neoneo-go/pkg/compiler/codegen.go
Anna Shaleva 53655c5ac2 core: implement new System.Blockchain.GetTransaction interop
closes #1023

Now we put on stack stackitem.Array instead of Interop, so we don't
need old transaction-related interops anymore. Removed the following
interops:
	System.Transaction.GetHash
	Neo.Transaction.GetAttributes
	Neo.Transaction.GetHash
	Neo.Transaction.GetWitnesses
	Neo.Attribute.GetData
	Neo.Attribute.GetUsage

Also removed the following duplicated NEO interop:
	Neo.Blockchain.GetTransaction
2020-06-09 22:04:13 +03:00

1433 lines
36 KiB
Go

package compiler
import (
"encoding/binary"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"math"
"sort"
"strings"
"github.com/nspcc-dev/neo-go/pkg/encoding/address"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/vm"
"github.com/nspcc-dev/neo-go/pkg/vm/emit"
"github.com/nspcc-dev/neo-go/pkg/vm/opcode"
"github.com/nspcc-dev/neo-go/pkg/vm/stackitem"
"golang.org/x/tools/go/loader"
)
// The identifier of the entry function. Default set to Main.
const mainIdent = "Main"
type codegen struct {
// Information about the program with all its dependencies.
buildInfo *buildInfo
// prog holds the output buffer.
prog *io.BufBinWriter
// Type information.
typeInfo *types.Info
// A mapping of func identifiers with their scope.
funcs map[string]*funcScope
// A mapping of lambda functions into their scope.
lambda map[string]*funcScope
// Current funcScope being converted.
scope *funcScope
globals map[string]int
// A mapping from label's names to their ids.
labels map[labelWithType]uint16
// A list of nested label names together with evaluation stack depth.
labelList []labelWithStackSize
// A label for the for-loop being currently visited.
currentFor string
// A label for the switch statement being visited.
currentSwitch string
// A label to be used in the next statement.
nextLabel string
// sequencePoints is mapping from method name to a slice
// containing info about mapping from opcode's offset
// to a text span in the source file.
sequencePoints map[string][]DebugSeqPoint
// Label table for recording jump destinations.
l []int
}
type labelOffsetType byte
const (
labelStart labelOffsetType = iota // labelStart is a default label type
labelEnd // labelEnd is a type for labels that are targets for break
labelPost // labelPost is a type for labels that are targets for continue
)
type labelWithType struct {
name string
typ labelOffsetType
}
type labelWithStackSize struct {
name string
sz int
}
type varType int
const (
varGlobal varType = iota
varLocal
varArgument
)
// newLabel creates a new label to jump to
func (c *codegen) newLabel() (l uint16) {
li := len(c.l)
if li > math.MaxUint16 {
c.prog.Err = errors.New("label number is too big")
return
}
l = uint16(li)
c.l = append(c.l, -1)
return
}
// newNamedLabel creates a new label with a specified name.
func (c *codegen) newNamedLabel(typ labelOffsetType, name string) (l uint16) {
l = c.newLabel()
lt := labelWithType{name: name, typ: typ}
c.labels[lt] = l
return
}
func (c *codegen) setLabel(l uint16) {
c.l[l] = c.pc() + 1
}
// pc returns the program offset off the last instruction.
func (c *codegen) pc() int {
return c.prog.Len() - 1
}
func (c *codegen) emitLoadConst(t types.TypeAndValue) {
if c.prog.Err != nil {
return
}
typ, ok := t.Type.Underlying().(*types.Basic)
if !ok {
c.prog.Err = fmt.Errorf("compiler doesn't know how to convert this constant: %v", t)
return
}
switch typ.Kind() {
case types.Int, types.UntypedInt, types.Uint,
types.Int8, types.Uint8,
types.Int16, types.Uint16,
types.Int32, types.Uint32, types.Int64, types.Uint64:
val, _ := constant.Int64Val(t.Value)
emit.Int(c.prog.BinWriter, val)
case types.String, types.UntypedString:
val := constant.StringVal(t.Value)
emit.String(c.prog.BinWriter, val)
case types.Bool, types.UntypedBool:
val := constant.BoolVal(t.Value)
emit.Bool(c.prog.BinWriter, val)
default:
c.prog.Err = fmt.Errorf("compiler doesn't know how to convert this basic type: %v", t)
return
}
}
func (c *codegen) emitLoadField(i int) {
emit.Int(c.prog.BinWriter, int64(i))
emit.Opcode(c.prog.BinWriter, opcode.PICKITEM)
}
func (c *codegen) emitStoreStructField(i int) {
emit.Int(c.prog.BinWriter, int64(i))
emit.Opcode(c.prog.BinWriter, opcode.ROT)
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
}
// getVarIndex returns variable type and position in corresponding slot,
// according to current scope.
func (c *codegen) getVarIndex(name string) (varType, int) {
if c.scope != nil {
if i, ok := c.scope.arguments[name]; ok {
return varArgument, i
} else if i, ok := c.scope.locals[name]; ok {
return varLocal, i
}
}
if i, ok := c.globals[name]; ok {
return varGlobal, i
}
return varLocal, c.scope.newVariable(varLocal, name)
}
func getBaseOpcode(t varType) (opcode.Opcode, opcode.Opcode) {
switch t {
case varGlobal:
return opcode.LDSFLD0, opcode.STSFLD0
case varLocal:
return opcode.LDLOC0, opcode.STLOC0
case varArgument:
return opcode.LDARG0, opcode.STARG0
default:
panic("invalid type")
}
}
// emitLoadVar loads specified variable to the evaluation stack.
func (c *codegen) emitLoadVar(name string) {
t, i := c.getVarIndex(name)
base, _ := getBaseOpcode(t)
if i < 7 {
emit.Opcode(c.prog.BinWriter, base+opcode.Opcode(i))
} else {
emit.Instruction(c.prog.BinWriter, base+7, []byte{byte(i)})
}
}
// emitStoreVar stores top value from the evaluation stack in the specified variable.
func (c *codegen) emitStoreVar(name string) {
if name == "_" {
emit.Opcode(c.prog.BinWriter, opcode.DROP)
return
}
t, i := c.getVarIndex(name)
_, base := getBaseOpcode(t)
if i < 7 {
emit.Opcode(c.prog.BinWriter, base+opcode.Opcode(i))
} else {
emit.Instruction(c.prog.BinWriter, base+7, []byte{byte(i)})
}
}
func (c *codegen) emitDefault(t types.Type) {
switch t := t.Underlying().(type) {
case *types.Basic:
info := t.Info()
switch {
case info&types.IsInteger != 0:
emit.Int(c.prog.BinWriter, 0)
case info&types.IsString != 0:
emit.Bytes(c.prog.BinWriter, []byte{})
case info&types.IsBoolean != 0:
emit.Bool(c.prog.BinWriter, false)
default:
emit.Opcode(c.prog.BinWriter, opcode.PUSHNULL)
}
case *types.Slice:
if isCompoundSlice(t) {
emit.Opcode(c.prog.BinWriter, opcode.NEWARRAY0)
} else {
emit.Int(c.prog.BinWriter, 0)
emit.Opcode(c.prog.BinWriter, opcode.NEWBUFFER)
}
case *types.Struct:
num := t.NumFields()
emit.Int(c.prog.BinWriter, int64(num))
emit.Opcode(c.prog.BinWriter, opcode.NEWSTRUCT)
for i := 0; i < num; i++ {
emit.Opcode(c.prog.BinWriter, opcode.DUP)
emit.Int(c.prog.BinWriter, int64(i))
c.emitDefault(t.Field(i).Type())
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
}
default:
emit.Opcode(c.prog.BinWriter, opcode.PUSHNULL)
}
}
// convertGlobals traverses the AST and only converts global declarations.
// If we call this in convertFuncDecl then it will load all global variables
// into the scope of the function.
func (c *codegen) convertGlobals(f ast.Node) {
ast.Inspect(f, func(node ast.Node) bool {
switch n := node.(type) {
case *ast.FuncDecl:
return false
case *ast.GenDecl:
// constants are loaded directly so there is no need
// to store them as a local variables
if n.Tok != token.CONST {
ast.Walk(c, n)
}
}
return true
})
}
func (c *codegen) convertFuncDecl(file ast.Node, decl *ast.FuncDecl) {
var (
f *funcScope
ok, isLambda bool
)
f, ok = c.funcs[decl.Name.Name]
if ok {
// If this function is a syscall or builtin we will not convert it to bytecode.
if isSyscall(f) || isCustomBuiltin(f) {
return
}
c.setLabel(f.label)
} else if f, ok = c.lambda[decl.Name.Name]; ok {
isLambda = ok
c.setLabel(f.label)
} else {
f = c.newFunc(decl)
}
f.rng.Start = uint16(c.prog.Len())
c.scope = f
ast.Inspect(decl, c.scope.analyzeVoidCalls) // @OPTIMIZE
// All globals copied into the scope of the function need to be added
// to the stack size of the function.
sizeLoc := f.countLocals()
if sizeLoc > 255 {
c.prog.Err = errors.New("maximum of 255 local variables is allowed")
}
sizeArg := f.countArgs()
if sizeArg > 255 {
c.prog.Err = errors.New("maximum of 255 local variables is allowed")
}
if sizeLoc != 0 || sizeArg != 0 {
emit.Instruction(c.prog.BinWriter, opcode.INITSLOT, []byte{byte(sizeLoc), byte(sizeArg)})
}
// We need to handle methods, which in Go, is just syntactic sugar.
// The method receiver will be passed in as first argument.
// We check if this declaration has a receiver and load it into scope.
//
// FIXME: For now we will hard cast this to a struct. We can later fine tune this
// to support other types.
if decl.Recv != nil {
for _, arg := range decl.Recv.List {
// only create an argument here, it will be stored via INITSLOT
c.scope.newVariable(varArgument, arg.Names[0].Name)
}
}
// Load the arguments in scope.
for _, arg := range decl.Type.Params.List {
for _, id := range arg.Names {
// only create an argument here, it will be stored via INITSLOT
c.scope.newVariable(varArgument, id.Name)
}
}
ast.Walk(c, decl.Body)
// If we have reached the end of the function without encountering `return` statement,
// we should clean alt.stack manually.
// This can be the case with void and named-return functions.
if !lastStmtIsReturn(decl) {
c.saveSequencePoint(decl.Body)
emit.Opcode(c.prog.BinWriter, opcode.RET)
}
f.rng.End = uint16(c.prog.Len() - 1)
if !isLambda {
for _, f := range c.lambda {
c.convertFuncDecl(file, f.decl)
}
c.lambda = make(map[string]*funcScope)
}
}
func (c *codegen) Visit(node ast.Node) ast.Visitor {
if c.prog.Err != nil {
return nil
}
switch n := node.(type) {
// General declarations.
// var (
// x = 2
// )
case *ast.GenDecl:
for _, spec := range n.Specs {
switch t := spec.(type) {
case *ast.ValueSpec:
for _, id := range t.Names {
if c.scope == nil {
// it is a global declaration
c.newGlobal(id.Name)
} else {
c.scope.newLocal(id.Name)
}
c.registerDebugVariable(id.Name, t.Type)
}
for i := range t.Names {
if len(t.Values) != 0 {
ast.Walk(c, t.Values[i])
} else {
c.emitDefault(c.typeOf(t.Type))
}
c.emitStoreVar(t.Names[i].Name)
}
}
}
return nil
case *ast.AssignStmt:
multiRet := len(n.Rhs) != len(n.Lhs)
c.saveSequencePoint(n)
// Assign operations are grouped https://github.com/golang/go/blob/master/src/go/types/stmt.go#L160
isAssignOp := token.ADD_ASSIGN <= n.Tok && n.Tok <= token.AND_NOT_ASSIGN
if isAssignOp {
// RHS can contain exactly one expression, thus there is no need to iterate.
ast.Walk(c, n.Lhs[0])
ast.Walk(c, n.Rhs[0])
c.convertToken(n.Tok)
}
for i := 0; i < len(n.Lhs); i++ {
switch t := n.Lhs[i].(type) {
case *ast.Ident:
if n.Tok == token.DEFINE {
if !multiRet {
c.registerDebugVariable(t.Name, n.Rhs[i])
}
if t.Name != "_" {
c.scope.newLocal(t.Name)
}
}
if !isAssignOp && (i == 0 || !multiRet) {
ast.Walk(c, n.Rhs[i])
}
c.emitStoreVar(t.Name)
case *ast.SelectorExpr:
if !isAssignOp {
ast.Walk(c, n.Rhs[i])
}
strct, ok := c.typeOf(t.X).Underlying().(*types.Struct)
if !ok {
c.prog.Err = fmt.Errorf("nested selector assigns not supported yet")
return nil
}
ast.Walk(c, t.X) // load the struct
i := indexOfStruct(strct, t.Sel.Name) // get the index of the field
c.emitStoreStructField(i) // store the field
// Assignments to index expressions.
// slice[0] = 10
case *ast.IndexExpr:
if !isAssignOp {
ast.Walk(c, n.Rhs[i])
}
ast.Walk(c, t.X)
ast.Walk(c, t.Index)
emit.Opcode(c.prog.BinWriter, opcode.ROT)
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
}
}
return nil
case *ast.SliceExpr:
name := n.X.(*ast.Ident).Name
c.emitLoadVar(name)
if n.Low != nil {
ast.Walk(c, n.Low)
} else {
emit.Opcode(c.prog.BinWriter, opcode.PUSH0)
}
if n.High != nil {
ast.Walk(c, n.High)
} else {
emit.Opcode(c.prog.BinWriter, opcode.OVER)
emit.Opcode(c.prog.BinWriter, opcode.SIZE)
}
emit.Opcode(c.prog.BinWriter, opcode.OVER)
emit.Opcode(c.prog.BinWriter, opcode.SUB)
emit.Opcode(c.prog.BinWriter, opcode.SUBSTR)
return nil
case *ast.ReturnStmt:
l := c.newLabel()
c.setLabel(l)
cnt := 0
for i := range c.labelList {
cnt += c.labelList[i].sz
}
c.dropItems(cnt)
if len(n.Results) == 0 {
results := c.scope.decl.Type.Results
if results.NumFields() != 0 {
// function with named returns
for i := len(results.List) - 1; i >= 0; i-- {
names := results.List[i].Names
for j := len(names) - 1; j >= 0; j-- {
c.emitLoadVar(names[j].Name)
}
}
}
} else {
// first result should be on top of the stack
for i := len(n.Results) - 1; i >= 0; i-- {
ast.Walk(c, n.Results[i])
}
}
c.saveSequencePoint(n)
emit.Opcode(c.prog.BinWriter, opcode.RET)
return nil
case *ast.IfStmt:
lIf := c.newLabel()
lElse := c.newLabel()
lElseEnd := c.newLabel()
if n.Cond != nil {
ast.Walk(c, n.Cond)
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, lElse)
}
c.setLabel(lIf)
ast.Walk(c, n.Body)
if n.Else != nil {
emit.Jmp(c.prog.BinWriter, opcode.JMPL, lElseEnd)
}
c.setLabel(lElse)
if n.Else != nil {
ast.Walk(c, n.Else)
}
c.setLabel(lElseEnd)
return nil
case *ast.SwitchStmt:
ast.Walk(c, n.Tag)
eqOpcode := c.getEqualityOpcode(n.Tag)
switchEnd, label := c.generateLabel(labelEnd)
lastSwitch := c.currentSwitch
c.currentSwitch = label
c.pushStackLabel(label, 1)
startLabels := make([]uint16, len(n.Body.List))
for i := range startLabels {
startLabels[i] = c.newLabel()
}
for i := range n.Body.List {
lEnd := c.newLabel()
lStart := startLabels[i]
cc := n.Body.List[i].(*ast.CaseClause)
if l := len(cc.List); l != 0 { // if not `default`
for j := range cc.List {
emit.Opcode(c.prog.BinWriter, opcode.DUP)
ast.Walk(c, cc.List[j])
emit.Opcode(c.prog.BinWriter, eqOpcode)
if j == l-1 {
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, lEnd)
} else {
emit.Jmp(c.prog.BinWriter, opcode.JMPIFL, lStart)
}
}
}
c.setLabel(lStart)
last := len(cc.Body) - 1
for j, stmt := range cc.Body {
if j == last && isFallthroughStmt(stmt) {
emit.Jmp(c.prog.BinWriter, opcode.JMPL, startLabels[i+1])
break
}
ast.Walk(c, stmt)
}
emit.Jmp(c.prog.BinWriter, opcode.JMPL, switchEnd)
c.setLabel(lEnd)
}
c.setLabel(switchEnd)
c.dropStackLabel()
c.currentSwitch = lastSwitch
return nil
case *ast.FuncLit:
l := c.newLabel()
c.newLambda(l, n)
buf := make([]byte, 4)
binary.LittleEndian.PutUint16(buf, l)
emit.Instruction(c.prog.BinWriter, opcode.PUSHA, buf)
return nil
case *ast.BasicLit:
c.emitLoadConst(c.typeAndValueOf(n))
return nil
case *ast.Ident:
if tv := c.typeAndValueOf(n); tv.Value != nil {
c.emitLoadConst(tv)
} else {
c.emitLoadVar(n.Name)
}
return nil
case *ast.CompositeLit:
typ := c.typeOf(n.Type).Underlying()
switch n.Type.(type) {
case *ast.Ident, *ast.SelectorExpr, *ast.MapType:
switch typ.(type) {
case *types.Struct:
c.convertStruct(n)
case *types.Map:
c.convertMap(n)
}
default:
ln := len(n.Elts)
// ByteArrays needs a different approach than normal arrays.
if isByteSlice(typ) {
c.convertByteArray(n)
return nil
}
for i := ln - 1; i >= 0; i-- {
ast.Walk(c, n.Elts[i])
}
emit.Int(c.prog.BinWriter, int64(ln))
emit.Opcode(c.prog.BinWriter, opcode.PACK)
}
return nil
case *ast.BinaryExpr:
switch n.Op {
case token.LAND:
next := c.newLabel()
end := c.newLabel()
ast.Walk(c, n.X)
emit.Jmp(c.prog.BinWriter, opcode.JMPIFL, next)
emit.Opcode(c.prog.BinWriter, opcode.PUSHF)
emit.Jmp(c.prog.BinWriter, opcode.JMPL, end)
c.setLabel(next)
ast.Walk(c, n.Y)
c.setLabel(end)
return nil
case token.LOR:
next := c.newLabel()
end := c.newLabel()
ast.Walk(c, n.X)
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, next)
emit.Opcode(c.prog.BinWriter, opcode.PUSHT)
emit.Jmp(c.prog.BinWriter, opcode.JMPL, end)
c.setLabel(next)
ast.Walk(c, n.Y)
c.setLabel(end)
return nil
default:
// The AST package will try to resolve all basic literals for us.
// If the typeinfo.Value is not nil we know that the expr is resolved
// and needs no further action. e.g. x := 2 + 2 + 2 will be resolved to 6.
// NOTE: Constants will also be automatically resolved be the AST parser.
// example:
// const x = 10
// x + 2 will results into 12
tinfo := c.typeAndValueOf(n)
if tinfo.Value != nil {
c.emitLoadConst(tinfo)
return nil
}
ast.Walk(c, n.X)
ast.Walk(c, n.Y)
switch {
case n.Op == token.ADD:
// VM has separate opcodes for number and string concatenation
if isString(tinfo.Type) {
emit.Opcode(c.prog.BinWriter, opcode.CAT)
} else {
emit.Opcode(c.prog.BinWriter, opcode.ADD)
}
case n.Op == token.EQL:
// VM has separate opcodes for number and string equality
op := c.getEqualityOpcode(n.X)
emit.Opcode(c.prog.BinWriter, op)
case n.Op == token.NEQ:
// VM has separate opcodes for number and string equality
if isString(c.typeOf(n.X)) {
emit.Opcode(c.prog.BinWriter, opcode.NOTEQUAL)
} else {
emit.Opcode(c.prog.BinWriter, opcode.NUMNOTEQUAL)
}
default:
c.convertToken(n.Op)
}
return nil
}
case *ast.CallExpr:
var (
f *funcScope
ok bool
name string
numArgs = len(n.Args)
isBuiltin bool
)
switch fun := n.Fun.(type) {
case *ast.Ident:
f, ok = c.funcs[fun.Name]
isBuiltin = isGoBuiltin(fun.Name)
if !ok && !isBuiltin {
name = fun.Name
}
case *ast.SelectorExpr:
// If this is a method call we need to walk the AST to load the struct locally.
// Otherwise this is a function call from a imported package and we can call it
// directly.
if c.typeInfo.Selections[fun] != nil {
ast.Walk(c, fun.X)
// Dont forget to add 1 extra argument when its a method.
numArgs++
}
f, ok = c.funcs[fun.Sel.Name]
// @FIXME this could cause runtime errors.
f.selector = fun.X.(*ast.Ident)
if !ok {
c.prog.Err = fmt.Errorf("could not resolve function %s", fun.Sel.Name)
return nil
}
isBuiltin = isCustomBuiltin(f)
case *ast.ArrayType:
// For now we will assume that there are only byte slice conversions.
// E.g. []byte("foobar") or []byte(scriptHash).
ast.Walk(c, n.Args[0])
c.emitConvert(stackitem.BufferT)
return nil
}
c.saveSequencePoint(n)
args := transformArgs(n.Fun, n.Args)
// Handle the arguments
for _, arg := range args {
ast.Walk(c, arg)
}
// Do not swap for builtin functions.
if !isBuiltin {
c.emitReverse(numArgs)
}
// Check builtin first to avoid nil pointer on funcScope!
switch {
case isBuiltin:
// Use the ident to check, builtins are not in func scopes.
// We can be sure builtins are of type *ast.Ident.
c.convertBuiltin(n)
case name != "":
// Function was not found thus is can be only an invocation of func-typed variable.
c.emitLoadVar(name)
emit.Opcode(c.prog.BinWriter, opcode.CALLA)
case isSyscall(f):
c.convertSyscall(n, f.selector.Name, f.name)
default:
emit.Call(c.prog.BinWriter, opcode.CALLL, f.label)
}
return nil
case *ast.SelectorExpr:
strct, ok := c.typeOf(n.X).Underlying().(*types.Struct)
if !ok {
c.prog.Err = fmt.Errorf("selectors are supported only on structs")
return nil
}
ast.Walk(c, n.X) // load the struct
i := indexOfStruct(strct, n.Sel.Name)
c.emitLoadField(i) // load the field
return nil
case *ast.UnaryExpr:
ast.Walk(c, n.X)
// From https://golang.org/ref/spec#Operators
// there can be only following unary operators
// "+" | "-" | "!" | "^" | "*" | "&" | "<-" .
// of which last three are not used in SC
switch n.Op {
case token.ADD:
// +10 == 10, no need to do anything in this case
case token.SUB:
emit.Opcode(c.prog.BinWriter, opcode.NEGATE)
case token.NOT:
emit.Opcode(c.prog.BinWriter, opcode.NOT)
case token.XOR:
emit.Opcode(c.prog.BinWriter, opcode.INVERT)
default:
c.prog.Err = fmt.Errorf("invalid unary operator: %s", n.Op)
return nil
}
return nil
case *ast.IncDecStmt:
ast.Walk(c, n.X)
c.convertToken(n.Tok)
// For now only identifiers are supported for (post) for stmts.
// for i := 0; i < 10; i++ {}
// Where the post stmt is ( i++ )
if ident, ok := n.X.(*ast.Ident); ok {
c.emitStoreVar(ident.Name)
}
return nil
case *ast.IndexExpr:
// Walk the expression, this could be either an Ident or SelectorExpr.
// This will load local whatever X is.
ast.Walk(c, n.X)
ast.Walk(c, n.Index)
emit.Opcode(c.prog.BinWriter, opcode.PICKITEM) // just pickitem here
return nil
case *ast.BranchStmt:
var label string
if n.Label != nil {
label = n.Label.Name
} else if n.Tok == token.BREAK {
label = c.currentSwitch
} else if n.Tok == token.CONTINUE {
label = c.currentFor
}
cnt := 0
for i := len(c.labelList) - 1; i >= 0 && c.labelList[i].name != label; i-- {
cnt += c.labelList[i].sz
}
c.dropItems(cnt)
switch n.Tok {
case token.BREAK:
end := c.getLabelOffset(labelEnd, label)
emit.Jmp(c.prog.BinWriter, opcode.JMPL, end)
case token.CONTINUE:
post := c.getLabelOffset(labelPost, label)
emit.Jmp(c.prog.BinWriter, opcode.JMPL, post)
}
return nil
case *ast.LabeledStmt:
c.nextLabel = n.Label.Name
ast.Walk(c, n.Stmt)
return nil
case *ast.ForStmt:
fstart, label := c.generateLabel(labelStart)
fend := c.newNamedLabel(labelEnd, label)
fpost := c.newNamedLabel(labelPost, label)
lastLabel := c.currentFor
lastSwitch := c.currentSwitch
c.currentFor = label
c.currentSwitch = label
// Walk the initializer and condition.
if n.Init != nil {
ast.Walk(c, n.Init)
}
// Set label and walk the condition.
c.pushStackLabel(label, 0)
c.setLabel(fstart)
if n.Cond != nil {
ast.Walk(c, n.Cond)
// Jump if the condition is false
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, fend)
}
// Walk body followed by the iterator (post stmt).
ast.Walk(c, n.Body)
c.setLabel(fpost)
if n.Post != nil {
ast.Walk(c, n.Post)
}
// Jump back to condition.
emit.Jmp(c.prog.BinWriter, opcode.JMPL, fstart)
c.setLabel(fend)
c.dropStackLabel()
c.currentFor = lastLabel
c.currentSwitch = lastSwitch
return nil
case *ast.RangeStmt:
start, label := c.generateLabel(labelStart)
end := c.newNamedLabel(labelEnd, label)
post := c.newNamedLabel(labelPost, label)
lastFor := c.currentFor
lastSwitch := c.currentSwitch
c.currentFor = label
c.currentSwitch = label
ast.Walk(c, n.X)
emit.Syscall(c.prog.BinWriter, "Neo.Iterator.Create")
c.pushStackLabel(label, 1)
c.setLabel(start)
emit.Opcode(c.prog.BinWriter, opcode.DUP)
emit.Syscall(c.prog.BinWriter, "Neo.Enumerator.Next")
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, end)
if n.Key != nil {
emit.Opcode(c.prog.BinWriter, opcode.DUP)
emit.Syscall(c.prog.BinWriter, "Neo.Iterator.Key")
c.emitStoreVar(n.Key.(*ast.Ident).Name)
}
if n.Value != nil {
emit.Opcode(c.prog.BinWriter, opcode.DUP)
emit.Syscall(c.prog.BinWriter, "Neo.Enumerator.Value")
c.emitStoreVar(n.Value.(*ast.Ident).Name)
}
ast.Walk(c, n.Body)
c.setLabel(post)
emit.Jmp(c.prog.BinWriter, opcode.JMPL, start)
c.setLabel(end)
c.dropStackLabel()
c.currentFor = lastFor
c.currentSwitch = lastSwitch
return nil
// We dont really care about assertions for the core logic.
// The only thing we need is to please the compiler type checking.
// For this to work properly, we only need to walk the expression
// not the assertion type.
case *ast.TypeAssertExpr:
ast.Walk(c, n.X)
return nil
}
return c
}
func isFallthroughStmt(c ast.Node) bool {
s, ok := c.(*ast.BranchStmt)
return ok && s.Tok == token.FALLTHROUGH
}
func (c *codegen) pushStackLabel(name string, size int) {
c.labelList = append(c.labelList, labelWithStackSize{
name: name,
sz: size,
})
}
func (c *codegen) dropStackLabel() {
last := len(c.labelList) - 1
c.dropItems(c.labelList[last].sz)
c.labelList = c.labelList[:last]
}
func (c *codegen) dropItems(n int) {
if n < 4 {
for i := 0; i < n; i++ {
emit.Opcode(c.prog.BinWriter, opcode.DROP)
}
return
}
emit.Int(c.prog.BinWriter, int64(n))
emit.Opcode(c.prog.BinWriter, opcode.PACK)
emit.Opcode(c.prog.BinWriter, opcode.DROP)
}
// emitReverse reverses top num items of the stack.
func (c *codegen) emitReverse(num int) {
switch num {
case 2:
emit.Opcode(c.prog.BinWriter, opcode.SWAP)
case 3:
emit.Opcode(c.prog.BinWriter, opcode.REVERSE3)
case 4:
emit.Opcode(c.prog.BinWriter, opcode.REVERSE4)
default:
emit.Int(c.prog.BinWriter, int64(num))
emit.Opcode(c.prog.BinWriter, opcode.REVERSEN)
}
}
// generateLabel returns a new label.
func (c *codegen) generateLabel(typ labelOffsetType) (uint16, string) {
name := c.nextLabel
if name == "" {
name = fmt.Sprintf("@%d", len(c.l))
}
c.nextLabel = ""
return c.newNamedLabel(typ, name), name
}
func (c *codegen) getLabelOffset(typ labelOffsetType, name string) uint16 {
return c.labels[labelWithType{name: name, typ: typ}]
}
func (c *codegen) getEqualityOpcode(expr ast.Expr) opcode.Opcode {
t, ok := c.typeOf(expr).Underlying().(*types.Basic)
if ok && t.Info()&types.IsNumeric != 0 {
return opcode.NUMEQUAL
}
return opcode.EQUAL
}
// getByteArray returns byte array value from constant expr.
// Only literals are supported.
func (c *codegen) getByteArray(expr ast.Expr) []byte {
switch t := expr.(type) {
case *ast.CompositeLit:
if !isByteSlice(c.typeOf(t.Type)) {
return nil
}
buf := make([]byte, len(t.Elts))
for i := 0; i < len(t.Elts); i++ {
t := c.typeAndValueOf(t.Elts[i])
val, _ := constant.Int64Val(t.Value)
buf[i] = byte(val)
}
return buf
case *ast.CallExpr:
if tv := c.typeAndValueOf(t.Args[0]); tv.Value != nil {
val := constant.StringVal(tv.Value)
return []byte(val)
}
return nil
default:
return nil
}
}
func (c *codegen) convertSyscall(expr *ast.CallExpr, api, name string) {
api, ok := syscalls[api][name]
if !ok {
c.prog.Err = fmt.Errorf("unknown VM syscall api: %s", name)
return
}
switch name {
case "Notify":
numArgs := len(expr.Args)
emit.Int(c.prog.BinWriter, int64(numArgs))
emit.Opcode(c.prog.BinWriter, opcode.PACK)
}
emit.Syscall(c.prog.BinWriter, api)
switch name {
case "GetTransaction":
c.emitConvert(stackitem.StructT)
}
// This NOP instruction is basically not needed, but if we do, we have a
// one to one matching avm file with neo-python which is very nice for debugging.
emit.Opcode(c.prog.BinWriter, opcode.NOP)
}
func (c *codegen) convertBuiltin(expr *ast.CallExpr) {
var name string
switch t := expr.Fun.(type) {
case *ast.Ident:
name = t.Name
case *ast.SelectorExpr:
name = t.Sel.Name
}
switch name {
case "len":
emit.Opcode(c.prog.BinWriter, opcode.SIZE)
case "append":
arg := expr.Args[0]
typ := c.typeInfo.Types[arg].Type
if isByteSlice(typ) {
emit.Opcode(c.prog.BinWriter, opcode.CAT)
} else {
emit.Opcode(c.prog.BinWriter, opcode.OVER)
emit.Opcode(c.prog.BinWriter, opcode.SWAP)
emit.Opcode(c.prog.BinWriter, opcode.APPEND)
}
case "panic":
arg := expr.Args[0]
if isExprNil(arg) {
emit.Opcode(c.prog.BinWriter, opcode.DROP)
emit.Opcode(c.prog.BinWriter, opcode.THROW)
} else if isString(c.typeInfo.Types[arg].Type) {
ast.Walk(c, arg)
emit.Syscall(c.prog.BinWriter, "Neo.Runtime.Log")
emit.Opcode(c.prog.BinWriter, opcode.THROW)
} else {
c.prog.Err = errors.New("panic should have string or nil argument")
}
case "ToInteger", "ToByteArray", "ToBool":
typ := stackitem.IntegerT
switch name {
case "ToByteArray":
typ = stackitem.ByteArrayT
case "ToBool":
typ = stackitem.BooleanT
}
c.emitConvert(typ)
case "SHA256":
emit.Syscall(c.prog.BinWriter, "Neo.Crypto.SHA256")
case "AppCall":
c.emitReverse(len(expr.Args))
buf := c.getByteArray(expr.Args[0])
if len(buf) != 20 {
c.prog.Err = errors.New("invalid script hash")
}
emit.Syscall(c.prog.BinWriter, "System.Contract.Call")
case "Equals":
emit.Opcode(c.prog.BinWriter, opcode.EQUAL)
case "FromAddress":
// We can be sure that this is a ast.BasicLit just containing a simple
// address string. Note that the string returned from calling Value will
// contain double quotes that need to be stripped.
addressStr := expr.Args[0].(*ast.BasicLit).Value
addressStr = strings.Replace(addressStr, "\"", "", 2)
uint160, err := address.StringToUint160(addressStr)
if err != nil {
c.prog.Err = err
return
}
bytes := uint160.BytesBE()
emit.Bytes(c.prog.BinWriter, bytes)
c.emitConvert(stackitem.BufferT)
}
}
// transformArgs returns a list of function arguments
// which should be put on stack.
// There are special cases for builtins:
// 1. With FromAddress, parameter conversion is happening at compile-time
// so there is no need to push parameters on stack and perform an actual call
// 2. With panic, generated code depends on if argument was nil or a string so
// it should be handled accordingly.
func transformArgs(fun ast.Expr, args []ast.Expr) []ast.Expr {
switch f := fun.(type) {
case *ast.SelectorExpr:
if f.Sel.Name == "FromAddress" {
return args[1:]
}
case *ast.Ident:
if f.Name == "panic" {
return args[1:]
}
}
return args
}
// emitConvert converts top stack item to the specified type.
func (c *codegen) emitConvert(typ stackitem.Type) {
emit.Instruction(c.prog.BinWriter, opcode.CONVERT, []byte{byte(typ)})
}
func (c *codegen) convertByteArray(lit *ast.CompositeLit) {
buf := make([]byte, len(lit.Elts))
for i := 0; i < len(lit.Elts); i++ {
t := c.typeAndValueOf(lit.Elts[i])
val, _ := constant.Int64Val(t.Value)
buf[i] = byte(val)
}
emit.Bytes(c.prog.BinWriter, buf)
c.emitConvert(stackitem.BufferT)
}
func (c *codegen) convertMap(lit *ast.CompositeLit) {
emit.Opcode(c.prog.BinWriter, opcode.NEWMAP)
for i := range lit.Elts {
elem := lit.Elts[i].(*ast.KeyValueExpr)
emit.Opcode(c.prog.BinWriter, opcode.DUP)
ast.Walk(c, elem.Key)
ast.Walk(c, elem.Value)
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
}
}
func (c *codegen) convertStruct(lit *ast.CompositeLit) {
// Create a new structScope to initialize and store
// the positions of its variables.
strct, ok := c.typeOf(lit).Underlying().(*types.Struct)
if !ok {
c.prog.Err = fmt.Errorf("the given literal is not of type struct: %v", lit)
return
}
emit.Opcode(c.prog.BinWriter, opcode.NOP)
emit.Int(c.prog.BinWriter, int64(strct.NumFields()))
emit.Opcode(c.prog.BinWriter, opcode.NEWSTRUCT)
// We need to locally store all the fields, even if they are not initialized.
// We will initialize all fields to their "zero" value.
for i := 0; i < strct.NumFields(); i++ {
sField := strct.Field(i)
fieldAdded := false
// Fields initialized by the program.
for _, field := range lit.Elts {
f := field.(*ast.KeyValueExpr)
fieldName := f.Key.(*ast.Ident).Name
if sField.Name() == fieldName {
emit.Opcode(c.prog.BinWriter, opcode.DUP)
pos := indexOfStruct(strct, fieldName)
emit.Int(c.prog.BinWriter, int64(pos))
ast.Walk(c, f.Value)
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
fieldAdded = true
break
}
}
if fieldAdded {
continue
}
emit.Opcode(c.prog.BinWriter, opcode.DUP)
emit.Int(c.prog.BinWriter, int64(i))
c.emitDefault(sField.Type())
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
}
}
func (c *codegen) convertToken(tok token.Token) {
switch tok {
case token.ADD_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.ADD)
case token.SUB_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.SUB)
case token.MUL_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.MUL)
case token.QUO_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.DIV)
case token.REM_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.MOD)
case token.ADD:
emit.Opcode(c.prog.BinWriter, opcode.ADD)
case token.SUB:
emit.Opcode(c.prog.BinWriter, opcode.SUB)
case token.MUL:
emit.Opcode(c.prog.BinWriter, opcode.MUL)
case token.QUO:
emit.Opcode(c.prog.BinWriter, opcode.DIV)
case token.REM:
emit.Opcode(c.prog.BinWriter, opcode.MOD)
case token.LSS:
emit.Opcode(c.prog.BinWriter, opcode.LT)
case token.LEQ:
emit.Opcode(c.prog.BinWriter, opcode.LTE)
case token.GTR:
emit.Opcode(c.prog.BinWriter, opcode.GT)
case token.GEQ:
emit.Opcode(c.prog.BinWriter, opcode.GTE)
case token.EQL:
emit.Opcode(c.prog.BinWriter, opcode.NUMEQUAL)
case token.NEQ:
emit.Opcode(c.prog.BinWriter, opcode.NUMNOTEQUAL)
case token.DEC:
emit.Opcode(c.prog.BinWriter, opcode.DEC)
case token.INC:
emit.Opcode(c.prog.BinWriter, opcode.INC)
case token.NOT:
emit.Opcode(c.prog.BinWriter, opcode.NOT)
case token.AND:
emit.Opcode(c.prog.BinWriter, opcode.AND)
case token.OR:
emit.Opcode(c.prog.BinWriter, opcode.OR)
case token.SHL:
emit.Opcode(c.prog.BinWriter, opcode.SHL)
case token.SHR:
emit.Opcode(c.prog.BinWriter, opcode.SHR)
case token.XOR:
emit.Opcode(c.prog.BinWriter, opcode.XOR)
default:
c.prog.Err = fmt.Errorf("compiler could not convert token: %s", tok)
return
}
}
func (c *codegen) newFunc(decl *ast.FuncDecl) *funcScope {
f := newFuncScope(decl, c.newLabel())
c.funcs[f.name] = f
return f
}
func (c *codegen) newLambda(u uint16, lit *ast.FuncLit) {
name := fmt.Sprintf("lambda@%d", u)
c.lambda[name] = newFuncScope(&ast.FuncDecl{
Name: ast.NewIdent(name),
Type: lit.Type,
Body: lit.Body,
}, u)
}
func (c *codegen) compile(info *buildInfo, pkg *loader.PackageInfo) error {
// Resolve the entrypoint of the program.
main, mainFile := resolveEntryPoint(mainIdent, pkg)
if main == nil {
c.prog.Err = fmt.Errorf("could not find func main. Did you forget to declare it? ")
return c.prog.Err
}
funUsage := analyzeFuncUsage(info.program.AllPackages)
// Bring all imported functions into scope.
for _, pkg := range info.program.AllPackages {
for _, f := range pkg.Files {
c.resolveFuncDecls(f, pkg.Pkg)
}
}
c.traverseGlobals(mainFile)
// convert the entry point first.
c.convertFuncDecl(mainFile, main)
// sort map keys to generate code deterministically.
keys := make([]*types.Package, 0, len(info.program.AllPackages))
for p := range info.program.AllPackages {
keys = append(keys, p)
}
sort.Slice(keys, func(i, j int) bool { return keys[i].Path() < keys[j].Path() })
// Generate the code for the program.
for _, k := range keys {
pkg := info.program.AllPackages[k]
c.typeInfo = &pkg.Info
for _, f := range pkg.Files {
for _, decl := range f.Decls {
switch n := decl.(type) {
case *ast.FuncDecl:
// Don't convert the function if it's not used. This will save a lot
// of bytecode space.
if n.Name.Name != mainIdent && funUsage.funcUsed(n.Name.Name) {
c.convertFuncDecl(f, n)
}
}
}
}
}
return c.prog.Err
}
func newCodegen(info *buildInfo, pkg *loader.PackageInfo) *codegen {
return &codegen{
buildInfo: info,
prog: io.NewBufBinWriter(),
l: []int{},
funcs: map[string]*funcScope{},
lambda: map[string]*funcScope{},
globals: map[string]int{},
labels: map[labelWithType]uint16{},
typeInfo: &pkg.Info,
sequencePoints: make(map[string][]DebugSeqPoint),
}
}
// CodeGen compiles the program to bytecode.
func CodeGen(info *buildInfo) ([]byte, *DebugInfo, error) {
pkg := info.program.Package(info.initialPackage)
c := newCodegen(info, pkg)
if err := c.compile(info, pkg); err != nil {
return nil, nil, err
}
buf := c.prog.Bytes()
if err := c.writeJumps(buf); err != nil {
return nil, nil, err
}
return buf, c.emitDebugInfo(), nil
}
func (c *codegen) resolveFuncDecls(f *ast.File, pkg *types.Package) {
for _, decl := range f.Decls {
switch n := decl.(type) {
case *ast.FuncDecl:
if n.Name.Name != mainIdent {
c.newFunc(n)
c.funcs[n.Name.Name].pkg = pkg
}
}
}
}
func (c *codegen) writeJumps(b []byte) error {
ctx := vm.NewContext(b)
for op, _, err := ctx.Next(); err == nil && ctx.NextIP() < len(b); op, _, err = ctx.Next() {
switch op {
case opcode.JMP, opcode.JMPIFNOT, opcode.JMPIF, opcode.CALL,
opcode.JMPEQ, opcode.JMPNE,
opcode.JMPGT, opcode.JMPGE, opcode.JMPLE, opcode.JMPLT:
panic("short jumps are not yet supported")
case opcode.JMPL, opcode.JMPIFL, opcode.JMPIFNOTL,
opcode.JMPEQL, opcode.JMPNEL,
opcode.JMPGTL, opcode.JMPGEL, opcode.JMPLEL, opcode.JMPLTL,
opcode.CALLL, opcode.PUSHA:
// we can't use arg returned by ctx.Next() because it is copied
nextIP := ctx.NextIP()
arg := b[nextIP-4:]
index := binary.LittleEndian.Uint16(arg)
if int(index) > len(c.l) {
return fmt.Errorf("unexpected label number: %d (max %d)", index, len(c.l))
}
var offset int
if op == opcode.PUSHA {
offset = c.l[index]
} else {
offset = c.l[index] - nextIP + 5
}
if offset > math.MaxInt32 || offset < math.MinInt32 {
return fmt.Errorf("label offset is too big at the instruction %d: %d (max %d, min %d)",
nextIP-5, offset, math.MaxInt32, math.MinInt32)
}
binary.LittleEndian.PutUint32(arg, uint32(offset))
}
}
return nil
}