neoneo-go/pkg/core/transaction/transaction.go

398 lines
11 KiB
Go

package transaction
import (
"encoding/json"
"errors"
"fmt"
"math/rand"
"github.com/nspcc-dev/neo-go/pkg/config/netmode"
"github.com/nspcc-dev/neo-go/pkg/crypto/hash"
"github.com/nspcc-dev/neo-go/pkg/encoding/address"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/util"
)
const (
// MaxTransactionSize is the upper limit size in bytes that a transaction can reach. It is
// set to be 102400.
MaxTransactionSize = 102400
// MaxValidUntilBlockIncrement is the upper increment size of blockhain height in blocs after
// exceeding that a transaction should fail validation. It is set to be 2102400.
MaxValidUntilBlockIncrement = 2102400
// MaxAttributes is maximum number of attributes including signers that can be contained
// within a transaction. It is set to be 16.
MaxAttributes = 16
)
// Transaction is a process recorded in the NEO blockchain.
type Transaction struct {
// The trading version which is currently 0.
Version uint8
// Random number to avoid hash collision.
Nonce uint32
// Fee to be burned.
SystemFee int64
// Fee to be distributed to consensus nodes.
NetworkFee int64
// Maximum blockchain height exceeding which
// transaction should fail verification.
ValidUntilBlock uint32
// Code to run in NeoVM for this transaction.
Script []byte
// Transaction attributes.
Attributes []Attribute
// Transaction signers list (starts with Sender).
Signers []Signer
// The scripts that comes with this transaction.
// Scripts exist out of the verification script
// and invocation script.
Scripts []Witness
// Network magic number. This one actually is not a part of the
// wire-representation of Transaction, but it's absolutely necessary
// for correct signing/verification.
Network netmode.Magic
// size is transaction's serialized size.
size int
// Hash of the transaction (double SHA256).
hash util.Uint256
// Hash of the transaction used to verify it (single SHA256).
verificationHash util.Uint256
// Trimmed indicates this is a transaction from trimmed
// data.
Trimmed bool
}
// NewTrimmedTX returns a trimmed transaction with only its hash
// and Trimmed to true.
func NewTrimmedTX(hash util.Uint256) *Transaction {
return &Transaction{
hash: hash,
Trimmed: true,
}
}
// New returns a new transaction to execute given script and pay given system
// fee.
func New(network netmode.Magic, script []byte, gas int64) *Transaction {
return &Transaction{
Version: 0,
Nonce: rand.Uint32(),
Script: script,
SystemFee: gas,
Attributes: []Attribute{},
Signers: []Signer{},
Scripts: []Witness{},
Network: network,
}
}
// Hash returns the hash of the transaction.
func (t *Transaction) Hash() util.Uint256 {
if t.hash.Equals(util.Uint256{}) {
if t.createHash() != nil {
panic("failed to compute hash!")
}
}
return t.hash
}
// GetSignedHash returns a hash of the transaction used to verify it.
func (t *Transaction) GetSignedHash() util.Uint256 {
if t.verificationHash.Equals(util.Uint256{}) {
if t.createHash() != nil {
panic("failed to compute hash!")
}
}
return t.verificationHash
}
// HasAttribute returns true iff t has an attribute of type typ.
func (t *Transaction) HasAttribute(typ AttrType) bool {
for i := range t.Attributes {
if t.Attributes[i].Type == typ {
return true
}
}
return false
}
// decodeHashableFields decodes the fields that are used for signing the
// transaction, which are all fields except the scripts.
func (t *Transaction) decodeHashableFields(br *io.BinReader) {
t.Version = uint8(br.ReadB())
t.Nonce = br.ReadU32LE()
t.SystemFee = int64(br.ReadU64LE())
t.NetworkFee = int64(br.ReadU64LE())
t.ValidUntilBlock = br.ReadU32LE()
br.ReadArray(&t.Signers, MaxAttributes)
br.ReadArray(&t.Attributes, MaxAttributes-len(t.Signers))
t.Script = br.ReadVarBytes()
if br.Err == nil {
br.Err = t.isValid()
}
}
// DecodeBinary implements Serializable interface.
func (t *Transaction) DecodeBinary(br *io.BinReader) {
t.decodeHashableFields(br)
if br.Err != nil {
return
}
br.ReadArray(&t.Scripts)
// Create the hash of the transaction at decode, so we dont need
// to do it anymore.
if br.Err == nil {
br.Err = t.createHash()
_ = t.Size()
}
}
// EncodeBinary implements Serializable interface.
func (t *Transaction) EncodeBinary(bw *io.BinWriter) {
t.encodeHashableFields(bw)
bw.WriteArray(t.Scripts)
}
// encodeHashableFields encodes the fields that are not used for
// signing the transaction, which are all fields except the scripts.
func (t *Transaction) encodeHashableFields(bw *io.BinWriter) {
if len(t.Script) == 0 {
bw.Err = errors.New("transaction has no script")
return
}
bw.WriteB(byte(t.Version))
bw.WriteU32LE(t.Nonce)
bw.WriteU64LE(uint64(t.SystemFee))
bw.WriteU64LE(uint64(t.NetworkFee))
bw.WriteU32LE(t.ValidUntilBlock)
bw.WriteArray(t.Signers)
bw.WriteArray(t.Attributes)
bw.WriteVarBytes(t.Script)
}
// createHash creates the hash of the transaction.
func (t *Transaction) createHash() error {
b := t.GetSignedPart()
if b == nil {
return errors.New("failed to serialize hashable data")
}
t.updateHashes(b)
return nil
}
// updateHashes updates Transaction's hashes based on the given buffer which should
// be a signable data slice.
func (t *Transaction) updateHashes(b []byte) {
t.verificationHash = hash.Sha256(b)
t.hash = hash.Sha256(t.verificationHash.BytesBE())
}
// GetSignedPart returns a part of the transaction which must be signed.
func (t *Transaction) GetSignedPart() []byte {
buf := io.NewBufBinWriter()
buf.WriteU32LE(uint32(t.Network))
t.encodeHashableFields(buf.BinWriter)
if buf.Err != nil {
return nil
}
return buf.Bytes()
}
// DecodeSignedPart decodes a part of transaction from GetSignedPart data.
func (t *Transaction) DecodeSignedPart(buf []byte) error {
r := io.NewBinReaderFromBuf(buf)
t.Network = netmode.Magic(r.ReadU32LE())
t.decodeHashableFields(r)
if r.Err != nil {
return r.Err
}
// Ensure all the data was read.
_ = r.ReadB()
if r.Err == nil {
return errors.New("additional data after the signed part")
}
t.Scripts = make([]Witness, 0)
t.updateHashes(buf)
return nil
}
// Bytes converts the transaction to []byte
func (t *Transaction) Bytes() []byte {
buf := io.NewBufBinWriter()
t.EncodeBinary(buf.BinWriter)
if buf.Err != nil {
return nil
}
return buf.Bytes()
}
// NewTransactionFromBytes decodes byte array into *Transaction
func NewTransactionFromBytes(network netmode.Magic, b []byte) (*Transaction, error) {
tx := &Transaction{Network: network}
r := io.NewBinReaderFromBuf(b)
tx.DecodeBinary(r)
if r.Err != nil {
return nil, r.Err
}
_ = r.ReadB()
if r.Err == nil {
return nil, errors.New("additional data after the transaction")
}
tx.size = len(b)
return tx, nil
}
// FeePerByte returns NetworkFee of the transaction divided by
// its size
func (t *Transaction) FeePerByte() int64 {
return t.NetworkFee / int64(t.Size())
}
// Size returns size of the serialized transaction.
func (t *Transaction) Size() int {
if t.size == 0 {
t.size = io.GetVarSize(t)
}
return t.size
}
// Sender returns the sender of the transaction which is always on the first place
// in the transaction's signers list.
func (t *Transaction) Sender() util.Uint160 {
if len(t.Signers) == 0 {
panic("transaction does not have signers")
}
return t.Signers[0].Account
}
// transactionJSON is a wrapper for Transaction and
// used for correct marhalling of transaction.Data
type transactionJSON struct {
TxID util.Uint256 `json:"hash"`
Size int `json:"size"`
Version uint8 `json:"version"`
Nonce uint32 `json:"nonce"`
Sender string `json:"sender"`
SystemFee int64 `json:"sysfee,string"`
NetworkFee int64 `json:"netfee,string"`
ValidUntilBlock uint32 `json:"validuntilblock"`
Attributes []Attribute `json:"attributes"`
Signers []Signer `json:"signers"`
Script []byte `json:"script"`
Scripts []Witness `json:"witnesses"`
}
// MarshalJSON implements json.Marshaler interface.
func (t *Transaction) MarshalJSON() ([]byte, error) {
tx := transactionJSON{
TxID: t.Hash(),
Size: t.Size(),
Version: t.Version,
Nonce: t.Nonce,
Sender: address.Uint160ToString(t.Sender()),
ValidUntilBlock: t.ValidUntilBlock,
Attributes: t.Attributes,
Signers: t.Signers,
Script: t.Script,
Scripts: t.Scripts,
SystemFee: t.SystemFee,
NetworkFee: t.NetworkFee,
}
return json.Marshal(tx)
}
// UnmarshalJSON implements json.Unmarshaler interface.
func (t *Transaction) UnmarshalJSON(data []byte) error {
tx := new(transactionJSON)
if err := json.Unmarshal(data, tx); err != nil {
return err
}
t.Version = tx.Version
t.Nonce = tx.Nonce
t.ValidUntilBlock = tx.ValidUntilBlock
t.Attributes = tx.Attributes
t.Signers = tx.Signers
t.Scripts = tx.Scripts
t.SystemFee = tx.SystemFee
t.NetworkFee = tx.NetworkFee
t.Script = tx.Script
if t.Hash() != tx.TxID {
return errors.New("txid doesn't match transaction hash")
}
if t.Size() != tx.Size {
return errors.New("'size' doesn't match transaction size")
}
return t.isValid()
}
// Various errors for transaction validation.
var (
ErrInvalidVersion = errors.New("only version 0 is supported")
ErrNegativeSystemFee = errors.New("negative system fee")
ErrNegativeNetworkFee = errors.New("negative network fee")
ErrTooBigFees = errors.New("too big fees: int64 overflow")
ErrEmptySigners = errors.New("signers array should contain sender")
ErrInvalidScope = errors.New("FeeOnly scope can be used only for sender")
ErrNonUniqueSigners = errors.New("transaction signers should be unique")
ErrInvalidAttribute = errors.New("invalid attribute")
ErrEmptyScript = errors.New("no script")
)
// isValid checks whether decoded/unmarshalled transaction has all fields valid.
func (t *Transaction) isValid() error {
if t.Version > 0 {
return ErrInvalidVersion
}
if t.SystemFee < 0 {
return ErrNegativeSystemFee
}
if t.NetworkFee < 0 {
return ErrNegativeNetworkFee
}
if t.NetworkFee+t.SystemFee < t.SystemFee {
return ErrTooBigFees
}
if len(t.Signers) == 0 {
return ErrEmptySigners
}
for i := 0; i < len(t.Signers); i++ {
if i > 0 && t.Signers[i].Scopes == FeeOnly {
return ErrInvalidScope
}
for j := i + 1; j < len(t.Signers); j++ {
if t.Signers[i].Account.Equals(t.Signers[j].Account) {
return ErrNonUniqueSigners
}
}
}
hasHighPrio := false
for i := range t.Attributes {
switch t.Attributes[i].Type {
case HighPriority:
if hasHighPrio {
return fmt.Errorf("%w: multiple high priority attributes", ErrInvalidAttribute)
}
hasHighPrio = true
}
}
if len(t.Script) == 0 {
return ErrEmptyScript
}
return nil
}