neoneo-go/_pkg.dev/crypto/elliptic/elliptic.go
Roman Khimov ddd1d92ff1 pkg: hide it by moving to _pkg.dev
The idea here is to preserve the history of `dev` branch development and its
code when merging with the `master`. Later this code could be moved into the
masters code where appropriate.
2019-08-20 18:39:50 +03:00

319 lines
7.1 KiB
Go
Executable file

/*
This file has been modified under the MIT license.
Original: https://github.com/vsergeev/btckeygenie
*/
package elliptic
import (
nativeelliptic "crypto/elliptic"
"encoding/hex"
"errors"
"fmt"
"math/big"
)
// Point represents a point on an EllipticCurve.
type Point struct {
X *big.Int
Y *big.Int
}
// Curve represents the parameters of a short Weierstrass equation elliptic curve.
/* y**2 = x**3 + a*x + b % p */
type Curve struct {
A *big.Int
B *big.Int
P *big.Int
G Point
N *big.Int
H *big.Int
Name string
}
// dump dumps the bytes of a point for debugging.
func (p *Point) dump() {
fmt.Print(p.format())
}
// format formats the bytes of a point for debugging.
func (p *Point) format() string {
if p.X == nil && p.Y == nil {
return "(inf,inf)"
}
return fmt.Sprintf("(%s,%s)", hex.EncodeToString(p.X.Bytes()), hex.EncodeToString(p.Y.Bytes()))
}
// Params represent the paramters for the Elliptic Curve
func (ec Curve) Params() *nativeelliptic.CurveParams {
return &nativeelliptic.CurveParams{
P: ec.P,
N: ec.N,
B: ec.B,
Gx: ec.G.X,
Gy: ec.G.Y,
BitSize: 256,
Name: ec.Name,
}
}
/*** Modular Arithmetic ***/
/* NOTE: Returning a new z each time below is very space inefficient, but the
* alternate accumulator based design makes the point arithmetic functions look
* absolutely hideous. I may still change this in the future. */
// addMod computes z = (x + y) % p.
func addMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
z = new(big.Int).Add(x, y)
z.Mod(z, p)
return z
}
// subMod computes z = (x - y) % p.
func subMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
z = new(big.Int).Sub(x, y)
z.Mod(z, p)
return z
}
// mulMod computes z = (x * y) % p.
func mulMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
n := new(big.Int).Set(x)
z = big.NewInt(0)
for i := 0; i < y.BitLen(); i++ {
if y.Bit(i) == 1 {
z = addMod(z, n, p)
}
n = addMod(n, n, p)
}
return z
}
// invMod computes z = (1/x) % p.
func invMod(x *big.Int, p *big.Int) (z *big.Int) {
z = new(big.Int).ModInverse(x, p)
return z
}
// expMod computes z = (x^e) % p.
func expMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
z = new(big.Int).Exp(x, y, p)
return z
}
// sqrtMod computes z = sqrt(x) % p.
func sqrtMod(x *big.Int, p *big.Int) (z *big.Int) {
/* assert that p % 4 == 3 */
if new(big.Int).Mod(p, big.NewInt(4)).Cmp(big.NewInt(3)) != 0 {
panic("p is not equal to 3 mod 4!")
}
/* z = sqrt(x) % p = x^((p+1)/4) % p */
/* e = (p+1)/4 */
e := new(big.Int).Add(p, big.NewInt(1))
e = e.Rsh(e, 2)
z = expMod(x, e, p)
return z
}
/*** Point Arithmetic on Curve ***/
// IsInfinity checks if point P is infinity on EllipticCurve ec.
func (ec *Curve) IsInfinity(P Point) bool {
/* We use (nil,nil) to represent O, the point at infinity. */
if P.X == nil && P.Y == nil {
return true
}
return false
}
// IsOnCurve checks if point P is on EllipticCurve ec.
func (ec Curve) IsOnCurve(P1, P2 *big.Int) bool {
P := Point{P1, P2}
if ec.IsInfinity(P) {
return false
}
/* y**2 = x**3 + a*x + b % p */
lhs := mulMod(P.Y, P.Y, ec.P)
rhs := addMod(
addMod(
expMod(P.X, big.NewInt(3), ec.P),
mulMod(ec.A, P.X, ec.P), ec.P),
ec.B, ec.P)
if lhs.Cmp(rhs) == 0 {
return true
}
return false
}
// Add computes R = P + Q on EllipticCurve ec.
func (ec Curve) Add(P1, P2, Q1, Q2 *big.Int) (R1 *big.Int, R2 *big.Int) {
/* See rules 1-5 on SEC1 pg.7 http://www.secg.org/collateral/sec1_final.pdf */
P := Point{P1, P2}
Q := Point{Q1, Q2}
R := Point{}
if ec.IsInfinity(P) && ec.IsInfinity(Q) {
/* Rule #1 Identity */
/* R = O + O = O */
R.X = nil
R.Y = nil
} else if ec.IsInfinity(P) {
/* Rule #2 Identity */
/* R = O + Q = Q */
R.X = new(big.Int).Set(Q.X)
R.Y = new(big.Int).Set(Q.Y)
} else if ec.IsInfinity(Q) {
/* Rule #2 Identity */
/* R = P + O = P */
R.X = new(big.Int).Set(P.X)
R.Y = new(big.Int).Set(P.Y)
} else if P.X.Cmp(Q.X) == 0 && addMod(P.Y, Q.Y, ec.P).Sign() == 0 {
/* Rule #3 Identity */
/* R = (x,y) + (x,-y) = O */
R.X = nil
R.Y = nil
} else if P.X.Cmp(Q.X) == 0 && P.Y.Cmp(Q.Y) == 0 && P.Y.Sign() != 0 {
/* Rule #5 Point doubling */
/* R = P + P */
/* Lambda = (3*P.X*P.X + a) / (2*P.Y) */
num := addMod(
mulMod(big.NewInt(3),
mulMod(P.X, P.X, ec.P), ec.P),
ec.A, ec.P)
den := invMod(mulMod(big.NewInt(2), P.Y, ec.P), ec.P)
lambda := mulMod(num, den, ec.P)
/* R.X = lambda*lambda - 2*P.X */
R.X = subMod(
mulMod(lambda, lambda, ec.P),
mulMod(big.NewInt(2), P.X, ec.P),
ec.P)
/* R.Y = lambda*(P.X - R.X) - P.Y */
R.Y = subMod(
mulMod(lambda, subMod(P.X, R.X, ec.P), ec.P),
P.Y, ec.P)
} else if P.X.Cmp(Q.X) != 0 {
/* Rule #4 Point addition */
/* R = P + Q */
/* Lambda = (Q.Y - P.Y) / (Q.X - P.X) */
num := subMod(Q.Y, P.Y, ec.P)
den := invMod(subMod(Q.X, P.X, ec.P), ec.P)
lambda := mulMod(num, den, ec.P)
/* R.X = lambda*lambda - P.X - Q.X */
R.X = subMod(
subMod(
mulMod(lambda, lambda, ec.P),
P.X, ec.P),
Q.X, ec.P)
/* R.Y = lambda*(P.X - R.X) - P.Y */
R.Y = subMod(
mulMod(lambda,
subMod(P.X, R.X, ec.P), ec.P),
P.Y, ec.P)
} else {
panic(fmt.Sprintf("Unsupported point addition: %v + %v", P.format(), Q.format()))
}
return R.X, R.Y
}
// ScalarMult computes Q = k * P on EllipticCurve ec.
func (ec Curve) ScalarMult(P1, P2 *big.Int, l []byte) (Q1, Q2 *big.Int) {
/* Note: this function is not constant time, due to the branching nature of
* the underlying point Add() function. */
/* Montgomery Ladder Point Multiplication
*
* Implementation based on pseudocode here:
* See https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder */
P := Point{P1, P2}
k := big.Int{}
k.SetBytes(l)
var R0 Point
var R1 Point
R0.X = nil
R0.Y = nil
R1.X = new(big.Int).Set(P.X)
R1.Y = new(big.Int).Set(P.Y)
for i := ec.N.BitLen() - 1; i >= 0; i-- {
if k.Bit(i) == 0 {
R1.X, R1.Y = ec.Add(R0.X, R0.Y, R1.X, R1.Y)
R0.X, R0.Y = ec.Add(R0.X, R0.Y, R0.X, R0.Y)
} else {
R0.X, R0.Y = ec.Add(R0.X, R0.Y, R1.X, R1.Y)
R1.X, R1.Y = ec.Add(R1.X, R1.Y, R1.X, R1.Y)
}
}
return R0.X, R0.Y
}
// ScalarBaseMult computes Q = k * G on EllipticCurve ec.
func (ec Curve) ScalarBaseMult(k []byte) (Q1, Q2 *big.Int) {
return ec.ScalarMult(ec.G.X, ec.G.Y, k)
}
// Decompress decompresses coordinate x and ylsb (y's least significant bit) into a Point P on EllipticCurve ec.
func (ec *Curve) Decompress(x *big.Int, ylsb uint) (P Point, err error) {
/* y**2 = x**3 + a*x + b % p */
rhs := addMod(
addMod(
expMod(x, big.NewInt(3), ec.P),
mulMod(ec.A, x, ec.P),
ec.P),
ec.B, ec.P)
/* y = sqrt(rhs) % p */
y := sqrtMod(rhs, ec.P)
/* Use -y if opposite lsb is required */
if y.Bit(0) != (ylsb & 0x1) {
y = subMod(big.NewInt(0), y, ec.P)
}
P.X = x
P.Y = y
if !ec.IsOnCurve(P.X, P.Y) {
return P, errors.New("compressed (x, ylsb) not on curve")
}
return P, nil
}
// Double will return the (x1+x1,y1+y1)
func (ec Curve) Double(x1, y1 *big.Int) (x, y *big.Int) {
x = &big.Int{}
x.SetBytes([]byte{0x00})
y = &big.Int{}
y.SetBytes([]byte{0x00})
return x, y
}