"description":"View and manage your data across Google Cloud Platform services"
}
}
}
},
"basePath":"",
"baseUrl":"https://language.googleapis.com/",
"batchPath":"batch",
"canonicalName":"Cloud Natural Language",
"description":"Provides natural language understanding technologies to developers. Examples include sentiment analysis, entity recognition, entity sentiment analysis, and text annotations.",
"Responses with Content-Type of application/json",
"Media download with context-dependent Content-Type",
"Responses with Content-Type of application/x-protobuf"
],
"location":"query",
"type":"string"
},
"callback":{
"description":"JSONP",
"location":"query",
"type":"string"
},
"fields":{
"description":"Selector specifying which fields to include in a partial response.",
"location":"query",
"type":"string"
},
"key":{
"description":"API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token.",
"location":"query",
"type":"string"
},
"oauth_token":{
"description":"OAuth 2.0 token for the current user.",
"location":"query",
"type":"string"
},
"prettyPrint":{
"default":"true",
"description":"Returns response with indentations and line breaks.",
"location":"query",
"type":"boolean"
},
"quotaUser":{
"description":"Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters.",
"location":"query",
"type":"string"
},
"uploadType":{
"description":"Legacy upload protocol for media (e.g. \"media\", \"multipart\").",
"location":"query",
"type":"string"
},
"upload_protocol":{
"description":"Upload protocol for media (e.g. \"raw\", \"multipart\").",
"location":"query",
"type":"string"
}
},
"protocol":"rest",
"resources":{
"documents":{
"methods":{
"analyzeEntities":{
"description":"Finds named entities (currently proper names and common nouns) in the text\nalong with entity types, salience, mentions for each entity, and\nother properties.",
"description":"Analyzes the syntax of the text and provides sentence boundaries and\ntokenization along with part of speech tags, dependency trees, and other\nproperties.",
"If `EncodingType` is not specified, encoding-dependent information (such as\n`begin_offset`) will be set at `-1`.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-8 encoding of the input. C++ and Go are examples of languages\nthat use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-16 encoding of the input. Java and Javascript are examples of\nlanguages that use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-32 encoding of the input. Python is an example of a language\nthat uses this encoding natively."
"description":"The recognized entities in the input document.",
"items":{
"$ref":"Entity"
},
"type":"array"
},
"language":{
"description":"The language of the text, which will be the same as the language specified\nin the request or, if not specified, the automatically-detected language.\nSee Document.language field for more details.",
"If `EncodingType` is not specified, encoding-dependent information (such as\n`begin_offset`) will be set at `-1`.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-8 encoding of the input. C++ and Go are examples of languages\nthat use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-16 encoding of the input. Java and Javascript are examples of\nlanguages that use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-32 encoding of the input. Python is an example of a language\nthat uses this encoding natively."
"description":"The language of the text, which will be the same as the language specified\nin the request or, if not specified, the automatically-detected language.\nSee Document.language field for more details.",
"If `EncodingType` is not specified, encoding-dependent information (such as\n`begin_offset`) will be set at `-1`.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-8 encoding of the input. C++ and Go are examples of languages\nthat use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-16 encoding of the input. Java and Javascript are examples of\nlanguages that use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-32 encoding of the input. Python is an example of a language\nthat uses this encoding natively."
"description":"The overall sentiment of the input document."
},
"language":{
"description":"The language of the text, which will be the same as the language specified\nin the request or, if not specified, the automatically-detected language.\nSee Document.language field for more details.",
"description":"The encoding type used by the API to calculate offsets.",
"enum":[
"NONE",
"UTF8",
"UTF16",
"UTF32"
],
"enumDescriptions":[
"If `EncodingType` is not specified, encoding-dependent information (such as\n`begin_offset`) will be set at `-1`.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-8 encoding of the input. C++ and Go are examples of languages\nthat use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-16 encoding of the input. Java and Javascript are examples of\nlanguages that use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-32 encoding of the input. Python is an example of a language\nthat uses this encoding natively."
"description":"The language of the text, which will be the same as the language specified\nin the request or, if not specified, the automatically-detected language.\nSee Document.language field for more details.",
"description":"The request message for the text annotation API, which can perform multiple\nanalysis types (sentiment, entities, and syntax) in one call.",
"If `EncodingType` is not specified, encoding-dependent information (such as\n`begin_offset`) will be set at `-1`.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-8 encoding of the input. C++ and Go are examples of languages\nthat use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-16 encoding of the input. Java and Javascript are examples of\nlanguages that use this encoding natively.",
"Encoding-dependent information (such as `begin_offset`) is calculated based\non the UTF-32 encoding of the input. Python is an example of a language\nthat uses this encoding natively."
"description":"Entities, along with their semantic information, in the input document.\nPopulated if the user enables\nAnnotateTextRequest.Features.extract_entities.",
"description":"The language of the text, which will be the same as the language specified\nin the request or, if not specified, the automatically-detected language.\nSee Document.language field for more details.",
"description":"Tokens, along with their syntactic information, in the input document.\nPopulated if the user enables\nAnnotateTextRequest.Features.extract_syntax.",
"description":"The classifier's confidence of the category. Number represents how certain\nthe classifier is that this category represents the given text.",
"description":"Represents dependency parse tree information for a token. (For more\ninformation on dependency labels, see\nhttp://www.aclweb.org/anthology/P13-2017",
"description":"Represents the head of this token in the dependency tree.\nThis is the index of the token which has an arc going to this token.\nThe index is the position of the token in the array of tokens returned\nby the API method. If this token is a root token, then the\n`head_token_index` is its own index.",
"description":"The Google Cloud Storage URI where the file content is located.\nThis URI must be of the form: gs://bucket_name/object_name. For more\ndetails, see https://cloud.google.com/storage/docs/reference-uris.\nNOTE: Cloud Storage object versioning is not supported.",
"description":"The language of the document (if not specified, the language is\nautomatically detected). Both ISO and BCP-47 language codes are\naccepted.\u003cbr\u003e\n[Language Support](/natural-language/docs/languages)\nlists currently supported languages for each API method.\nIf the language (either specified by the caller or automatically detected)\nis not supported by the called API method, an `INVALID_ARGUMENT` error\nis returned.",
"description":"Represents a phrase in the text that is a known entity, such as\na person, an organization, or location. The API associates information, such\nas salience and mentions, with entities.",
"description":"Metadata associated with the entity.\n\nCurrently, Wikipedia URLs and Knowledge Graph MIDs are provided, if\navailable. The associated keys are \"wikipedia_url\" and \"mid\", respectively.",
"type":"object"
},
"name":{
"description":"The representative name for the entity.",
"type":"string"
},
"salience":{
"description":"The salience score associated with the entity in the [0, 1.0] range.\n\nThe salience score for an entity provides information about the\nimportance or centrality of that entity to the entire document text.\nScores closer to 0 are less salient, while scores closer to 1.0 are highly\nsalient.",
"format":"float",
"type":"number"
},
"sentiment":{
"$ref":"Sentiment",
"description":"For calls to AnalyzeEntitySentiment or if\nAnnotateTextRequest.Features.extract_entity_sentiment is set to\ntrue, this field will contain the aggregate sentiment expressed for this\nentity in the provided document."
"description":"For calls to AnalyzeEntitySentiment or if\nAnnotateTextRequest.Features.extract_entity_sentiment is set to\ntrue, this field will contain the sentiment expressed for this mention of\nthe entity in the provided document."
"description":"All available features for sentiment, syntax, and semantic analysis.\nSetting each one to true will enable that specific analysis for the input.",
"description":"Represents part of speech information for a token. Parts of speech\nare as defined in\nhttp://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf",
"description":"For calls to AnalyzeSentiment or if\nAnnotateTextRequest.Features.extract_document_sentiment is set to\ntrue, this field will contain the sentiment for the sentence."
},
"text":{
"$ref":"TextSpan",
"description":"The sentence text."
}
},
"type":"object"
},
"Sentiment":{
"description":"Represents the feeling associated with the entire text or entities in\nthe text.",
"id":"Sentiment",
"properties":{
"magnitude":{
"description":"A non-negative number in the [0, +inf) range, which represents\nthe absolute magnitude of sentiment regardless of score (positive or\nnegative).",
"description":"The `Status` type defines a logical error model that is suitable for different\nprogramming environments, including REST APIs and RPC APIs. It is used by\n[gRPC](https://github.com/grpc). The error model is designed to be:\n\n- Simple to use and understand for most users\n- Flexible enough to meet unexpected needs\n\n# Overview\n\nThe `Status` message contains three pieces of data: error code, error message,\nand error details. The error code should be an enum value of\ngoogle.rpc.Code, but it may accept additional error codes if needed. The\nerror message should be a developer-facing English message that helps\ndevelopers *understand* and *resolve* the error. If a localized user-facing\nerror message is needed, put the localized message in the error details or\nlocalize it in the client. The optional error details may contain arbitrary\ninformation about the error. There is a predefined set of error detail types\nin the package `google.rpc` that can be used for common error conditions.\n\n# Language mapping\n\nThe `Status` message is the logical representation of the error model, but it\nis not necessarily the actual wire format. When the `Status` message is\nexposed in different client libraries and different wire protocols, it can be\nmapped differently. For example, it will likely be mapped to some exceptions\nin Java, but more likely mapped to some error codes in C.\n\n# Other uses\n\nThe error model and the `Status` message can be used in a variety of\nenvironments, either with or without APIs, to provide a\nconsistent developer experience across different environments.\n\nExample uses of this error model include:\n\n- Partial errors. If a service needs to return partial errors to the client,\n it may embed the `Status` in the normal response to indicate the partial\n errors.\n\n- Workflow errors. A typical workflow has multiple steps. Each step may\n have a `Status` message for error reporting.\n\n- Batch operations. If a client uses batch request and batch response, the\n `Status` message should be used directly inside batch response, one for\n each error sub-response.\n\n- Asynchronous operations. If an API call embeds asynchronous operation\n results in its response, the status of those operations should be\n represented directly using the `Status` message.\n\n- Logging. If some API errors are stored in logs, the message `Status` could\n be used directly after any stripping needed for security/privacy reasons.",
"description":"A developer-facing error message, which should be in English. Any\nuser-facing error message should be localized and sent in the\ngoogle.rpc.Status.details field, or localized by the client.",
"description":"The API calculates the beginning offset of the content in the original\ndocument according to the EncodingType specified in the API request.",