53655c5ac2
closes #1023 Now we put on stack stackitem.Array instead of Interop, so we don't need old transaction-related interops anymore. Removed the following interops: System.Transaction.GetHash Neo.Transaction.GetAttributes Neo.Transaction.GetHash Neo.Transaction.GetWitnesses Neo.Attribute.GetData Neo.Attribute.GetUsage Also removed the following duplicated NEO interop: Neo.Blockchain.GetTransaction
1433 lines
36 KiB
Go
1433 lines
36 KiB
Go
package compiler
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"go/ast"
|
|
"go/constant"
|
|
"go/token"
|
|
"go/types"
|
|
"math"
|
|
"sort"
|
|
"strings"
|
|
|
|
"github.com/nspcc-dev/neo-go/pkg/encoding/address"
|
|
"github.com/nspcc-dev/neo-go/pkg/io"
|
|
"github.com/nspcc-dev/neo-go/pkg/vm"
|
|
"github.com/nspcc-dev/neo-go/pkg/vm/emit"
|
|
"github.com/nspcc-dev/neo-go/pkg/vm/opcode"
|
|
"github.com/nspcc-dev/neo-go/pkg/vm/stackitem"
|
|
"golang.org/x/tools/go/loader"
|
|
)
|
|
|
|
// The identifier of the entry function. Default set to Main.
|
|
const mainIdent = "Main"
|
|
|
|
type codegen struct {
|
|
// Information about the program with all its dependencies.
|
|
buildInfo *buildInfo
|
|
|
|
// prog holds the output buffer.
|
|
prog *io.BufBinWriter
|
|
|
|
// Type information.
|
|
typeInfo *types.Info
|
|
|
|
// A mapping of func identifiers with their scope.
|
|
funcs map[string]*funcScope
|
|
|
|
// A mapping of lambda functions into their scope.
|
|
lambda map[string]*funcScope
|
|
|
|
// Current funcScope being converted.
|
|
scope *funcScope
|
|
|
|
globals map[string]int
|
|
|
|
// A mapping from label's names to their ids.
|
|
labels map[labelWithType]uint16
|
|
// A list of nested label names together with evaluation stack depth.
|
|
labelList []labelWithStackSize
|
|
|
|
// A label for the for-loop being currently visited.
|
|
currentFor string
|
|
// A label for the switch statement being visited.
|
|
currentSwitch string
|
|
// A label to be used in the next statement.
|
|
nextLabel string
|
|
|
|
// sequencePoints is mapping from method name to a slice
|
|
// containing info about mapping from opcode's offset
|
|
// to a text span in the source file.
|
|
sequencePoints map[string][]DebugSeqPoint
|
|
|
|
// Label table for recording jump destinations.
|
|
l []int
|
|
}
|
|
|
|
type labelOffsetType byte
|
|
|
|
const (
|
|
labelStart labelOffsetType = iota // labelStart is a default label type
|
|
labelEnd // labelEnd is a type for labels that are targets for break
|
|
labelPost // labelPost is a type for labels that are targets for continue
|
|
)
|
|
|
|
type labelWithType struct {
|
|
name string
|
|
typ labelOffsetType
|
|
}
|
|
|
|
type labelWithStackSize struct {
|
|
name string
|
|
sz int
|
|
}
|
|
|
|
type varType int
|
|
|
|
const (
|
|
varGlobal varType = iota
|
|
varLocal
|
|
varArgument
|
|
)
|
|
|
|
// newLabel creates a new label to jump to
|
|
func (c *codegen) newLabel() (l uint16) {
|
|
li := len(c.l)
|
|
if li > math.MaxUint16 {
|
|
c.prog.Err = errors.New("label number is too big")
|
|
return
|
|
}
|
|
l = uint16(li)
|
|
c.l = append(c.l, -1)
|
|
return
|
|
}
|
|
|
|
// newNamedLabel creates a new label with a specified name.
|
|
func (c *codegen) newNamedLabel(typ labelOffsetType, name string) (l uint16) {
|
|
l = c.newLabel()
|
|
lt := labelWithType{name: name, typ: typ}
|
|
c.labels[lt] = l
|
|
return
|
|
}
|
|
|
|
func (c *codegen) setLabel(l uint16) {
|
|
c.l[l] = c.pc() + 1
|
|
}
|
|
|
|
// pc returns the program offset off the last instruction.
|
|
func (c *codegen) pc() int {
|
|
return c.prog.Len() - 1
|
|
}
|
|
|
|
func (c *codegen) emitLoadConst(t types.TypeAndValue) {
|
|
if c.prog.Err != nil {
|
|
return
|
|
}
|
|
|
|
typ, ok := t.Type.Underlying().(*types.Basic)
|
|
if !ok {
|
|
c.prog.Err = fmt.Errorf("compiler doesn't know how to convert this constant: %v", t)
|
|
return
|
|
}
|
|
|
|
switch typ.Kind() {
|
|
case types.Int, types.UntypedInt, types.Uint,
|
|
types.Int8, types.Uint8,
|
|
types.Int16, types.Uint16,
|
|
types.Int32, types.Uint32, types.Int64, types.Uint64:
|
|
val, _ := constant.Int64Val(t.Value)
|
|
emit.Int(c.prog.BinWriter, val)
|
|
case types.String, types.UntypedString:
|
|
val := constant.StringVal(t.Value)
|
|
emit.String(c.prog.BinWriter, val)
|
|
case types.Bool, types.UntypedBool:
|
|
val := constant.BoolVal(t.Value)
|
|
emit.Bool(c.prog.BinWriter, val)
|
|
default:
|
|
c.prog.Err = fmt.Errorf("compiler doesn't know how to convert this basic type: %v", t)
|
|
return
|
|
}
|
|
}
|
|
|
|
func (c *codegen) emitLoadField(i int) {
|
|
emit.Int(c.prog.BinWriter, int64(i))
|
|
emit.Opcode(c.prog.BinWriter, opcode.PICKITEM)
|
|
}
|
|
|
|
func (c *codegen) emitStoreStructField(i int) {
|
|
emit.Int(c.prog.BinWriter, int64(i))
|
|
emit.Opcode(c.prog.BinWriter, opcode.ROT)
|
|
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
|
|
}
|
|
|
|
// getVarIndex returns variable type and position in corresponding slot,
|
|
// according to current scope.
|
|
func (c *codegen) getVarIndex(name string) (varType, int) {
|
|
if c.scope != nil {
|
|
if i, ok := c.scope.arguments[name]; ok {
|
|
return varArgument, i
|
|
} else if i, ok := c.scope.locals[name]; ok {
|
|
return varLocal, i
|
|
}
|
|
}
|
|
if i, ok := c.globals[name]; ok {
|
|
return varGlobal, i
|
|
}
|
|
|
|
return varLocal, c.scope.newVariable(varLocal, name)
|
|
}
|
|
|
|
func getBaseOpcode(t varType) (opcode.Opcode, opcode.Opcode) {
|
|
switch t {
|
|
case varGlobal:
|
|
return opcode.LDSFLD0, opcode.STSFLD0
|
|
case varLocal:
|
|
return opcode.LDLOC0, opcode.STLOC0
|
|
case varArgument:
|
|
return opcode.LDARG0, opcode.STARG0
|
|
default:
|
|
panic("invalid type")
|
|
}
|
|
}
|
|
|
|
// emitLoadVar loads specified variable to the evaluation stack.
|
|
func (c *codegen) emitLoadVar(name string) {
|
|
t, i := c.getVarIndex(name)
|
|
base, _ := getBaseOpcode(t)
|
|
if i < 7 {
|
|
emit.Opcode(c.prog.BinWriter, base+opcode.Opcode(i))
|
|
} else {
|
|
emit.Instruction(c.prog.BinWriter, base+7, []byte{byte(i)})
|
|
}
|
|
}
|
|
|
|
// emitStoreVar stores top value from the evaluation stack in the specified variable.
|
|
func (c *codegen) emitStoreVar(name string) {
|
|
if name == "_" {
|
|
emit.Opcode(c.prog.BinWriter, opcode.DROP)
|
|
return
|
|
}
|
|
t, i := c.getVarIndex(name)
|
|
_, base := getBaseOpcode(t)
|
|
if i < 7 {
|
|
emit.Opcode(c.prog.BinWriter, base+opcode.Opcode(i))
|
|
} else {
|
|
emit.Instruction(c.prog.BinWriter, base+7, []byte{byte(i)})
|
|
}
|
|
}
|
|
|
|
func (c *codegen) emitDefault(t types.Type) {
|
|
switch t := t.Underlying().(type) {
|
|
case *types.Basic:
|
|
info := t.Info()
|
|
switch {
|
|
case info&types.IsInteger != 0:
|
|
emit.Int(c.prog.BinWriter, 0)
|
|
case info&types.IsString != 0:
|
|
emit.Bytes(c.prog.BinWriter, []byte{})
|
|
case info&types.IsBoolean != 0:
|
|
emit.Bool(c.prog.BinWriter, false)
|
|
default:
|
|
emit.Opcode(c.prog.BinWriter, opcode.PUSHNULL)
|
|
}
|
|
case *types.Slice:
|
|
if isCompoundSlice(t) {
|
|
emit.Opcode(c.prog.BinWriter, opcode.NEWARRAY0)
|
|
} else {
|
|
emit.Int(c.prog.BinWriter, 0)
|
|
emit.Opcode(c.prog.BinWriter, opcode.NEWBUFFER)
|
|
}
|
|
case *types.Struct:
|
|
num := t.NumFields()
|
|
emit.Int(c.prog.BinWriter, int64(num))
|
|
emit.Opcode(c.prog.BinWriter, opcode.NEWSTRUCT)
|
|
for i := 0; i < num; i++ {
|
|
emit.Opcode(c.prog.BinWriter, opcode.DUP)
|
|
emit.Int(c.prog.BinWriter, int64(i))
|
|
c.emitDefault(t.Field(i).Type())
|
|
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
|
|
}
|
|
default:
|
|
emit.Opcode(c.prog.BinWriter, opcode.PUSHNULL)
|
|
}
|
|
}
|
|
|
|
// convertGlobals traverses the AST and only converts global declarations.
|
|
// If we call this in convertFuncDecl then it will load all global variables
|
|
// into the scope of the function.
|
|
func (c *codegen) convertGlobals(f ast.Node) {
|
|
ast.Inspect(f, func(node ast.Node) bool {
|
|
switch n := node.(type) {
|
|
case *ast.FuncDecl:
|
|
return false
|
|
case *ast.GenDecl:
|
|
// constants are loaded directly so there is no need
|
|
// to store them as a local variables
|
|
if n.Tok != token.CONST {
|
|
ast.Walk(c, n)
|
|
}
|
|
}
|
|
return true
|
|
})
|
|
}
|
|
|
|
func (c *codegen) convertFuncDecl(file ast.Node, decl *ast.FuncDecl) {
|
|
var (
|
|
f *funcScope
|
|
ok, isLambda bool
|
|
)
|
|
|
|
f, ok = c.funcs[decl.Name.Name]
|
|
if ok {
|
|
// If this function is a syscall or builtin we will not convert it to bytecode.
|
|
if isSyscall(f) || isCustomBuiltin(f) {
|
|
return
|
|
}
|
|
c.setLabel(f.label)
|
|
} else if f, ok = c.lambda[decl.Name.Name]; ok {
|
|
isLambda = ok
|
|
c.setLabel(f.label)
|
|
} else {
|
|
f = c.newFunc(decl)
|
|
}
|
|
|
|
f.rng.Start = uint16(c.prog.Len())
|
|
c.scope = f
|
|
ast.Inspect(decl, c.scope.analyzeVoidCalls) // @OPTIMIZE
|
|
|
|
// All globals copied into the scope of the function need to be added
|
|
// to the stack size of the function.
|
|
sizeLoc := f.countLocals()
|
|
if sizeLoc > 255 {
|
|
c.prog.Err = errors.New("maximum of 255 local variables is allowed")
|
|
}
|
|
sizeArg := f.countArgs()
|
|
if sizeArg > 255 {
|
|
c.prog.Err = errors.New("maximum of 255 local variables is allowed")
|
|
}
|
|
if sizeLoc != 0 || sizeArg != 0 {
|
|
emit.Instruction(c.prog.BinWriter, opcode.INITSLOT, []byte{byte(sizeLoc), byte(sizeArg)})
|
|
}
|
|
|
|
// We need to handle methods, which in Go, is just syntactic sugar.
|
|
// The method receiver will be passed in as first argument.
|
|
// We check if this declaration has a receiver and load it into scope.
|
|
//
|
|
// FIXME: For now we will hard cast this to a struct. We can later fine tune this
|
|
// to support other types.
|
|
if decl.Recv != nil {
|
|
for _, arg := range decl.Recv.List {
|
|
// only create an argument here, it will be stored via INITSLOT
|
|
c.scope.newVariable(varArgument, arg.Names[0].Name)
|
|
}
|
|
}
|
|
|
|
// Load the arguments in scope.
|
|
for _, arg := range decl.Type.Params.List {
|
|
for _, id := range arg.Names {
|
|
// only create an argument here, it will be stored via INITSLOT
|
|
c.scope.newVariable(varArgument, id.Name)
|
|
}
|
|
}
|
|
|
|
ast.Walk(c, decl.Body)
|
|
|
|
// If we have reached the end of the function without encountering `return` statement,
|
|
// we should clean alt.stack manually.
|
|
// This can be the case with void and named-return functions.
|
|
if !lastStmtIsReturn(decl) {
|
|
c.saveSequencePoint(decl.Body)
|
|
emit.Opcode(c.prog.BinWriter, opcode.RET)
|
|
}
|
|
|
|
f.rng.End = uint16(c.prog.Len() - 1)
|
|
|
|
if !isLambda {
|
|
for _, f := range c.lambda {
|
|
c.convertFuncDecl(file, f.decl)
|
|
}
|
|
c.lambda = make(map[string]*funcScope)
|
|
}
|
|
}
|
|
|
|
func (c *codegen) Visit(node ast.Node) ast.Visitor {
|
|
if c.prog.Err != nil {
|
|
return nil
|
|
}
|
|
switch n := node.(type) {
|
|
|
|
// General declarations.
|
|
// var (
|
|
// x = 2
|
|
// )
|
|
case *ast.GenDecl:
|
|
for _, spec := range n.Specs {
|
|
switch t := spec.(type) {
|
|
case *ast.ValueSpec:
|
|
for _, id := range t.Names {
|
|
if c.scope == nil {
|
|
// it is a global declaration
|
|
c.newGlobal(id.Name)
|
|
} else {
|
|
c.scope.newLocal(id.Name)
|
|
}
|
|
c.registerDebugVariable(id.Name, t.Type)
|
|
}
|
|
for i := range t.Names {
|
|
if len(t.Values) != 0 {
|
|
ast.Walk(c, t.Values[i])
|
|
} else {
|
|
c.emitDefault(c.typeOf(t.Type))
|
|
}
|
|
c.emitStoreVar(t.Names[i].Name)
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
|
|
case *ast.AssignStmt:
|
|
multiRet := len(n.Rhs) != len(n.Lhs)
|
|
c.saveSequencePoint(n)
|
|
// Assign operations are grouped https://github.com/golang/go/blob/master/src/go/types/stmt.go#L160
|
|
isAssignOp := token.ADD_ASSIGN <= n.Tok && n.Tok <= token.AND_NOT_ASSIGN
|
|
if isAssignOp {
|
|
// RHS can contain exactly one expression, thus there is no need to iterate.
|
|
ast.Walk(c, n.Lhs[0])
|
|
ast.Walk(c, n.Rhs[0])
|
|
c.convertToken(n.Tok)
|
|
}
|
|
for i := 0; i < len(n.Lhs); i++ {
|
|
switch t := n.Lhs[i].(type) {
|
|
case *ast.Ident:
|
|
if n.Tok == token.DEFINE {
|
|
if !multiRet {
|
|
c.registerDebugVariable(t.Name, n.Rhs[i])
|
|
}
|
|
if t.Name != "_" {
|
|
c.scope.newLocal(t.Name)
|
|
}
|
|
}
|
|
if !isAssignOp && (i == 0 || !multiRet) {
|
|
ast.Walk(c, n.Rhs[i])
|
|
}
|
|
c.emitStoreVar(t.Name)
|
|
|
|
case *ast.SelectorExpr:
|
|
if !isAssignOp {
|
|
ast.Walk(c, n.Rhs[i])
|
|
}
|
|
strct, ok := c.typeOf(t.X).Underlying().(*types.Struct)
|
|
if !ok {
|
|
c.prog.Err = fmt.Errorf("nested selector assigns not supported yet")
|
|
return nil
|
|
}
|
|
ast.Walk(c, t.X) // load the struct
|
|
i := indexOfStruct(strct, t.Sel.Name) // get the index of the field
|
|
c.emitStoreStructField(i) // store the field
|
|
|
|
// Assignments to index expressions.
|
|
// slice[0] = 10
|
|
case *ast.IndexExpr:
|
|
if !isAssignOp {
|
|
ast.Walk(c, n.Rhs[i])
|
|
}
|
|
ast.Walk(c, t.X)
|
|
ast.Walk(c, t.Index)
|
|
emit.Opcode(c.prog.BinWriter, opcode.ROT)
|
|
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
|
|
}
|
|
}
|
|
return nil
|
|
|
|
case *ast.SliceExpr:
|
|
name := n.X.(*ast.Ident).Name
|
|
c.emitLoadVar(name)
|
|
|
|
if n.Low != nil {
|
|
ast.Walk(c, n.Low)
|
|
} else {
|
|
emit.Opcode(c.prog.BinWriter, opcode.PUSH0)
|
|
}
|
|
|
|
if n.High != nil {
|
|
ast.Walk(c, n.High)
|
|
} else {
|
|
emit.Opcode(c.prog.BinWriter, opcode.OVER)
|
|
emit.Opcode(c.prog.BinWriter, opcode.SIZE)
|
|
}
|
|
|
|
emit.Opcode(c.prog.BinWriter, opcode.OVER)
|
|
emit.Opcode(c.prog.BinWriter, opcode.SUB)
|
|
emit.Opcode(c.prog.BinWriter, opcode.SUBSTR)
|
|
|
|
return nil
|
|
|
|
case *ast.ReturnStmt:
|
|
l := c.newLabel()
|
|
c.setLabel(l)
|
|
|
|
cnt := 0
|
|
for i := range c.labelList {
|
|
cnt += c.labelList[i].sz
|
|
}
|
|
c.dropItems(cnt)
|
|
|
|
if len(n.Results) == 0 {
|
|
results := c.scope.decl.Type.Results
|
|
if results.NumFields() != 0 {
|
|
// function with named returns
|
|
for i := len(results.List) - 1; i >= 0; i-- {
|
|
names := results.List[i].Names
|
|
for j := len(names) - 1; j >= 0; j-- {
|
|
c.emitLoadVar(names[j].Name)
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// first result should be on top of the stack
|
|
for i := len(n.Results) - 1; i >= 0; i-- {
|
|
ast.Walk(c, n.Results[i])
|
|
}
|
|
}
|
|
|
|
c.saveSequencePoint(n)
|
|
emit.Opcode(c.prog.BinWriter, opcode.RET)
|
|
return nil
|
|
|
|
case *ast.IfStmt:
|
|
lIf := c.newLabel()
|
|
lElse := c.newLabel()
|
|
lElseEnd := c.newLabel()
|
|
|
|
if n.Cond != nil {
|
|
ast.Walk(c, n.Cond)
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, lElse)
|
|
}
|
|
|
|
c.setLabel(lIf)
|
|
ast.Walk(c, n.Body)
|
|
if n.Else != nil {
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPL, lElseEnd)
|
|
}
|
|
|
|
c.setLabel(lElse)
|
|
if n.Else != nil {
|
|
ast.Walk(c, n.Else)
|
|
}
|
|
c.setLabel(lElseEnd)
|
|
return nil
|
|
|
|
case *ast.SwitchStmt:
|
|
ast.Walk(c, n.Tag)
|
|
|
|
eqOpcode := c.getEqualityOpcode(n.Tag)
|
|
switchEnd, label := c.generateLabel(labelEnd)
|
|
|
|
lastSwitch := c.currentSwitch
|
|
c.currentSwitch = label
|
|
c.pushStackLabel(label, 1)
|
|
|
|
startLabels := make([]uint16, len(n.Body.List))
|
|
for i := range startLabels {
|
|
startLabels[i] = c.newLabel()
|
|
}
|
|
for i := range n.Body.List {
|
|
lEnd := c.newLabel()
|
|
lStart := startLabels[i]
|
|
cc := n.Body.List[i].(*ast.CaseClause)
|
|
|
|
if l := len(cc.List); l != 0 { // if not `default`
|
|
for j := range cc.List {
|
|
emit.Opcode(c.prog.BinWriter, opcode.DUP)
|
|
ast.Walk(c, cc.List[j])
|
|
emit.Opcode(c.prog.BinWriter, eqOpcode)
|
|
if j == l-1 {
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, lEnd)
|
|
} else {
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPIFL, lStart)
|
|
}
|
|
}
|
|
}
|
|
|
|
c.setLabel(lStart)
|
|
last := len(cc.Body) - 1
|
|
for j, stmt := range cc.Body {
|
|
if j == last && isFallthroughStmt(stmt) {
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPL, startLabels[i+1])
|
|
break
|
|
}
|
|
ast.Walk(c, stmt)
|
|
}
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPL, switchEnd)
|
|
c.setLabel(lEnd)
|
|
}
|
|
|
|
c.setLabel(switchEnd)
|
|
c.dropStackLabel()
|
|
|
|
c.currentSwitch = lastSwitch
|
|
|
|
return nil
|
|
|
|
case *ast.FuncLit:
|
|
l := c.newLabel()
|
|
c.newLambda(l, n)
|
|
buf := make([]byte, 4)
|
|
binary.LittleEndian.PutUint16(buf, l)
|
|
emit.Instruction(c.prog.BinWriter, opcode.PUSHA, buf)
|
|
return nil
|
|
|
|
case *ast.BasicLit:
|
|
c.emitLoadConst(c.typeAndValueOf(n))
|
|
return nil
|
|
|
|
case *ast.Ident:
|
|
if tv := c.typeAndValueOf(n); tv.Value != nil {
|
|
c.emitLoadConst(tv)
|
|
} else {
|
|
c.emitLoadVar(n.Name)
|
|
}
|
|
return nil
|
|
|
|
case *ast.CompositeLit:
|
|
typ := c.typeOf(n.Type).Underlying()
|
|
switch n.Type.(type) {
|
|
case *ast.Ident, *ast.SelectorExpr, *ast.MapType:
|
|
switch typ.(type) {
|
|
case *types.Struct:
|
|
c.convertStruct(n)
|
|
case *types.Map:
|
|
c.convertMap(n)
|
|
}
|
|
default:
|
|
ln := len(n.Elts)
|
|
// ByteArrays needs a different approach than normal arrays.
|
|
if isByteSlice(typ) {
|
|
c.convertByteArray(n)
|
|
return nil
|
|
}
|
|
for i := ln - 1; i >= 0; i-- {
|
|
ast.Walk(c, n.Elts[i])
|
|
}
|
|
emit.Int(c.prog.BinWriter, int64(ln))
|
|
emit.Opcode(c.prog.BinWriter, opcode.PACK)
|
|
}
|
|
|
|
return nil
|
|
|
|
case *ast.BinaryExpr:
|
|
switch n.Op {
|
|
case token.LAND:
|
|
next := c.newLabel()
|
|
end := c.newLabel()
|
|
ast.Walk(c, n.X)
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPIFL, next)
|
|
emit.Opcode(c.prog.BinWriter, opcode.PUSHF)
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPL, end)
|
|
c.setLabel(next)
|
|
ast.Walk(c, n.Y)
|
|
c.setLabel(end)
|
|
return nil
|
|
|
|
case token.LOR:
|
|
next := c.newLabel()
|
|
end := c.newLabel()
|
|
ast.Walk(c, n.X)
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, next)
|
|
emit.Opcode(c.prog.BinWriter, opcode.PUSHT)
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPL, end)
|
|
c.setLabel(next)
|
|
ast.Walk(c, n.Y)
|
|
c.setLabel(end)
|
|
return nil
|
|
|
|
default:
|
|
// The AST package will try to resolve all basic literals for us.
|
|
// If the typeinfo.Value is not nil we know that the expr is resolved
|
|
// and needs no further action. e.g. x := 2 + 2 + 2 will be resolved to 6.
|
|
// NOTE: Constants will also be automatically resolved be the AST parser.
|
|
// example:
|
|
// const x = 10
|
|
// x + 2 will results into 12
|
|
tinfo := c.typeAndValueOf(n)
|
|
if tinfo.Value != nil {
|
|
c.emitLoadConst(tinfo)
|
|
return nil
|
|
}
|
|
|
|
ast.Walk(c, n.X)
|
|
ast.Walk(c, n.Y)
|
|
|
|
switch {
|
|
case n.Op == token.ADD:
|
|
// VM has separate opcodes for number and string concatenation
|
|
if isString(tinfo.Type) {
|
|
emit.Opcode(c.prog.BinWriter, opcode.CAT)
|
|
} else {
|
|
emit.Opcode(c.prog.BinWriter, opcode.ADD)
|
|
}
|
|
case n.Op == token.EQL:
|
|
// VM has separate opcodes for number and string equality
|
|
op := c.getEqualityOpcode(n.X)
|
|
emit.Opcode(c.prog.BinWriter, op)
|
|
case n.Op == token.NEQ:
|
|
// VM has separate opcodes for number and string equality
|
|
if isString(c.typeOf(n.X)) {
|
|
emit.Opcode(c.prog.BinWriter, opcode.NOTEQUAL)
|
|
} else {
|
|
emit.Opcode(c.prog.BinWriter, opcode.NUMNOTEQUAL)
|
|
}
|
|
default:
|
|
c.convertToken(n.Op)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
case *ast.CallExpr:
|
|
var (
|
|
f *funcScope
|
|
ok bool
|
|
name string
|
|
numArgs = len(n.Args)
|
|
isBuiltin bool
|
|
)
|
|
|
|
switch fun := n.Fun.(type) {
|
|
case *ast.Ident:
|
|
f, ok = c.funcs[fun.Name]
|
|
isBuiltin = isGoBuiltin(fun.Name)
|
|
if !ok && !isBuiltin {
|
|
name = fun.Name
|
|
}
|
|
case *ast.SelectorExpr:
|
|
// If this is a method call we need to walk the AST to load the struct locally.
|
|
// Otherwise this is a function call from a imported package and we can call it
|
|
// directly.
|
|
if c.typeInfo.Selections[fun] != nil {
|
|
ast.Walk(c, fun.X)
|
|
// Dont forget to add 1 extra argument when its a method.
|
|
numArgs++
|
|
}
|
|
|
|
f, ok = c.funcs[fun.Sel.Name]
|
|
// @FIXME this could cause runtime errors.
|
|
f.selector = fun.X.(*ast.Ident)
|
|
if !ok {
|
|
c.prog.Err = fmt.Errorf("could not resolve function %s", fun.Sel.Name)
|
|
return nil
|
|
}
|
|
isBuiltin = isCustomBuiltin(f)
|
|
case *ast.ArrayType:
|
|
// For now we will assume that there are only byte slice conversions.
|
|
// E.g. []byte("foobar") or []byte(scriptHash).
|
|
ast.Walk(c, n.Args[0])
|
|
c.emitConvert(stackitem.BufferT)
|
|
return nil
|
|
}
|
|
|
|
c.saveSequencePoint(n)
|
|
|
|
args := transformArgs(n.Fun, n.Args)
|
|
|
|
// Handle the arguments
|
|
for _, arg := range args {
|
|
ast.Walk(c, arg)
|
|
}
|
|
// Do not swap for builtin functions.
|
|
if !isBuiltin {
|
|
c.emitReverse(numArgs)
|
|
}
|
|
|
|
// Check builtin first to avoid nil pointer on funcScope!
|
|
switch {
|
|
case isBuiltin:
|
|
// Use the ident to check, builtins are not in func scopes.
|
|
// We can be sure builtins are of type *ast.Ident.
|
|
c.convertBuiltin(n)
|
|
case name != "":
|
|
// Function was not found thus is can be only an invocation of func-typed variable.
|
|
c.emitLoadVar(name)
|
|
emit.Opcode(c.prog.BinWriter, opcode.CALLA)
|
|
case isSyscall(f):
|
|
c.convertSyscall(n, f.selector.Name, f.name)
|
|
default:
|
|
emit.Call(c.prog.BinWriter, opcode.CALLL, f.label)
|
|
}
|
|
|
|
return nil
|
|
|
|
case *ast.SelectorExpr:
|
|
strct, ok := c.typeOf(n.X).Underlying().(*types.Struct)
|
|
if !ok {
|
|
c.prog.Err = fmt.Errorf("selectors are supported only on structs")
|
|
return nil
|
|
}
|
|
ast.Walk(c, n.X) // load the struct
|
|
i := indexOfStruct(strct, n.Sel.Name)
|
|
c.emitLoadField(i) // load the field
|
|
return nil
|
|
|
|
case *ast.UnaryExpr:
|
|
ast.Walk(c, n.X)
|
|
// From https://golang.org/ref/spec#Operators
|
|
// there can be only following unary operators
|
|
// "+" | "-" | "!" | "^" | "*" | "&" | "<-" .
|
|
// of which last three are not used in SC
|
|
switch n.Op {
|
|
case token.ADD:
|
|
// +10 == 10, no need to do anything in this case
|
|
case token.SUB:
|
|
emit.Opcode(c.prog.BinWriter, opcode.NEGATE)
|
|
case token.NOT:
|
|
emit.Opcode(c.prog.BinWriter, opcode.NOT)
|
|
case token.XOR:
|
|
emit.Opcode(c.prog.BinWriter, opcode.INVERT)
|
|
default:
|
|
c.prog.Err = fmt.Errorf("invalid unary operator: %s", n.Op)
|
|
return nil
|
|
}
|
|
return nil
|
|
|
|
case *ast.IncDecStmt:
|
|
ast.Walk(c, n.X)
|
|
c.convertToken(n.Tok)
|
|
|
|
// For now only identifiers are supported for (post) for stmts.
|
|
// for i := 0; i < 10; i++ {}
|
|
// Where the post stmt is ( i++ )
|
|
if ident, ok := n.X.(*ast.Ident); ok {
|
|
c.emitStoreVar(ident.Name)
|
|
}
|
|
return nil
|
|
|
|
case *ast.IndexExpr:
|
|
// Walk the expression, this could be either an Ident or SelectorExpr.
|
|
// This will load local whatever X is.
|
|
ast.Walk(c, n.X)
|
|
ast.Walk(c, n.Index)
|
|
emit.Opcode(c.prog.BinWriter, opcode.PICKITEM) // just pickitem here
|
|
|
|
return nil
|
|
|
|
case *ast.BranchStmt:
|
|
var label string
|
|
if n.Label != nil {
|
|
label = n.Label.Name
|
|
} else if n.Tok == token.BREAK {
|
|
label = c.currentSwitch
|
|
} else if n.Tok == token.CONTINUE {
|
|
label = c.currentFor
|
|
}
|
|
|
|
cnt := 0
|
|
for i := len(c.labelList) - 1; i >= 0 && c.labelList[i].name != label; i-- {
|
|
cnt += c.labelList[i].sz
|
|
}
|
|
c.dropItems(cnt)
|
|
|
|
switch n.Tok {
|
|
case token.BREAK:
|
|
end := c.getLabelOffset(labelEnd, label)
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPL, end)
|
|
case token.CONTINUE:
|
|
post := c.getLabelOffset(labelPost, label)
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPL, post)
|
|
}
|
|
|
|
return nil
|
|
|
|
case *ast.LabeledStmt:
|
|
c.nextLabel = n.Label.Name
|
|
|
|
ast.Walk(c, n.Stmt)
|
|
|
|
return nil
|
|
|
|
case *ast.ForStmt:
|
|
fstart, label := c.generateLabel(labelStart)
|
|
fend := c.newNamedLabel(labelEnd, label)
|
|
fpost := c.newNamedLabel(labelPost, label)
|
|
|
|
lastLabel := c.currentFor
|
|
lastSwitch := c.currentSwitch
|
|
c.currentFor = label
|
|
c.currentSwitch = label
|
|
|
|
// Walk the initializer and condition.
|
|
if n.Init != nil {
|
|
ast.Walk(c, n.Init)
|
|
}
|
|
|
|
// Set label and walk the condition.
|
|
c.pushStackLabel(label, 0)
|
|
c.setLabel(fstart)
|
|
if n.Cond != nil {
|
|
ast.Walk(c, n.Cond)
|
|
|
|
// Jump if the condition is false
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, fend)
|
|
}
|
|
|
|
// Walk body followed by the iterator (post stmt).
|
|
ast.Walk(c, n.Body)
|
|
c.setLabel(fpost)
|
|
if n.Post != nil {
|
|
ast.Walk(c, n.Post)
|
|
}
|
|
|
|
// Jump back to condition.
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPL, fstart)
|
|
c.setLabel(fend)
|
|
c.dropStackLabel()
|
|
|
|
c.currentFor = lastLabel
|
|
c.currentSwitch = lastSwitch
|
|
|
|
return nil
|
|
|
|
case *ast.RangeStmt:
|
|
start, label := c.generateLabel(labelStart)
|
|
end := c.newNamedLabel(labelEnd, label)
|
|
post := c.newNamedLabel(labelPost, label)
|
|
|
|
lastFor := c.currentFor
|
|
lastSwitch := c.currentSwitch
|
|
c.currentFor = label
|
|
c.currentSwitch = label
|
|
|
|
ast.Walk(c, n.X)
|
|
emit.Syscall(c.prog.BinWriter, "Neo.Iterator.Create")
|
|
|
|
c.pushStackLabel(label, 1)
|
|
c.setLabel(start)
|
|
|
|
emit.Opcode(c.prog.BinWriter, opcode.DUP)
|
|
emit.Syscall(c.prog.BinWriter, "Neo.Enumerator.Next")
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOTL, end)
|
|
|
|
if n.Key != nil {
|
|
emit.Opcode(c.prog.BinWriter, opcode.DUP)
|
|
emit.Syscall(c.prog.BinWriter, "Neo.Iterator.Key")
|
|
c.emitStoreVar(n.Key.(*ast.Ident).Name)
|
|
}
|
|
if n.Value != nil {
|
|
emit.Opcode(c.prog.BinWriter, opcode.DUP)
|
|
emit.Syscall(c.prog.BinWriter, "Neo.Enumerator.Value")
|
|
c.emitStoreVar(n.Value.(*ast.Ident).Name)
|
|
}
|
|
|
|
ast.Walk(c, n.Body)
|
|
|
|
c.setLabel(post)
|
|
|
|
emit.Jmp(c.prog.BinWriter, opcode.JMPL, start)
|
|
|
|
c.setLabel(end)
|
|
c.dropStackLabel()
|
|
|
|
c.currentFor = lastFor
|
|
c.currentSwitch = lastSwitch
|
|
|
|
return nil
|
|
|
|
// We dont really care about assertions for the core logic.
|
|
// The only thing we need is to please the compiler type checking.
|
|
// For this to work properly, we only need to walk the expression
|
|
// not the assertion type.
|
|
case *ast.TypeAssertExpr:
|
|
ast.Walk(c, n.X)
|
|
return nil
|
|
}
|
|
return c
|
|
}
|
|
|
|
func isFallthroughStmt(c ast.Node) bool {
|
|
s, ok := c.(*ast.BranchStmt)
|
|
return ok && s.Tok == token.FALLTHROUGH
|
|
}
|
|
|
|
func (c *codegen) pushStackLabel(name string, size int) {
|
|
c.labelList = append(c.labelList, labelWithStackSize{
|
|
name: name,
|
|
sz: size,
|
|
})
|
|
}
|
|
|
|
func (c *codegen) dropStackLabel() {
|
|
last := len(c.labelList) - 1
|
|
c.dropItems(c.labelList[last].sz)
|
|
c.labelList = c.labelList[:last]
|
|
}
|
|
|
|
func (c *codegen) dropItems(n int) {
|
|
if n < 4 {
|
|
for i := 0; i < n; i++ {
|
|
emit.Opcode(c.prog.BinWriter, opcode.DROP)
|
|
}
|
|
return
|
|
}
|
|
|
|
emit.Int(c.prog.BinWriter, int64(n))
|
|
emit.Opcode(c.prog.BinWriter, opcode.PACK)
|
|
emit.Opcode(c.prog.BinWriter, opcode.DROP)
|
|
}
|
|
|
|
// emitReverse reverses top num items of the stack.
|
|
func (c *codegen) emitReverse(num int) {
|
|
switch num {
|
|
case 2:
|
|
emit.Opcode(c.prog.BinWriter, opcode.SWAP)
|
|
case 3:
|
|
emit.Opcode(c.prog.BinWriter, opcode.REVERSE3)
|
|
case 4:
|
|
emit.Opcode(c.prog.BinWriter, opcode.REVERSE4)
|
|
default:
|
|
emit.Int(c.prog.BinWriter, int64(num))
|
|
emit.Opcode(c.prog.BinWriter, opcode.REVERSEN)
|
|
}
|
|
}
|
|
|
|
// generateLabel returns a new label.
|
|
func (c *codegen) generateLabel(typ labelOffsetType) (uint16, string) {
|
|
name := c.nextLabel
|
|
if name == "" {
|
|
name = fmt.Sprintf("@%d", len(c.l))
|
|
}
|
|
|
|
c.nextLabel = ""
|
|
return c.newNamedLabel(typ, name), name
|
|
}
|
|
|
|
func (c *codegen) getLabelOffset(typ labelOffsetType, name string) uint16 {
|
|
return c.labels[labelWithType{name: name, typ: typ}]
|
|
}
|
|
|
|
func (c *codegen) getEqualityOpcode(expr ast.Expr) opcode.Opcode {
|
|
t, ok := c.typeOf(expr).Underlying().(*types.Basic)
|
|
if ok && t.Info()&types.IsNumeric != 0 {
|
|
return opcode.NUMEQUAL
|
|
}
|
|
|
|
return opcode.EQUAL
|
|
}
|
|
|
|
// getByteArray returns byte array value from constant expr.
|
|
// Only literals are supported.
|
|
func (c *codegen) getByteArray(expr ast.Expr) []byte {
|
|
switch t := expr.(type) {
|
|
case *ast.CompositeLit:
|
|
if !isByteSlice(c.typeOf(t.Type)) {
|
|
return nil
|
|
}
|
|
buf := make([]byte, len(t.Elts))
|
|
for i := 0; i < len(t.Elts); i++ {
|
|
t := c.typeAndValueOf(t.Elts[i])
|
|
val, _ := constant.Int64Val(t.Value)
|
|
buf[i] = byte(val)
|
|
}
|
|
return buf
|
|
case *ast.CallExpr:
|
|
if tv := c.typeAndValueOf(t.Args[0]); tv.Value != nil {
|
|
val := constant.StringVal(tv.Value)
|
|
return []byte(val)
|
|
}
|
|
|
|
return nil
|
|
default:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
func (c *codegen) convertSyscall(expr *ast.CallExpr, api, name string) {
|
|
api, ok := syscalls[api][name]
|
|
if !ok {
|
|
c.prog.Err = fmt.Errorf("unknown VM syscall api: %s", name)
|
|
return
|
|
}
|
|
switch name {
|
|
case "Notify":
|
|
numArgs := len(expr.Args)
|
|
emit.Int(c.prog.BinWriter, int64(numArgs))
|
|
emit.Opcode(c.prog.BinWriter, opcode.PACK)
|
|
}
|
|
emit.Syscall(c.prog.BinWriter, api)
|
|
switch name {
|
|
case "GetTransaction":
|
|
c.emitConvert(stackitem.StructT)
|
|
}
|
|
|
|
// This NOP instruction is basically not needed, but if we do, we have a
|
|
// one to one matching avm file with neo-python which is very nice for debugging.
|
|
emit.Opcode(c.prog.BinWriter, opcode.NOP)
|
|
}
|
|
|
|
func (c *codegen) convertBuiltin(expr *ast.CallExpr) {
|
|
var name string
|
|
switch t := expr.Fun.(type) {
|
|
case *ast.Ident:
|
|
name = t.Name
|
|
case *ast.SelectorExpr:
|
|
name = t.Sel.Name
|
|
}
|
|
|
|
switch name {
|
|
case "len":
|
|
emit.Opcode(c.prog.BinWriter, opcode.SIZE)
|
|
case "append":
|
|
arg := expr.Args[0]
|
|
typ := c.typeInfo.Types[arg].Type
|
|
if isByteSlice(typ) {
|
|
emit.Opcode(c.prog.BinWriter, opcode.CAT)
|
|
} else {
|
|
emit.Opcode(c.prog.BinWriter, opcode.OVER)
|
|
emit.Opcode(c.prog.BinWriter, opcode.SWAP)
|
|
emit.Opcode(c.prog.BinWriter, opcode.APPEND)
|
|
}
|
|
case "panic":
|
|
arg := expr.Args[0]
|
|
if isExprNil(arg) {
|
|
emit.Opcode(c.prog.BinWriter, opcode.DROP)
|
|
emit.Opcode(c.prog.BinWriter, opcode.THROW)
|
|
} else if isString(c.typeInfo.Types[arg].Type) {
|
|
ast.Walk(c, arg)
|
|
emit.Syscall(c.prog.BinWriter, "Neo.Runtime.Log")
|
|
emit.Opcode(c.prog.BinWriter, opcode.THROW)
|
|
} else {
|
|
c.prog.Err = errors.New("panic should have string or nil argument")
|
|
}
|
|
case "ToInteger", "ToByteArray", "ToBool":
|
|
typ := stackitem.IntegerT
|
|
switch name {
|
|
case "ToByteArray":
|
|
typ = stackitem.ByteArrayT
|
|
case "ToBool":
|
|
typ = stackitem.BooleanT
|
|
}
|
|
c.emitConvert(typ)
|
|
case "SHA256":
|
|
emit.Syscall(c.prog.BinWriter, "Neo.Crypto.SHA256")
|
|
case "AppCall":
|
|
c.emitReverse(len(expr.Args))
|
|
buf := c.getByteArray(expr.Args[0])
|
|
if len(buf) != 20 {
|
|
c.prog.Err = errors.New("invalid script hash")
|
|
}
|
|
emit.Syscall(c.prog.BinWriter, "System.Contract.Call")
|
|
case "Equals":
|
|
emit.Opcode(c.prog.BinWriter, opcode.EQUAL)
|
|
case "FromAddress":
|
|
// We can be sure that this is a ast.BasicLit just containing a simple
|
|
// address string. Note that the string returned from calling Value will
|
|
// contain double quotes that need to be stripped.
|
|
addressStr := expr.Args[0].(*ast.BasicLit).Value
|
|
addressStr = strings.Replace(addressStr, "\"", "", 2)
|
|
uint160, err := address.StringToUint160(addressStr)
|
|
if err != nil {
|
|
c.prog.Err = err
|
|
return
|
|
}
|
|
bytes := uint160.BytesBE()
|
|
emit.Bytes(c.prog.BinWriter, bytes)
|
|
c.emitConvert(stackitem.BufferT)
|
|
}
|
|
}
|
|
|
|
// transformArgs returns a list of function arguments
|
|
// which should be put on stack.
|
|
// There are special cases for builtins:
|
|
// 1. With FromAddress, parameter conversion is happening at compile-time
|
|
// so there is no need to push parameters on stack and perform an actual call
|
|
// 2. With panic, generated code depends on if argument was nil or a string so
|
|
// it should be handled accordingly.
|
|
func transformArgs(fun ast.Expr, args []ast.Expr) []ast.Expr {
|
|
switch f := fun.(type) {
|
|
case *ast.SelectorExpr:
|
|
if f.Sel.Name == "FromAddress" {
|
|
return args[1:]
|
|
}
|
|
case *ast.Ident:
|
|
if f.Name == "panic" {
|
|
return args[1:]
|
|
}
|
|
}
|
|
|
|
return args
|
|
}
|
|
|
|
// emitConvert converts top stack item to the specified type.
|
|
func (c *codegen) emitConvert(typ stackitem.Type) {
|
|
emit.Instruction(c.prog.BinWriter, opcode.CONVERT, []byte{byte(typ)})
|
|
}
|
|
|
|
func (c *codegen) convertByteArray(lit *ast.CompositeLit) {
|
|
buf := make([]byte, len(lit.Elts))
|
|
for i := 0; i < len(lit.Elts); i++ {
|
|
t := c.typeAndValueOf(lit.Elts[i])
|
|
val, _ := constant.Int64Val(t.Value)
|
|
buf[i] = byte(val)
|
|
}
|
|
emit.Bytes(c.prog.BinWriter, buf)
|
|
c.emitConvert(stackitem.BufferT)
|
|
}
|
|
|
|
func (c *codegen) convertMap(lit *ast.CompositeLit) {
|
|
emit.Opcode(c.prog.BinWriter, opcode.NEWMAP)
|
|
for i := range lit.Elts {
|
|
elem := lit.Elts[i].(*ast.KeyValueExpr)
|
|
emit.Opcode(c.prog.BinWriter, opcode.DUP)
|
|
ast.Walk(c, elem.Key)
|
|
ast.Walk(c, elem.Value)
|
|
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
|
|
}
|
|
}
|
|
|
|
func (c *codegen) convertStruct(lit *ast.CompositeLit) {
|
|
// Create a new structScope to initialize and store
|
|
// the positions of its variables.
|
|
strct, ok := c.typeOf(lit).Underlying().(*types.Struct)
|
|
if !ok {
|
|
c.prog.Err = fmt.Errorf("the given literal is not of type struct: %v", lit)
|
|
return
|
|
}
|
|
|
|
emit.Opcode(c.prog.BinWriter, opcode.NOP)
|
|
emit.Int(c.prog.BinWriter, int64(strct.NumFields()))
|
|
emit.Opcode(c.prog.BinWriter, opcode.NEWSTRUCT)
|
|
|
|
// We need to locally store all the fields, even if they are not initialized.
|
|
// We will initialize all fields to their "zero" value.
|
|
for i := 0; i < strct.NumFields(); i++ {
|
|
sField := strct.Field(i)
|
|
fieldAdded := false
|
|
|
|
// Fields initialized by the program.
|
|
for _, field := range lit.Elts {
|
|
f := field.(*ast.KeyValueExpr)
|
|
fieldName := f.Key.(*ast.Ident).Name
|
|
|
|
if sField.Name() == fieldName {
|
|
emit.Opcode(c.prog.BinWriter, opcode.DUP)
|
|
|
|
pos := indexOfStruct(strct, fieldName)
|
|
emit.Int(c.prog.BinWriter, int64(pos))
|
|
|
|
ast.Walk(c, f.Value)
|
|
|
|
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
|
|
fieldAdded = true
|
|
break
|
|
}
|
|
}
|
|
if fieldAdded {
|
|
continue
|
|
}
|
|
|
|
emit.Opcode(c.prog.BinWriter, opcode.DUP)
|
|
emit.Int(c.prog.BinWriter, int64(i))
|
|
c.emitDefault(sField.Type())
|
|
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
|
|
}
|
|
}
|
|
|
|
func (c *codegen) convertToken(tok token.Token) {
|
|
switch tok {
|
|
case token.ADD_ASSIGN:
|
|
emit.Opcode(c.prog.BinWriter, opcode.ADD)
|
|
case token.SUB_ASSIGN:
|
|
emit.Opcode(c.prog.BinWriter, opcode.SUB)
|
|
case token.MUL_ASSIGN:
|
|
emit.Opcode(c.prog.BinWriter, opcode.MUL)
|
|
case token.QUO_ASSIGN:
|
|
emit.Opcode(c.prog.BinWriter, opcode.DIV)
|
|
case token.REM_ASSIGN:
|
|
emit.Opcode(c.prog.BinWriter, opcode.MOD)
|
|
case token.ADD:
|
|
emit.Opcode(c.prog.BinWriter, opcode.ADD)
|
|
case token.SUB:
|
|
emit.Opcode(c.prog.BinWriter, opcode.SUB)
|
|
case token.MUL:
|
|
emit.Opcode(c.prog.BinWriter, opcode.MUL)
|
|
case token.QUO:
|
|
emit.Opcode(c.prog.BinWriter, opcode.DIV)
|
|
case token.REM:
|
|
emit.Opcode(c.prog.BinWriter, opcode.MOD)
|
|
case token.LSS:
|
|
emit.Opcode(c.prog.BinWriter, opcode.LT)
|
|
case token.LEQ:
|
|
emit.Opcode(c.prog.BinWriter, opcode.LTE)
|
|
case token.GTR:
|
|
emit.Opcode(c.prog.BinWriter, opcode.GT)
|
|
case token.GEQ:
|
|
emit.Opcode(c.prog.BinWriter, opcode.GTE)
|
|
case token.EQL:
|
|
emit.Opcode(c.prog.BinWriter, opcode.NUMEQUAL)
|
|
case token.NEQ:
|
|
emit.Opcode(c.prog.BinWriter, opcode.NUMNOTEQUAL)
|
|
case token.DEC:
|
|
emit.Opcode(c.prog.BinWriter, opcode.DEC)
|
|
case token.INC:
|
|
emit.Opcode(c.prog.BinWriter, opcode.INC)
|
|
case token.NOT:
|
|
emit.Opcode(c.prog.BinWriter, opcode.NOT)
|
|
case token.AND:
|
|
emit.Opcode(c.prog.BinWriter, opcode.AND)
|
|
case token.OR:
|
|
emit.Opcode(c.prog.BinWriter, opcode.OR)
|
|
case token.SHL:
|
|
emit.Opcode(c.prog.BinWriter, opcode.SHL)
|
|
case token.SHR:
|
|
emit.Opcode(c.prog.BinWriter, opcode.SHR)
|
|
case token.XOR:
|
|
emit.Opcode(c.prog.BinWriter, opcode.XOR)
|
|
default:
|
|
c.prog.Err = fmt.Errorf("compiler could not convert token: %s", tok)
|
|
return
|
|
}
|
|
}
|
|
|
|
func (c *codegen) newFunc(decl *ast.FuncDecl) *funcScope {
|
|
f := newFuncScope(decl, c.newLabel())
|
|
c.funcs[f.name] = f
|
|
return f
|
|
}
|
|
|
|
func (c *codegen) newLambda(u uint16, lit *ast.FuncLit) {
|
|
name := fmt.Sprintf("lambda@%d", u)
|
|
c.lambda[name] = newFuncScope(&ast.FuncDecl{
|
|
Name: ast.NewIdent(name),
|
|
Type: lit.Type,
|
|
Body: lit.Body,
|
|
}, u)
|
|
}
|
|
|
|
func (c *codegen) compile(info *buildInfo, pkg *loader.PackageInfo) error {
|
|
// Resolve the entrypoint of the program.
|
|
main, mainFile := resolveEntryPoint(mainIdent, pkg)
|
|
if main == nil {
|
|
c.prog.Err = fmt.Errorf("could not find func main. Did you forget to declare it? ")
|
|
return c.prog.Err
|
|
}
|
|
|
|
funUsage := analyzeFuncUsage(info.program.AllPackages)
|
|
|
|
// Bring all imported functions into scope.
|
|
for _, pkg := range info.program.AllPackages {
|
|
for _, f := range pkg.Files {
|
|
c.resolveFuncDecls(f, pkg.Pkg)
|
|
}
|
|
}
|
|
|
|
c.traverseGlobals(mainFile)
|
|
|
|
// convert the entry point first.
|
|
c.convertFuncDecl(mainFile, main)
|
|
|
|
// sort map keys to generate code deterministically.
|
|
keys := make([]*types.Package, 0, len(info.program.AllPackages))
|
|
for p := range info.program.AllPackages {
|
|
keys = append(keys, p)
|
|
}
|
|
sort.Slice(keys, func(i, j int) bool { return keys[i].Path() < keys[j].Path() })
|
|
|
|
// Generate the code for the program.
|
|
for _, k := range keys {
|
|
pkg := info.program.AllPackages[k]
|
|
c.typeInfo = &pkg.Info
|
|
|
|
for _, f := range pkg.Files {
|
|
for _, decl := range f.Decls {
|
|
switch n := decl.(type) {
|
|
case *ast.FuncDecl:
|
|
// Don't convert the function if it's not used. This will save a lot
|
|
// of bytecode space.
|
|
if n.Name.Name != mainIdent && funUsage.funcUsed(n.Name.Name) {
|
|
c.convertFuncDecl(f, n)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return c.prog.Err
|
|
}
|
|
|
|
func newCodegen(info *buildInfo, pkg *loader.PackageInfo) *codegen {
|
|
return &codegen{
|
|
buildInfo: info,
|
|
prog: io.NewBufBinWriter(),
|
|
l: []int{},
|
|
funcs: map[string]*funcScope{},
|
|
lambda: map[string]*funcScope{},
|
|
globals: map[string]int{},
|
|
labels: map[labelWithType]uint16{},
|
|
typeInfo: &pkg.Info,
|
|
|
|
sequencePoints: make(map[string][]DebugSeqPoint),
|
|
}
|
|
}
|
|
|
|
// CodeGen compiles the program to bytecode.
|
|
func CodeGen(info *buildInfo) ([]byte, *DebugInfo, error) {
|
|
pkg := info.program.Package(info.initialPackage)
|
|
c := newCodegen(info, pkg)
|
|
|
|
if err := c.compile(info, pkg); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
buf := c.prog.Bytes()
|
|
if err := c.writeJumps(buf); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
return buf, c.emitDebugInfo(), nil
|
|
}
|
|
|
|
func (c *codegen) resolveFuncDecls(f *ast.File, pkg *types.Package) {
|
|
for _, decl := range f.Decls {
|
|
switch n := decl.(type) {
|
|
case *ast.FuncDecl:
|
|
if n.Name.Name != mainIdent {
|
|
c.newFunc(n)
|
|
c.funcs[n.Name.Name].pkg = pkg
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *codegen) writeJumps(b []byte) error {
|
|
ctx := vm.NewContext(b)
|
|
for op, _, err := ctx.Next(); err == nil && ctx.NextIP() < len(b); op, _, err = ctx.Next() {
|
|
switch op {
|
|
case opcode.JMP, opcode.JMPIFNOT, opcode.JMPIF, opcode.CALL,
|
|
opcode.JMPEQ, opcode.JMPNE,
|
|
opcode.JMPGT, opcode.JMPGE, opcode.JMPLE, opcode.JMPLT:
|
|
panic("short jumps are not yet supported")
|
|
case opcode.JMPL, opcode.JMPIFL, opcode.JMPIFNOTL,
|
|
opcode.JMPEQL, opcode.JMPNEL,
|
|
opcode.JMPGTL, opcode.JMPGEL, opcode.JMPLEL, opcode.JMPLTL,
|
|
opcode.CALLL, opcode.PUSHA:
|
|
// we can't use arg returned by ctx.Next() because it is copied
|
|
nextIP := ctx.NextIP()
|
|
arg := b[nextIP-4:]
|
|
|
|
index := binary.LittleEndian.Uint16(arg)
|
|
if int(index) > len(c.l) {
|
|
return fmt.Errorf("unexpected label number: %d (max %d)", index, len(c.l))
|
|
}
|
|
var offset int
|
|
if op == opcode.PUSHA {
|
|
offset = c.l[index]
|
|
} else {
|
|
offset = c.l[index] - nextIP + 5
|
|
}
|
|
if offset > math.MaxInt32 || offset < math.MinInt32 {
|
|
return fmt.Errorf("label offset is too big at the instruction %d: %d (max %d, min %d)",
|
|
nextIP-5, offset, math.MaxInt32, math.MinInt32)
|
|
}
|
|
binary.LittleEndian.PutUint32(arg, uint32(offset))
|
|
}
|
|
}
|
|
return nil
|
|
}
|