rclone/vendor/github.com/vivint/infectious/math.go

183 lines
4.2 KiB
Go
Raw Normal View History

2020-05-11 18:57:46 +00:00
// (C) 1996-1998 Luigi Rizzo (luigi@iet.unipi.it)
// 2009-2010 Jack Lloyd (lloyd@randombit.net)
// 2011 Billy Brumley (billy.brumley@aalto.fi)
// 2016-2017 Vivint, Inc. (jeff.wendling@vivint.com)
//
// Portions derived from code by Phil Karn (karn@ka9q.ampr.org),
// Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari
// Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT,
// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
// IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
package infectious
import (
"bytes"
"errors"
)
2020-05-11 18:57:46 +00:00
type pivotSearcher struct {
k int
ipiv []bool
}
func newPivotSearcher(k int) *pivotSearcher {
return &pivotSearcher{
k: k,
ipiv: make([]bool, k),
}
}
func (p *pivotSearcher) search(col int, matrix []byte) (int, int, error) {
if p.ipiv[col] == false && matrix[col*p.k+col] != 0 {
p.ipiv[col] = true
return col, col, nil
}
for row := 0; row < p.k; row++ {
if p.ipiv[row] {
continue
}
for i := 0; i < p.k; i++ {
if p.ipiv[i] == false && matrix[row*p.k+i] != 0 {
p.ipiv[i] = true
return row, i, nil
}
}
}
return 0, 0, errors.New("pivot not found")
2020-05-11 18:57:46 +00:00
}
func swap(a, b *byte) {
tmp := *a
*a = *b
*b = tmp
}
// TODO(jeff): matrix is a K*K array, row major.
func invertMatrix(matrix []byte, k int) error {
pivot_searcher := newPivotSearcher(k)
indxc := make([]int, k)
indxr := make([]int, k)
id_row := make([]byte, k)
for col := 0; col < k; col++ {
icol, irow, err := pivot_searcher.search(col, matrix)
if err != nil {
return err
}
if irow != icol {
for i := 0; i < k; i++ {
swap(&matrix[irow*k+i], &matrix[icol*k+i])
}
}
indxr[col] = irow
indxc[col] = icol
pivot_row := matrix[icol*k:][:k]
c := pivot_row[icol]
if c == 0 {
return errors.New("singular matrix")
2020-05-11 18:57:46 +00:00
}
if c != 1 {
c = gf_inverse[c]
pivot_row[icol] = 1
mul_c := gf_mul_table[c][:]
for i := 0; i < k; i++ {
pivot_row[i] = mul_c[pivot_row[i]]
}
}
id_row[icol] = 1
if !bytes.Equal(pivot_row, id_row) {
p := matrix
for i := 0; i < k; i++ {
if i != icol {
c = p[icol]
p[icol] = 0
addmul(p[:k], pivot_row, c)
}
p = p[k:]
}
}
id_row[icol] = 0
}
for i := 0; i < k; i++ {
if indxr[i] != indxc[i] {
for row := 0; row < k; row++ {
swap(&matrix[row*k+indxr[i]], &matrix[row*k+indxc[i]])
}
}
}
return nil
}
func createInvertedVdm(vdm []byte, k int) {
if k == 1 {
vdm[0] = 1
return
}
b := make([]byte, k)
c := make([]byte, k)
c[k-1] = 0
for i := 1; i < k; i++ {
mul_p_i := gf_mul_table[gf_exp[i]][:]
for j := k - 1 - (i - 1); j < k-1; j++ {
c[j] ^= mul_p_i[c[j+1]]
}
c[k-1] ^= gf_exp[i]
}
for row := 0; row < k; row++ {
index := 0
if row != 0 {
index = int(gf_exp[row])
}
mul_p_row := gf_mul_table[index][:]
t := byte(1)
b[k-1] = 1
for i := k - 2; i >= 0; i-- {
b[i] = c[i+1] ^ mul_p_row[b[i+1]]
t = b[i] ^ mul_p_row[t]
}
mul_t_inv := gf_mul_table[gf_inverse[t]][:]
for col := 0; col < k; col++ {
vdm[col*k+row] = mul_t_inv[b[col]]
}
}
}