashAgainstScript(hash util.Uint160, witness *transaction.Witness, interopCtx *interop.Context, gas int64) (int64, error) { gasPolicy := bc.contracts.Policy.GetMaxVerificationGas(interopCtx.DAO) if gas > gasPolicy { gas = gasPolicy } vm := interopCtx.SpawnVM() vm.GasLimit = gas if err := bc.InitVerificationContext(interopCtx, hash, witness); err != nil { return 0, err } err := interopCtx.Exec() if vm.HasFailed() { return 0, fmt.Errorf("%w: vm execution has failed: %v", ErrVerificationFailed, err) //nolint:errorlint // errorlint: non-wrapping format verb for fmt.Errorf. Use `%w` to format errors } estack := vm.Estack() if estack.Len() > 0 { resEl := estack.Pop() res, err := resEl.Item().TryBool() if err != nil { return 0, fmt.Errorf("%w: invalid return value", ErrVerificationFailed) } if vm.Estack().Len() != 0 { return 0, fmt.Errorf("%w: expected exactly one returned value", ErrVerificationFailed) } if !res { return vm.GasConsumed(), ErrInvalidSignature } } else { return 0, fmt.Errorf("%w: no result returned from the script", ErrVerificationFailed) } return vm.GasConsumed(), nil } // verifyTxWitnesses verifies the scripts (witnesses) that come with a given // transaction. It can reorder them by ScriptHash, because that's required to // match a slice of script hashes from the Blockchain. Block parameter // is used for easy interop access and can be omitted for transactions that are // not yet added into any block. verificationFee argument can be provided to // restrict the maximum amount of GAS allowed to spend on transaction // verification. // Golang implementation of VerifyWitnesses method in C# (https://github.com/neo-project/neo/blob/master/neo/SmartContract/Helper.cs#L87). func (bc *Blockchain) verifyTxWitnesses(t *transaction.Transaction, block *block.Block, isPartialTx bool, verificationFee ...int64) error { interopCtx := bc.newInteropContext(trigger.Verification, bc.dao, block, t) var gasLimit int64 if len(verificationFee) == 0 { gasLimit = t.NetworkFee - int64(t.Size())*bc.FeePerByte() - bc.CalculateAttributesFee(t) } else { gasLimit = verificationFee[0] } for i := range t.Signers { gasConsumed, err := bc.verifyHashAgainstScript(t.Signers[i].Account, &t.Scripts[i], interopCtx, gasLimit) if err != nil && !(i == 0 && isPartialTx && errors.Is(err, ErrInvalidSignature)) { // it's OK for partially-filled transaction with dummy first witness. return fmt.Errorf("witness #%d: %w", i, err) } gasLimit -= gasConsumed } return nil } // verifyHeaderWitnesses is a block-specific implementation of VerifyWitnesses logic. func (bc *Blockchain) verifyHeaderWitnesses(currHeader, prevHeader *block.Header) error { var hash util.Uint160 if prevHeader == nil && currHeader.PrevHash.Equals(util.Uint256{}) { hash = currHeader.Script.ScriptHash() } else { hash = prevHeader.NextConsensus } _, err := bc.VerifyWitness(hash, currHeader, &currHeader.Script, HeaderVerificationGasLimit) return err } // GoverningTokenHash returns the governing token (NEO) native contract hash. func (bc *Blockchain) GoverningTokenHash() util.Uint160 { return bc.contracts.NEO.Hash } // UtilityTokenHash returns the utility token (GAS) native contract hash. func (bc *Blockchain) UtilityTokenHash() util.Uint160 { return bc.contracts.GAS.Hash } // ManagementContractHash returns management contract's hash. func (bc *Blockchain) ManagementContractHash() util.Uint160 { return bc.contracts.Management.Hash } func (bc *Blockchain) newInteropContext(trigger trigger.Type, d *dao.Simple, block *block.Block, tx *transaction.Transaction) *interop.Context { baseExecFee := int64(interop.DefaultBaseExecFee) if block == nil || block.Index != 0 { // Use provided dao instead of Blockchain's one to fetch possible ExecFeeFactor // changes that were not yet persisted to Blockchain's dao. baseExecFee = bc.contracts.Policy.GetExecFeeFactorInternal(d) } baseStorageFee := int64(native.DefaultStoragePrice) if block == nil || block.Index != 0 { // Use provided dao instead of Blockchain's one to fetch possible StoragePrice // changes that were not yet persisted to Blockchain's dao. baseStorageFee = bc.contracts.Policy.GetStoragePriceInternal(d) } ic := interop.NewContext(trigger, bc, d, baseExecFee, baseStorageFee, native.GetContract, bc.contracts.Contracts, contract.LoadToken, block, tx, bc.log) ic.Functions = systemInterops switch { case tx != nil: ic.Container = tx case block != nil: ic.Container = block } ic.InitNonceData() return ic } // P2PSigExtensionsEnabled defines whether P2P signature extensions are enabled. func (bc *Blockchain) P2PSigExtensionsEnabled() bool { return bc.config.P2PSigExtensions } // RegisterPostBlock appends provided function to the list of functions which should be run after new block // is stored. func (bc *Blockchain) RegisterPostBlock(f func(func(*transaction.Transaction, *mempool.Pool, bool) bool, *mempool.Pool, *block.Block)) { bc.postBlock = append(bc.postBlock, f) } // GetBaseExecFee return execution price for `NOP`. func (bc *Blockchain) GetBaseExecFee() int64 { if bc.BlockHeight() == 0 { return interop.DefaultBaseExecFee } return bc.contracts.Policy.GetExecFeeFactorInternal(bc.dao) } // GetMaxVerificationGAS returns maximum verification GAS Policy limit. func (bc *Blockchain) GetMaxVerificationGAS() int64 { return bc.contracts.Policy.GetMaxVerificationGas(bc.dao) } // GetMaxNotValidBeforeDelta returns maximum NotValidBeforeDelta Notary limit. func (bc *Blockchain) GetMaxNotValidBeforeDelta() (uint32, error) { if !bc.config.P2PSigExtensions { panic("disallowed call to Notary") // critical error, thus panic. } if !bc.isHardforkEnabled(bc.contracts.Notary.ActiveIn(), bc.BlockHeight()) { return 0, fmt.Errorf("native Notary is active starting from %s", bc.contracts.Notary.ActiveIn().String()) } return bc.contracts.Notary.GetMaxNotValidBeforeDelta(bc.dao), nil } // GetStoragePrice returns current storage price. func (bc *Blockchain) GetStoragePrice() int64 { if bc.BlockHeight() == 0 { return native.DefaultStoragePrice } return bc.contracts.Policy.GetStoragePriceInternal(bc.dao) }