2017-05-11 14:39:54 +00:00
// Code generated by private/model/cli/gen-api/main.go. DO NOT EDIT.
package machinelearning
import (
"fmt"
"time"
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/awsutil"
"github.com/aws/aws-sdk-go/aws/request"
)
const opAddTags = "AddTags"
// AddTagsRequest generates a "aws/request.Request" representing the
// client's request for the AddTags operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See AddTags for more information on using the AddTags
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the AddTagsRequest method.
// req, resp := client.AddTagsRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) AddTagsRequest ( input * AddTagsInput ) ( req * request . Request , output * AddTagsOutput ) {
op := & request . Operation {
Name : opAddTags ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & AddTagsInput { }
}
output = & AddTagsOutput { }
req = c . newRequest ( op , input , output )
return
}
// AddTags API operation for Amazon Machine Learning.
//
// Adds one or more tags to an object, up to a limit of 10. Each tag consists
// of a key and an optional value. If you add a tag using a key that is already
// associated with the ML object, AddTags updates the tag's value.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation AddTags for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInvalidTagException "InvalidTagException"
//
// * ErrCodeTagLimitExceededException "TagLimitExceededException"
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) AddTags ( input * AddTagsInput ) ( * AddTagsOutput , error ) {
req , out := c . AddTagsRequest ( input )
return out , req . Send ( )
}
// AddTagsWithContext is the same as AddTags with the addition of
// the ability to pass a context and additional request options.
//
// See AddTags for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) AddTagsWithContext ( ctx aws . Context , input * AddTagsInput , opts ... request . Option ) ( * AddTagsOutput , error ) {
req , out := c . AddTagsRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opCreateBatchPrediction = "CreateBatchPrediction"
// CreateBatchPredictionRequest generates a "aws/request.Request" representing the
// client's request for the CreateBatchPrediction operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See CreateBatchPrediction for more information on using the CreateBatchPrediction
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the CreateBatchPredictionRequest method.
// req, resp := client.CreateBatchPredictionRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) CreateBatchPredictionRequest ( input * CreateBatchPredictionInput ) ( req * request . Request , output * CreateBatchPredictionOutput ) {
op := & request . Operation {
Name : opCreateBatchPrediction ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & CreateBatchPredictionInput { }
}
output = & CreateBatchPredictionOutput { }
req = c . newRequest ( op , input , output )
return
}
// CreateBatchPrediction API operation for Amazon Machine Learning.
//
// Generates predictions for a group of observations. The observations to process
// exist in one or more data files referenced by a DataSource. This operation
// creates a new BatchPrediction, and uses an MLModel and the data files referenced
// by the DataSource as information sources.
//
// CreateBatchPrediction is an asynchronous operation. In response to CreateBatchPrediction,
// Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction
// status to PENDING. After the BatchPrediction completes, Amazon ML sets the
// status to COMPLETED.
//
// You can poll for status updates by using the GetBatchPrediction operation
// and checking the Status parameter of the result. After the COMPLETED status
// appears, the results are available in the location specified by the OutputUri
// parameter.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation CreateBatchPrediction for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
// * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException"
// A second request to use or change an object was not allowed. This can result
// from retrying a request using a parameter that was not present in the original
// request.
//
func ( c * MachineLearning ) CreateBatchPrediction ( input * CreateBatchPredictionInput ) ( * CreateBatchPredictionOutput , error ) {
req , out := c . CreateBatchPredictionRequest ( input )
return out , req . Send ( )
}
// CreateBatchPredictionWithContext is the same as CreateBatchPrediction with the addition of
// the ability to pass a context and additional request options.
//
// See CreateBatchPrediction for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) CreateBatchPredictionWithContext ( ctx aws . Context , input * CreateBatchPredictionInput , opts ... request . Option ) ( * CreateBatchPredictionOutput , error ) {
req , out := c . CreateBatchPredictionRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opCreateDataSourceFromRDS = "CreateDataSourceFromRDS"
// CreateDataSourceFromRDSRequest generates a "aws/request.Request" representing the
// client's request for the CreateDataSourceFromRDS operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See CreateDataSourceFromRDS for more information on using the CreateDataSourceFromRDS
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the CreateDataSourceFromRDSRequest method.
// req, resp := client.CreateDataSourceFromRDSRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) CreateDataSourceFromRDSRequest ( input * CreateDataSourceFromRDSInput ) ( req * request . Request , output * CreateDataSourceFromRDSOutput ) {
op := & request . Operation {
Name : opCreateDataSourceFromRDS ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & CreateDataSourceFromRDSInput { }
}
output = & CreateDataSourceFromRDSOutput { }
req = c . newRequest ( op , input , output )
return
}
// CreateDataSourceFromRDS API operation for Amazon Machine Learning.
//
// Creates a DataSource object from an Amazon Relational Database Service (http://aws.amazon.com/rds/)
// (Amazon RDS). A DataSource references data that can be used to perform CreateMLModel,
// CreateEvaluation, or CreateBatchPrediction operations.
//
// CreateDataSourceFromRDS is an asynchronous operation. In response to CreateDataSourceFromRDS,
// Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
// status to PENDING. After the DataSource is created and ready for use, Amazon
// ML sets the Status parameter to COMPLETED. DataSource in the COMPLETED or
// PENDING state can be used only to perform >CreateMLModel>, CreateEvaluation,
// or CreateBatchPrediction operations.
//
// If Amazon ML cannot accept the input source, it sets the Status parameter
// to FAILED and includes an error message in the Message attribute of the GetDataSource
// operation response.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation CreateDataSourceFromRDS for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
// * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException"
// A second request to use or change an object was not allowed. This can result
// from retrying a request using a parameter that was not present in the original
// request.
//
func ( c * MachineLearning ) CreateDataSourceFromRDS ( input * CreateDataSourceFromRDSInput ) ( * CreateDataSourceFromRDSOutput , error ) {
req , out := c . CreateDataSourceFromRDSRequest ( input )
return out , req . Send ( )
}
// CreateDataSourceFromRDSWithContext is the same as CreateDataSourceFromRDS with the addition of
// the ability to pass a context and additional request options.
//
// See CreateDataSourceFromRDS for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) CreateDataSourceFromRDSWithContext ( ctx aws . Context , input * CreateDataSourceFromRDSInput , opts ... request . Option ) ( * CreateDataSourceFromRDSOutput , error ) {
req , out := c . CreateDataSourceFromRDSRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opCreateDataSourceFromRedshift = "CreateDataSourceFromRedshift"
// CreateDataSourceFromRedshiftRequest generates a "aws/request.Request" representing the
// client's request for the CreateDataSourceFromRedshift operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See CreateDataSourceFromRedshift for more information on using the CreateDataSourceFromRedshift
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the CreateDataSourceFromRedshiftRequest method.
// req, resp := client.CreateDataSourceFromRedshiftRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) CreateDataSourceFromRedshiftRequest ( input * CreateDataSourceFromRedshiftInput ) ( req * request . Request , output * CreateDataSourceFromRedshiftOutput ) {
op := & request . Operation {
Name : opCreateDataSourceFromRedshift ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & CreateDataSourceFromRedshiftInput { }
}
output = & CreateDataSourceFromRedshiftOutput { }
req = c . newRequest ( op , input , output )
return
}
// CreateDataSourceFromRedshift API operation for Amazon Machine Learning.
//
// Creates a DataSource from a database hosted on an Amazon Redshift cluster.
// A DataSource references data that can be used to perform either CreateMLModel,
// CreateEvaluation, or CreateBatchPrediction operations.
//
// CreateDataSourceFromRedshift is an asynchronous operation. In response to
// CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately
// returns and sets the DataSource status to PENDING. After the DataSource is
// created and ready for use, Amazon ML sets the Status parameter to COMPLETED.
// DataSource in COMPLETED or PENDING states can be used to perform only CreateMLModel,
// CreateEvaluation, or CreateBatchPrediction operations.
//
// If Amazon ML can't accept the input source, it sets the Status parameter
// to FAILED and includes an error message in the Message attribute of the GetDataSource
// operation response.
//
// The observations should be contained in the database hosted on an Amazon
// Redshift cluster and should be specified by a SelectSqlQuery query. Amazon
// ML executes an Unload command in Amazon Redshift to transfer the result set
// of the SelectSqlQuery query to S3StagingLocation.
//
// After the DataSource has been created, it's ready for use in evaluations
// and batch predictions. If you plan to use the DataSource to train an MLModel,
// the DataSource also requires a recipe. A recipe describes how each input
// variable will be used in training an MLModel. Will the variable be included
// or excluded from training? Will the variable be manipulated; for example,
// will it be combined with another variable or will it be split apart into
// word combinations? The recipe provides answers to these questions.
//
// You can't change an existing datasource, but you can copy and modify the
// settings from an existing Amazon Redshift datasource to create a new datasource.
// To do so, call GetDataSource for an existing datasource and copy the values
// to a CreateDataSource call. Change the settings that you want to change and
// make sure that all required fields have the appropriate values.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation CreateDataSourceFromRedshift for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
// * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException"
// A second request to use or change an object was not allowed. This can result
// from retrying a request using a parameter that was not present in the original
// request.
//
func ( c * MachineLearning ) CreateDataSourceFromRedshift ( input * CreateDataSourceFromRedshiftInput ) ( * CreateDataSourceFromRedshiftOutput , error ) {
req , out := c . CreateDataSourceFromRedshiftRequest ( input )
return out , req . Send ( )
}
// CreateDataSourceFromRedshiftWithContext is the same as CreateDataSourceFromRedshift with the addition of
// the ability to pass a context and additional request options.
//
// See CreateDataSourceFromRedshift for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) CreateDataSourceFromRedshiftWithContext ( ctx aws . Context , input * CreateDataSourceFromRedshiftInput , opts ... request . Option ) ( * CreateDataSourceFromRedshiftOutput , error ) {
req , out := c . CreateDataSourceFromRedshiftRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opCreateDataSourceFromS3 = "CreateDataSourceFromS3"
// CreateDataSourceFromS3Request generates a "aws/request.Request" representing the
// client's request for the CreateDataSourceFromS3 operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See CreateDataSourceFromS3 for more information on using the CreateDataSourceFromS3
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the CreateDataSourceFromS3Request method.
// req, resp := client.CreateDataSourceFromS3Request(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) CreateDataSourceFromS3Request ( input * CreateDataSourceFromS3Input ) ( req * request . Request , output * CreateDataSourceFromS3Output ) {
op := & request . Operation {
Name : opCreateDataSourceFromS3 ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & CreateDataSourceFromS3Input { }
}
output = & CreateDataSourceFromS3Output { }
req = c . newRequest ( op , input , output )
return
}
// CreateDataSourceFromS3 API operation for Amazon Machine Learning.
//
// Creates a DataSource object. A DataSource references data that can be used
// to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
//
// CreateDataSourceFromS3 is an asynchronous operation. In response to CreateDataSourceFromS3,
// Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
// status to PENDING. After the DataSource has been created and is ready for
// use, Amazon ML sets the Status parameter to COMPLETED. DataSource in the
// COMPLETED or PENDING state can be used to perform only CreateMLModel, CreateEvaluation
// or CreateBatchPrediction operations.
//
// If Amazon ML can't accept the input source, it sets the Status parameter
// to FAILED and includes an error message in the Message attribute of the GetDataSource
// operation response.
//
// The observation data used in a DataSource should be ready to use; that is,
// it should have a consistent structure, and missing data values should be
// kept to a minimum. The observation data must reside in one or more .csv files
// in an Amazon Simple Storage Service (Amazon S3) location, along with a schema
// that describes the data items by name and type. The same schema must be used
// for all of the data files referenced by the DataSource.
//
// After the DataSource has been created, it's ready to use in evaluations and
// batch predictions. If you plan to use the DataSource to train an MLModel,
// the DataSource also needs a recipe. A recipe describes how each input variable
// will be used in training an MLModel. Will the variable be included or excluded
// from training? Will the variable be manipulated; for example, will it be
// combined with another variable or will it be split apart into word combinations?
// The recipe provides answers to these questions.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation CreateDataSourceFromS3 for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
// * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException"
// A second request to use or change an object was not allowed. This can result
// from retrying a request using a parameter that was not present in the original
// request.
//
func ( c * MachineLearning ) CreateDataSourceFromS3 ( input * CreateDataSourceFromS3Input ) ( * CreateDataSourceFromS3Output , error ) {
req , out := c . CreateDataSourceFromS3Request ( input )
return out , req . Send ( )
}
// CreateDataSourceFromS3WithContext is the same as CreateDataSourceFromS3 with the addition of
// the ability to pass a context and additional request options.
//
// See CreateDataSourceFromS3 for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) CreateDataSourceFromS3WithContext ( ctx aws . Context , input * CreateDataSourceFromS3Input , opts ... request . Option ) ( * CreateDataSourceFromS3Output , error ) {
req , out := c . CreateDataSourceFromS3Request ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opCreateEvaluation = "CreateEvaluation"
// CreateEvaluationRequest generates a "aws/request.Request" representing the
// client's request for the CreateEvaluation operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See CreateEvaluation for more information on using the CreateEvaluation
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the CreateEvaluationRequest method.
// req, resp := client.CreateEvaluationRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) CreateEvaluationRequest ( input * CreateEvaluationInput ) ( req * request . Request , output * CreateEvaluationOutput ) {
op := & request . Operation {
Name : opCreateEvaluation ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & CreateEvaluationInput { }
}
output = & CreateEvaluationOutput { }
req = c . newRequest ( op , input , output )
return
}
// CreateEvaluation API operation for Amazon Machine Learning.
//
// Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set
// of observations associated to a DataSource. Like a DataSource for an MLModel,
// the DataSource for an Evaluation contains values for the Target Variable.
// The Evaluation compares the predicted result for each observation to the
// actual outcome and provides a summary so that you know how effective the
// MLModel functions on the test data. Evaluation generates a relevant performance
// metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on
// the corresponding MLModelType: BINARY, REGRESSION or MULTICLASS.
//
// CreateEvaluation is an asynchronous operation. In response to CreateEvaluation,
// Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation
// status to PENDING. After the Evaluation is created and ready for use, Amazon
// ML sets the status to COMPLETED.
//
// You can use the GetEvaluation operation to check progress of the evaluation
// during the creation operation.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation CreateEvaluation for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
// * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException"
// A second request to use or change an object was not allowed. This can result
// from retrying a request using a parameter that was not present in the original
// request.
//
func ( c * MachineLearning ) CreateEvaluation ( input * CreateEvaluationInput ) ( * CreateEvaluationOutput , error ) {
req , out := c . CreateEvaluationRequest ( input )
return out , req . Send ( )
}
// CreateEvaluationWithContext is the same as CreateEvaluation with the addition of
// the ability to pass a context and additional request options.
//
// See CreateEvaluation for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) CreateEvaluationWithContext ( ctx aws . Context , input * CreateEvaluationInput , opts ... request . Option ) ( * CreateEvaluationOutput , error ) {
req , out := c . CreateEvaluationRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opCreateMLModel = "CreateMLModel"
// CreateMLModelRequest generates a "aws/request.Request" representing the
// client's request for the CreateMLModel operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See CreateMLModel for more information on using the CreateMLModel
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the CreateMLModelRequest method.
// req, resp := client.CreateMLModelRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) CreateMLModelRequest ( input * CreateMLModelInput ) ( req * request . Request , output * CreateMLModelOutput ) {
op := & request . Operation {
Name : opCreateMLModel ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & CreateMLModelInput { }
}
output = & CreateMLModelOutput { }
req = c . newRequest ( op , input , output )
return
}
// CreateMLModel API operation for Amazon Machine Learning.
//
// Creates a new MLModel using the DataSource and the recipe as information
// sources.
//
// An MLModel is nearly immutable. Users can update only the MLModelName and
// the ScoreThreshold in an MLModel without creating a new MLModel.
//
// CreateMLModel is an asynchronous operation. In response to CreateMLModel,
// Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel
// status to PENDING. After the MLModel has been created and ready is for use,
// Amazon ML sets the status to COMPLETED.
//
// You can use the GetMLModel operation to check the progress of the MLModel
// during the creation operation.
//
// CreateMLModel requires a DataSource with computed statistics, which can be
// created by setting ComputeStatistics to true in CreateDataSourceFromRDS,
// CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation CreateMLModel for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
// * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException"
// A second request to use or change an object was not allowed. This can result
// from retrying a request using a parameter that was not present in the original
// request.
//
func ( c * MachineLearning ) CreateMLModel ( input * CreateMLModelInput ) ( * CreateMLModelOutput , error ) {
req , out := c . CreateMLModelRequest ( input )
return out , req . Send ( )
}
// CreateMLModelWithContext is the same as CreateMLModel with the addition of
// the ability to pass a context and additional request options.
//
// See CreateMLModel for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) CreateMLModelWithContext ( ctx aws . Context , input * CreateMLModelInput , opts ... request . Option ) ( * CreateMLModelOutput , error ) {
req , out := c . CreateMLModelRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opCreateRealtimeEndpoint = "CreateRealtimeEndpoint"
// CreateRealtimeEndpointRequest generates a "aws/request.Request" representing the
// client's request for the CreateRealtimeEndpoint operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See CreateRealtimeEndpoint for more information on using the CreateRealtimeEndpoint
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the CreateRealtimeEndpointRequest method.
// req, resp := client.CreateRealtimeEndpointRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) CreateRealtimeEndpointRequest ( input * CreateRealtimeEndpointInput ) ( req * request . Request , output * CreateRealtimeEndpointOutput ) {
op := & request . Operation {
Name : opCreateRealtimeEndpoint ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & CreateRealtimeEndpointInput { }
}
output = & CreateRealtimeEndpointOutput { }
req = c . newRequest ( op , input , output )
return
}
// CreateRealtimeEndpoint API operation for Amazon Machine Learning.
//
// Creates a real-time endpoint for the MLModel. The endpoint contains the URI
// of the MLModel; that is, the location to send real-time prediction requests
// for the specified MLModel.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation CreateRealtimeEndpoint for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) CreateRealtimeEndpoint ( input * CreateRealtimeEndpointInput ) ( * CreateRealtimeEndpointOutput , error ) {
req , out := c . CreateRealtimeEndpointRequest ( input )
return out , req . Send ( )
}
// CreateRealtimeEndpointWithContext is the same as CreateRealtimeEndpoint with the addition of
// the ability to pass a context and additional request options.
//
// See CreateRealtimeEndpoint for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) CreateRealtimeEndpointWithContext ( ctx aws . Context , input * CreateRealtimeEndpointInput , opts ... request . Option ) ( * CreateRealtimeEndpointOutput , error ) {
req , out := c . CreateRealtimeEndpointRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opDeleteBatchPrediction = "DeleteBatchPrediction"
// DeleteBatchPredictionRequest generates a "aws/request.Request" representing the
// client's request for the DeleteBatchPrediction operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DeleteBatchPrediction for more information on using the DeleteBatchPrediction
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DeleteBatchPredictionRequest method.
// req, resp := client.DeleteBatchPredictionRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DeleteBatchPredictionRequest ( input * DeleteBatchPredictionInput ) ( req * request . Request , output * DeleteBatchPredictionOutput ) {
op := & request . Operation {
Name : opDeleteBatchPrediction ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & DeleteBatchPredictionInput { }
}
output = & DeleteBatchPredictionOutput { }
req = c . newRequest ( op , input , output )
return
}
// DeleteBatchPrediction API operation for Amazon Machine Learning.
//
// Assigns the DELETED status to a BatchPrediction, rendering it unusable.
//
// After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction
// operation to verify that the status of the BatchPrediction changed to DELETED.
//
// Caution: The result of the DeleteBatchPrediction operation is irreversible.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DeleteBatchPrediction for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DeleteBatchPrediction ( input * DeleteBatchPredictionInput ) ( * DeleteBatchPredictionOutput , error ) {
req , out := c . DeleteBatchPredictionRequest ( input )
return out , req . Send ( )
}
// DeleteBatchPredictionWithContext is the same as DeleteBatchPrediction with the addition of
// the ability to pass a context and additional request options.
//
// See DeleteBatchPrediction for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DeleteBatchPredictionWithContext ( ctx aws . Context , input * DeleteBatchPredictionInput , opts ... request . Option ) ( * DeleteBatchPredictionOutput , error ) {
req , out := c . DeleteBatchPredictionRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opDeleteDataSource = "DeleteDataSource"
// DeleteDataSourceRequest generates a "aws/request.Request" representing the
// client's request for the DeleteDataSource operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DeleteDataSource for more information on using the DeleteDataSource
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DeleteDataSourceRequest method.
// req, resp := client.DeleteDataSourceRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DeleteDataSourceRequest ( input * DeleteDataSourceInput ) ( req * request . Request , output * DeleteDataSourceOutput ) {
op := & request . Operation {
Name : opDeleteDataSource ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & DeleteDataSourceInput { }
}
output = & DeleteDataSourceOutput { }
req = c . newRequest ( op , input , output )
return
}
// DeleteDataSource API operation for Amazon Machine Learning.
//
// Assigns the DELETED status to a DataSource, rendering it unusable.
//
// After using the DeleteDataSource operation, you can use the GetDataSource
// operation to verify that the status of the DataSource changed to DELETED.
//
// Caution: The results of the DeleteDataSource operation are irreversible.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DeleteDataSource for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DeleteDataSource ( input * DeleteDataSourceInput ) ( * DeleteDataSourceOutput , error ) {
req , out := c . DeleteDataSourceRequest ( input )
return out , req . Send ( )
}
// DeleteDataSourceWithContext is the same as DeleteDataSource with the addition of
// the ability to pass a context and additional request options.
//
// See DeleteDataSource for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DeleteDataSourceWithContext ( ctx aws . Context , input * DeleteDataSourceInput , opts ... request . Option ) ( * DeleteDataSourceOutput , error ) {
req , out := c . DeleteDataSourceRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opDeleteEvaluation = "DeleteEvaluation"
// DeleteEvaluationRequest generates a "aws/request.Request" representing the
// client's request for the DeleteEvaluation operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DeleteEvaluation for more information on using the DeleteEvaluation
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DeleteEvaluationRequest method.
// req, resp := client.DeleteEvaluationRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DeleteEvaluationRequest ( input * DeleteEvaluationInput ) ( req * request . Request , output * DeleteEvaluationOutput ) {
op := & request . Operation {
Name : opDeleteEvaluation ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & DeleteEvaluationInput { }
}
output = & DeleteEvaluationOutput { }
req = c . newRequest ( op , input , output )
return
}
// DeleteEvaluation API operation for Amazon Machine Learning.
//
// Assigns the DELETED status to an Evaluation, rendering it unusable.
//
// After invoking the DeleteEvaluation operation, you can use the GetEvaluation
// operation to verify that the status of the Evaluation changed to DELETED.
//
// CautionThe results of the DeleteEvaluation operation are irreversible.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DeleteEvaluation for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DeleteEvaluation ( input * DeleteEvaluationInput ) ( * DeleteEvaluationOutput , error ) {
req , out := c . DeleteEvaluationRequest ( input )
return out , req . Send ( )
}
// DeleteEvaluationWithContext is the same as DeleteEvaluation with the addition of
// the ability to pass a context and additional request options.
//
// See DeleteEvaluation for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DeleteEvaluationWithContext ( ctx aws . Context , input * DeleteEvaluationInput , opts ... request . Option ) ( * DeleteEvaluationOutput , error ) {
req , out := c . DeleteEvaluationRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opDeleteMLModel = "DeleteMLModel"
// DeleteMLModelRequest generates a "aws/request.Request" representing the
// client's request for the DeleteMLModel operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DeleteMLModel for more information on using the DeleteMLModel
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DeleteMLModelRequest method.
// req, resp := client.DeleteMLModelRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DeleteMLModelRequest ( input * DeleteMLModelInput ) ( req * request . Request , output * DeleteMLModelOutput ) {
op := & request . Operation {
Name : opDeleteMLModel ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & DeleteMLModelInput { }
}
output = & DeleteMLModelOutput { }
req = c . newRequest ( op , input , output )
return
}
// DeleteMLModel API operation for Amazon Machine Learning.
//
// Assigns the DELETED status to an MLModel, rendering it unusable.
//
// After using the DeleteMLModel operation, you can use the GetMLModel operation
// to verify that the status of the MLModel changed to DELETED.
//
// Caution: The result of the DeleteMLModel operation is irreversible.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DeleteMLModel for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DeleteMLModel ( input * DeleteMLModelInput ) ( * DeleteMLModelOutput , error ) {
req , out := c . DeleteMLModelRequest ( input )
return out , req . Send ( )
}
// DeleteMLModelWithContext is the same as DeleteMLModel with the addition of
// the ability to pass a context and additional request options.
//
// See DeleteMLModel for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DeleteMLModelWithContext ( ctx aws . Context , input * DeleteMLModelInput , opts ... request . Option ) ( * DeleteMLModelOutput , error ) {
req , out := c . DeleteMLModelRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opDeleteRealtimeEndpoint = "DeleteRealtimeEndpoint"
// DeleteRealtimeEndpointRequest generates a "aws/request.Request" representing the
// client's request for the DeleteRealtimeEndpoint operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DeleteRealtimeEndpoint for more information on using the DeleteRealtimeEndpoint
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DeleteRealtimeEndpointRequest method.
// req, resp := client.DeleteRealtimeEndpointRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DeleteRealtimeEndpointRequest ( input * DeleteRealtimeEndpointInput ) ( req * request . Request , output * DeleteRealtimeEndpointOutput ) {
op := & request . Operation {
Name : opDeleteRealtimeEndpoint ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & DeleteRealtimeEndpointInput { }
}
output = & DeleteRealtimeEndpointOutput { }
req = c . newRequest ( op , input , output )
return
}
// DeleteRealtimeEndpoint API operation for Amazon Machine Learning.
//
// Deletes a real time endpoint of an MLModel.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DeleteRealtimeEndpoint for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DeleteRealtimeEndpoint ( input * DeleteRealtimeEndpointInput ) ( * DeleteRealtimeEndpointOutput , error ) {
req , out := c . DeleteRealtimeEndpointRequest ( input )
return out , req . Send ( )
}
// DeleteRealtimeEndpointWithContext is the same as DeleteRealtimeEndpoint with the addition of
// the ability to pass a context and additional request options.
//
// See DeleteRealtimeEndpoint for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DeleteRealtimeEndpointWithContext ( ctx aws . Context , input * DeleteRealtimeEndpointInput , opts ... request . Option ) ( * DeleteRealtimeEndpointOutput , error ) {
req , out := c . DeleteRealtimeEndpointRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opDeleteTags = "DeleteTags"
// DeleteTagsRequest generates a "aws/request.Request" representing the
// client's request for the DeleteTags operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DeleteTags for more information on using the DeleteTags
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DeleteTagsRequest method.
// req, resp := client.DeleteTagsRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DeleteTagsRequest ( input * DeleteTagsInput ) ( req * request . Request , output * DeleteTagsOutput ) {
op := & request . Operation {
Name : opDeleteTags ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & DeleteTagsInput { }
}
output = & DeleteTagsOutput { }
req = c . newRequest ( op , input , output )
return
}
// DeleteTags API operation for Amazon Machine Learning.
//
// Deletes the specified tags associated with an ML object. After this operation
// is complete, you can't recover deleted tags.
//
// If you specify a tag that doesn't exist, Amazon ML ignores it.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DeleteTags for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInvalidTagException "InvalidTagException"
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DeleteTags ( input * DeleteTagsInput ) ( * DeleteTagsOutput , error ) {
req , out := c . DeleteTagsRequest ( input )
return out , req . Send ( )
}
// DeleteTagsWithContext is the same as DeleteTags with the addition of
// the ability to pass a context and additional request options.
//
// See DeleteTags for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DeleteTagsWithContext ( ctx aws . Context , input * DeleteTagsInput , opts ... request . Option ) ( * DeleteTagsOutput , error ) {
req , out := c . DeleteTagsRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opDescribeBatchPredictions = "DescribeBatchPredictions"
// DescribeBatchPredictionsRequest generates a "aws/request.Request" representing the
// client's request for the DescribeBatchPredictions operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DescribeBatchPredictions for more information on using the DescribeBatchPredictions
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DescribeBatchPredictionsRequest method.
// req, resp := client.DescribeBatchPredictionsRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DescribeBatchPredictionsRequest ( input * DescribeBatchPredictionsInput ) ( req * request . Request , output * DescribeBatchPredictionsOutput ) {
op := & request . Operation {
Name : opDescribeBatchPredictions ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
Paginator : & request . Paginator {
InputTokens : [ ] string { "NextToken" } ,
OutputTokens : [ ] string { "NextToken" } ,
LimitToken : "Limit" ,
TruncationToken : "" ,
} ,
}
if input == nil {
input = & DescribeBatchPredictionsInput { }
}
output = & DescribeBatchPredictionsOutput { }
req = c . newRequest ( op , input , output )
return
}
// DescribeBatchPredictions API operation for Amazon Machine Learning.
//
// Returns a list of BatchPrediction operations that match the search criteria
// in the request.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DescribeBatchPredictions for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DescribeBatchPredictions ( input * DescribeBatchPredictionsInput ) ( * DescribeBatchPredictionsOutput , error ) {
req , out := c . DescribeBatchPredictionsRequest ( input )
return out , req . Send ( )
}
// DescribeBatchPredictionsWithContext is the same as DescribeBatchPredictions with the addition of
// the ability to pass a context and additional request options.
//
// See DescribeBatchPredictions for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DescribeBatchPredictionsWithContext ( ctx aws . Context , input * DescribeBatchPredictionsInput , opts ... request . Option ) ( * DescribeBatchPredictionsOutput , error ) {
req , out := c . DescribeBatchPredictionsRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
// DescribeBatchPredictionsPages iterates over the pages of a DescribeBatchPredictions operation,
// calling the "fn" function with the response data for each page. To stop
// iterating, return false from the fn function.
//
// See DescribeBatchPredictions method for more information on how to use this operation.
//
// Note: This operation can generate multiple requests to a service.
//
// // Example iterating over at most 3 pages of a DescribeBatchPredictions operation.
// pageNum := 0
// err := client.DescribeBatchPredictionsPages(params,
// func(page *DescribeBatchPredictionsOutput, lastPage bool) bool {
// pageNum++
// fmt.Println(page)
// return pageNum <= 3
// })
//
func ( c * MachineLearning ) DescribeBatchPredictionsPages ( input * DescribeBatchPredictionsInput , fn func ( * DescribeBatchPredictionsOutput , bool ) bool ) error {
return c . DescribeBatchPredictionsPagesWithContext ( aws . BackgroundContext ( ) , input , fn )
}
// DescribeBatchPredictionsPagesWithContext same as DescribeBatchPredictionsPages except
// it takes a Context and allows setting request options on the pages.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DescribeBatchPredictionsPagesWithContext ( ctx aws . Context , input * DescribeBatchPredictionsInput , fn func ( * DescribeBatchPredictionsOutput , bool ) bool , opts ... request . Option ) error {
p := request . Pagination {
NewRequest : func ( ) ( * request . Request , error ) {
var inCpy * DescribeBatchPredictionsInput
if input != nil {
tmp := * input
inCpy = & tmp
}
req , _ := c . DescribeBatchPredictionsRequest ( inCpy )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return req , nil
} ,
}
cont := true
for p . Next ( ) && cont {
cont = fn ( p . Page ( ) . ( * DescribeBatchPredictionsOutput ) , ! p . HasNextPage ( ) )
}
return p . Err ( )
}
const opDescribeDataSources = "DescribeDataSources"
// DescribeDataSourcesRequest generates a "aws/request.Request" representing the
// client's request for the DescribeDataSources operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DescribeDataSources for more information on using the DescribeDataSources
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DescribeDataSourcesRequest method.
// req, resp := client.DescribeDataSourcesRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DescribeDataSourcesRequest ( input * DescribeDataSourcesInput ) ( req * request . Request , output * DescribeDataSourcesOutput ) {
op := & request . Operation {
Name : opDescribeDataSources ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
Paginator : & request . Paginator {
InputTokens : [ ] string { "NextToken" } ,
OutputTokens : [ ] string { "NextToken" } ,
LimitToken : "Limit" ,
TruncationToken : "" ,
} ,
}
if input == nil {
input = & DescribeDataSourcesInput { }
}
output = & DescribeDataSourcesOutput { }
req = c . newRequest ( op , input , output )
return
}
// DescribeDataSources API operation for Amazon Machine Learning.
//
// Returns a list of DataSource that match the search criteria in the request.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DescribeDataSources for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DescribeDataSources ( input * DescribeDataSourcesInput ) ( * DescribeDataSourcesOutput , error ) {
req , out := c . DescribeDataSourcesRequest ( input )
return out , req . Send ( )
}
// DescribeDataSourcesWithContext is the same as DescribeDataSources with the addition of
// the ability to pass a context and additional request options.
//
// See DescribeDataSources for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DescribeDataSourcesWithContext ( ctx aws . Context , input * DescribeDataSourcesInput , opts ... request . Option ) ( * DescribeDataSourcesOutput , error ) {
req , out := c . DescribeDataSourcesRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
// DescribeDataSourcesPages iterates over the pages of a DescribeDataSources operation,
// calling the "fn" function with the response data for each page. To stop
// iterating, return false from the fn function.
//
// See DescribeDataSources method for more information on how to use this operation.
//
// Note: This operation can generate multiple requests to a service.
//
// // Example iterating over at most 3 pages of a DescribeDataSources operation.
// pageNum := 0
// err := client.DescribeDataSourcesPages(params,
// func(page *DescribeDataSourcesOutput, lastPage bool) bool {
// pageNum++
// fmt.Println(page)
// return pageNum <= 3
// })
//
func ( c * MachineLearning ) DescribeDataSourcesPages ( input * DescribeDataSourcesInput , fn func ( * DescribeDataSourcesOutput , bool ) bool ) error {
return c . DescribeDataSourcesPagesWithContext ( aws . BackgroundContext ( ) , input , fn )
}
// DescribeDataSourcesPagesWithContext same as DescribeDataSourcesPages except
// it takes a Context and allows setting request options on the pages.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DescribeDataSourcesPagesWithContext ( ctx aws . Context , input * DescribeDataSourcesInput , fn func ( * DescribeDataSourcesOutput , bool ) bool , opts ... request . Option ) error {
p := request . Pagination {
NewRequest : func ( ) ( * request . Request , error ) {
var inCpy * DescribeDataSourcesInput
if input != nil {
tmp := * input
inCpy = & tmp
}
req , _ := c . DescribeDataSourcesRequest ( inCpy )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return req , nil
} ,
}
cont := true
for p . Next ( ) && cont {
cont = fn ( p . Page ( ) . ( * DescribeDataSourcesOutput ) , ! p . HasNextPage ( ) )
}
return p . Err ( )
}
const opDescribeEvaluations = "DescribeEvaluations"
// DescribeEvaluationsRequest generates a "aws/request.Request" representing the
// client's request for the DescribeEvaluations operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DescribeEvaluations for more information on using the DescribeEvaluations
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DescribeEvaluationsRequest method.
// req, resp := client.DescribeEvaluationsRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DescribeEvaluationsRequest ( input * DescribeEvaluationsInput ) ( req * request . Request , output * DescribeEvaluationsOutput ) {
op := & request . Operation {
Name : opDescribeEvaluations ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
Paginator : & request . Paginator {
InputTokens : [ ] string { "NextToken" } ,
OutputTokens : [ ] string { "NextToken" } ,
LimitToken : "Limit" ,
TruncationToken : "" ,
} ,
}
if input == nil {
input = & DescribeEvaluationsInput { }
}
output = & DescribeEvaluationsOutput { }
req = c . newRequest ( op , input , output )
return
}
// DescribeEvaluations API operation for Amazon Machine Learning.
//
// Returns a list of DescribeEvaluations that match the search criteria in the
// request.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DescribeEvaluations for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DescribeEvaluations ( input * DescribeEvaluationsInput ) ( * DescribeEvaluationsOutput , error ) {
req , out := c . DescribeEvaluationsRequest ( input )
return out , req . Send ( )
}
// DescribeEvaluationsWithContext is the same as DescribeEvaluations with the addition of
// the ability to pass a context and additional request options.
//
// See DescribeEvaluations for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DescribeEvaluationsWithContext ( ctx aws . Context , input * DescribeEvaluationsInput , opts ... request . Option ) ( * DescribeEvaluationsOutput , error ) {
req , out := c . DescribeEvaluationsRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
// DescribeEvaluationsPages iterates over the pages of a DescribeEvaluations operation,
// calling the "fn" function with the response data for each page. To stop
// iterating, return false from the fn function.
//
// See DescribeEvaluations method for more information on how to use this operation.
//
// Note: This operation can generate multiple requests to a service.
//
// // Example iterating over at most 3 pages of a DescribeEvaluations operation.
// pageNum := 0
// err := client.DescribeEvaluationsPages(params,
// func(page *DescribeEvaluationsOutput, lastPage bool) bool {
// pageNum++
// fmt.Println(page)
// return pageNum <= 3
// })
//
func ( c * MachineLearning ) DescribeEvaluationsPages ( input * DescribeEvaluationsInput , fn func ( * DescribeEvaluationsOutput , bool ) bool ) error {
return c . DescribeEvaluationsPagesWithContext ( aws . BackgroundContext ( ) , input , fn )
}
// DescribeEvaluationsPagesWithContext same as DescribeEvaluationsPages except
// it takes a Context and allows setting request options on the pages.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DescribeEvaluationsPagesWithContext ( ctx aws . Context , input * DescribeEvaluationsInput , fn func ( * DescribeEvaluationsOutput , bool ) bool , opts ... request . Option ) error {
p := request . Pagination {
NewRequest : func ( ) ( * request . Request , error ) {
var inCpy * DescribeEvaluationsInput
if input != nil {
tmp := * input
inCpy = & tmp
}
req , _ := c . DescribeEvaluationsRequest ( inCpy )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return req , nil
} ,
}
cont := true
for p . Next ( ) && cont {
cont = fn ( p . Page ( ) . ( * DescribeEvaluationsOutput ) , ! p . HasNextPage ( ) )
}
return p . Err ( )
}
const opDescribeMLModels = "DescribeMLModels"
// DescribeMLModelsRequest generates a "aws/request.Request" representing the
// client's request for the DescribeMLModels operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DescribeMLModels for more information on using the DescribeMLModels
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DescribeMLModelsRequest method.
// req, resp := client.DescribeMLModelsRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DescribeMLModelsRequest ( input * DescribeMLModelsInput ) ( req * request . Request , output * DescribeMLModelsOutput ) {
op := & request . Operation {
Name : opDescribeMLModels ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
Paginator : & request . Paginator {
InputTokens : [ ] string { "NextToken" } ,
OutputTokens : [ ] string { "NextToken" } ,
LimitToken : "Limit" ,
TruncationToken : "" ,
} ,
}
if input == nil {
input = & DescribeMLModelsInput { }
}
output = & DescribeMLModelsOutput { }
req = c . newRequest ( op , input , output )
return
}
// DescribeMLModels API operation for Amazon Machine Learning.
//
// Returns a list of MLModel that match the search criteria in the request.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DescribeMLModels for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DescribeMLModels ( input * DescribeMLModelsInput ) ( * DescribeMLModelsOutput , error ) {
req , out := c . DescribeMLModelsRequest ( input )
return out , req . Send ( )
}
// DescribeMLModelsWithContext is the same as DescribeMLModels with the addition of
// the ability to pass a context and additional request options.
//
// See DescribeMLModels for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DescribeMLModelsWithContext ( ctx aws . Context , input * DescribeMLModelsInput , opts ... request . Option ) ( * DescribeMLModelsOutput , error ) {
req , out := c . DescribeMLModelsRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
// DescribeMLModelsPages iterates over the pages of a DescribeMLModels operation,
// calling the "fn" function with the response data for each page. To stop
// iterating, return false from the fn function.
//
// See DescribeMLModels method for more information on how to use this operation.
//
// Note: This operation can generate multiple requests to a service.
//
// // Example iterating over at most 3 pages of a DescribeMLModels operation.
// pageNum := 0
// err := client.DescribeMLModelsPages(params,
// func(page *DescribeMLModelsOutput, lastPage bool) bool {
// pageNum++
// fmt.Println(page)
// return pageNum <= 3
// })
//
func ( c * MachineLearning ) DescribeMLModelsPages ( input * DescribeMLModelsInput , fn func ( * DescribeMLModelsOutput , bool ) bool ) error {
return c . DescribeMLModelsPagesWithContext ( aws . BackgroundContext ( ) , input , fn )
}
// DescribeMLModelsPagesWithContext same as DescribeMLModelsPages except
// it takes a Context and allows setting request options on the pages.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DescribeMLModelsPagesWithContext ( ctx aws . Context , input * DescribeMLModelsInput , fn func ( * DescribeMLModelsOutput , bool ) bool , opts ... request . Option ) error {
p := request . Pagination {
NewRequest : func ( ) ( * request . Request , error ) {
var inCpy * DescribeMLModelsInput
if input != nil {
tmp := * input
inCpy = & tmp
}
req , _ := c . DescribeMLModelsRequest ( inCpy )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return req , nil
} ,
}
cont := true
for p . Next ( ) && cont {
cont = fn ( p . Page ( ) . ( * DescribeMLModelsOutput ) , ! p . HasNextPage ( ) )
}
return p . Err ( )
}
const opDescribeTags = "DescribeTags"
// DescribeTagsRequest generates a "aws/request.Request" representing the
// client's request for the DescribeTags operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See DescribeTags for more information on using the DescribeTags
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the DescribeTagsRequest method.
// req, resp := client.DescribeTagsRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) DescribeTagsRequest ( input * DescribeTagsInput ) ( req * request . Request , output * DescribeTagsOutput ) {
op := & request . Operation {
Name : opDescribeTags ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & DescribeTagsInput { }
}
output = & DescribeTagsOutput { }
req = c . newRequest ( op , input , output )
return
}
// DescribeTags API operation for Amazon Machine Learning.
//
// Describes one or more of the tags for your Amazon ML object.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation DescribeTags for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) DescribeTags ( input * DescribeTagsInput ) ( * DescribeTagsOutput , error ) {
req , out := c . DescribeTagsRequest ( input )
return out , req . Send ( )
}
// DescribeTagsWithContext is the same as DescribeTags with the addition of
// the ability to pass a context and additional request options.
//
// See DescribeTags for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) DescribeTagsWithContext ( ctx aws . Context , input * DescribeTagsInput , opts ... request . Option ) ( * DescribeTagsOutput , error ) {
req , out := c . DescribeTagsRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opGetBatchPrediction = "GetBatchPrediction"
// GetBatchPredictionRequest generates a "aws/request.Request" representing the
// client's request for the GetBatchPrediction operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See GetBatchPrediction for more information on using the GetBatchPrediction
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the GetBatchPredictionRequest method.
// req, resp := client.GetBatchPredictionRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) GetBatchPredictionRequest ( input * GetBatchPredictionInput ) ( req * request . Request , output * GetBatchPredictionOutput ) {
op := & request . Operation {
Name : opGetBatchPrediction ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & GetBatchPredictionInput { }
}
output = & GetBatchPredictionOutput { }
req = c . newRequest ( op , input , output )
return
}
// GetBatchPrediction API operation for Amazon Machine Learning.
//
// Returns a BatchPrediction that includes detailed metadata, status, and data
// file information for a Batch Prediction request.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation GetBatchPrediction for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) GetBatchPrediction ( input * GetBatchPredictionInput ) ( * GetBatchPredictionOutput , error ) {
req , out := c . GetBatchPredictionRequest ( input )
return out , req . Send ( )
}
// GetBatchPredictionWithContext is the same as GetBatchPrediction with the addition of
// the ability to pass a context and additional request options.
//
// See GetBatchPrediction for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) GetBatchPredictionWithContext ( ctx aws . Context , input * GetBatchPredictionInput , opts ... request . Option ) ( * GetBatchPredictionOutput , error ) {
req , out := c . GetBatchPredictionRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opGetDataSource = "GetDataSource"
// GetDataSourceRequest generates a "aws/request.Request" representing the
// client's request for the GetDataSource operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See GetDataSource for more information on using the GetDataSource
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the GetDataSourceRequest method.
// req, resp := client.GetDataSourceRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) GetDataSourceRequest ( input * GetDataSourceInput ) ( req * request . Request , output * GetDataSourceOutput ) {
op := & request . Operation {
Name : opGetDataSource ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & GetDataSourceInput { }
}
output = & GetDataSourceOutput { }
req = c . newRequest ( op , input , output )
return
}
// GetDataSource API operation for Amazon Machine Learning.
//
// Returns a DataSource that includes metadata and data file information, as
// well as the current status of the DataSource.
//
// GetDataSource provides results in normal or verbose format. The verbose format
// adds the schema description and the list of files pointed to by the DataSource
// to the normal format.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation GetDataSource for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) GetDataSource ( input * GetDataSourceInput ) ( * GetDataSourceOutput , error ) {
req , out := c . GetDataSourceRequest ( input )
return out , req . Send ( )
}
// GetDataSourceWithContext is the same as GetDataSource with the addition of
// the ability to pass a context and additional request options.
//
// See GetDataSource for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) GetDataSourceWithContext ( ctx aws . Context , input * GetDataSourceInput , opts ... request . Option ) ( * GetDataSourceOutput , error ) {
req , out := c . GetDataSourceRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opGetEvaluation = "GetEvaluation"
// GetEvaluationRequest generates a "aws/request.Request" representing the
// client's request for the GetEvaluation operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See GetEvaluation for more information on using the GetEvaluation
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the GetEvaluationRequest method.
// req, resp := client.GetEvaluationRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) GetEvaluationRequest ( input * GetEvaluationInput ) ( req * request . Request , output * GetEvaluationOutput ) {
op := & request . Operation {
Name : opGetEvaluation ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & GetEvaluationInput { }
}
output = & GetEvaluationOutput { }
req = c . newRequest ( op , input , output )
return
}
// GetEvaluation API operation for Amazon Machine Learning.
//
// Returns an Evaluation that includes metadata as well as the current status
// of the Evaluation.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation GetEvaluation for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) GetEvaluation ( input * GetEvaluationInput ) ( * GetEvaluationOutput , error ) {
req , out := c . GetEvaluationRequest ( input )
return out , req . Send ( )
}
// GetEvaluationWithContext is the same as GetEvaluation with the addition of
// the ability to pass a context and additional request options.
//
// See GetEvaluation for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) GetEvaluationWithContext ( ctx aws . Context , input * GetEvaluationInput , opts ... request . Option ) ( * GetEvaluationOutput , error ) {
req , out := c . GetEvaluationRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opGetMLModel = "GetMLModel"
// GetMLModelRequest generates a "aws/request.Request" representing the
// client's request for the GetMLModel operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See GetMLModel for more information on using the GetMLModel
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the GetMLModelRequest method.
// req, resp := client.GetMLModelRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) GetMLModelRequest ( input * GetMLModelInput ) ( req * request . Request , output * GetMLModelOutput ) {
op := & request . Operation {
Name : opGetMLModel ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & GetMLModelInput { }
}
output = & GetMLModelOutput { }
req = c . newRequest ( op , input , output )
return
}
// GetMLModel API operation for Amazon Machine Learning.
//
// Returns an MLModel that includes detailed metadata, data source information,
// and the current status of the MLModel.
//
// GetMLModel provides results in normal or verbose format.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation GetMLModel for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) GetMLModel ( input * GetMLModelInput ) ( * GetMLModelOutput , error ) {
req , out := c . GetMLModelRequest ( input )
return out , req . Send ( )
}
// GetMLModelWithContext is the same as GetMLModel with the addition of
// the ability to pass a context and additional request options.
//
// See GetMLModel for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) GetMLModelWithContext ( ctx aws . Context , input * GetMLModelInput , opts ... request . Option ) ( * GetMLModelOutput , error ) {
req , out := c . GetMLModelRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opPredict = "Predict"
// PredictRequest generates a "aws/request.Request" representing the
// client's request for the Predict operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See Predict for more information on using the Predict
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the PredictRequest method.
// req, resp := client.PredictRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) PredictRequest ( input * PredictInput ) ( req * request . Request , output * PredictOutput ) {
op := & request . Operation {
Name : opPredict ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & PredictInput { }
}
output = & PredictOutput { }
req = c . newRequest ( op , input , output )
return
}
// Predict API operation for Amazon Machine Learning.
//
// Generates a prediction for the observation using the specified ML Model.
//
// NoteNot all response parameters will be populated. Whether a response parameter
// is populated depends on the type of model requested.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation Predict for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeLimitExceededException "LimitExceededException"
// The subscriber exceeded the maximum number of operations. This exception
// can occur when listing objects such as DataSource.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
// * ErrCodePredictorNotMountedException "PredictorNotMountedException"
// The exception is thrown when a predict request is made to an unmounted MLModel.
//
func ( c * MachineLearning ) Predict ( input * PredictInput ) ( * PredictOutput , error ) {
req , out := c . PredictRequest ( input )
return out , req . Send ( )
}
// PredictWithContext is the same as Predict with the addition of
// the ability to pass a context and additional request options.
//
// See Predict for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) PredictWithContext ( ctx aws . Context , input * PredictInput , opts ... request . Option ) ( * PredictOutput , error ) {
req , out := c . PredictRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opUpdateBatchPrediction = "UpdateBatchPrediction"
// UpdateBatchPredictionRequest generates a "aws/request.Request" representing the
// client's request for the UpdateBatchPrediction operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See UpdateBatchPrediction for more information on using the UpdateBatchPrediction
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the UpdateBatchPredictionRequest method.
// req, resp := client.UpdateBatchPredictionRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) UpdateBatchPredictionRequest ( input * UpdateBatchPredictionInput ) ( req * request . Request , output * UpdateBatchPredictionOutput ) {
op := & request . Operation {
Name : opUpdateBatchPrediction ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & UpdateBatchPredictionInput { }
}
output = & UpdateBatchPredictionOutput { }
req = c . newRequest ( op , input , output )
return
}
// UpdateBatchPrediction API operation for Amazon Machine Learning.
//
// Updates the BatchPredictionName of a BatchPrediction.
//
// You can use the GetBatchPrediction operation to view the contents of the
// updated data element.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation UpdateBatchPrediction for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) UpdateBatchPrediction ( input * UpdateBatchPredictionInput ) ( * UpdateBatchPredictionOutput , error ) {
req , out := c . UpdateBatchPredictionRequest ( input )
return out , req . Send ( )
}
// UpdateBatchPredictionWithContext is the same as UpdateBatchPrediction with the addition of
// the ability to pass a context and additional request options.
//
// See UpdateBatchPrediction for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) UpdateBatchPredictionWithContext ( ctx aws . Context , input * UpdateBatchPredictionInput , opts ... request . Option ) ( * UpdateBatchPredictionOutput , error ) {
req , out := c . UpdateBatchPredictionRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opUpdateDataSource = "UpdateDataSource"
// UpdateDataSourceRequest generates a "aws/request.Request" representing the
// client's request for the UpdateDataSource operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See UpdateDataSource for more information on using the UpdateDataSource
// API call, and error handling.
//
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the UpdateDataSourceRequest method.
// req, resp := client.UpdateDataSourceRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) UpdateDataSourceRequest ( input * UpdateDataSourceInput ) ( req * request . Request , output * UpdateDataSourceOutput ) {
op := & request . Operation {
Name : opUpdateDataSource ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & UpdateDataSourceInput { }
}
output = & UpdateDataSourceOutput { }
req = c . newRequest ( op , input , output )
return
}
// UpdateDataSource API operation for Amazon Machine Learning.
//
// Updates the DataSourceName of a DataSource.
//
// You can use the GetDataSource operation to view the contents of the updated
// data element.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation UpdateDataSource for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) UpdateDataSource ( input * UpdateDataSourceInput ) ( * UpdateDataSourceOutput , error ) {
req , out := c . UpdateDataSourceRequest ( input )
return out , req . Send ( )
}
// UpdateDataSourceWithContext is the same as UpdateDataSource with the addition of
// the ability to pass a context and additional request options.
//
// See UpdateDataSource for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) UpdateDataSourceWithContext ( ctx aws . Context , input * UpdateDataSourceInput , opts ... request . Option ) ( * UpdateDataSourceOutput , error ) {
req , out := c . UpdateDataSourceRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opUpdateEvaluation = "UpdateEvaluation"
// UpdateEvaluationRequest generates a "aws/request.Request" representing the
// client's request for the UpdateEvaluation operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See UpdateEvaluation for more information on using the UpdateEvaluation
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the UpdateEvaluationRequest method.
// req, resp := client.UpdateEvaluationRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) UpdateEvaluationRequest ( input * UpdateEvaluationInput ) ( req * request . Request , output * UpdateEvaluationOutput ) {
op := & request . Operation {
Name : opUpdateEvaluation ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & UpdateEvaluationInput { }
}
output = & UpdateEvaluationOutput { }
req = c . newRequest ( op , input , output )
return
}
// UpdateEvaluation API operation for Amazon Machine Learning.
//
// Updates the EvaluationName of an Evaluation.
//
// You can use the GetEvaluation operation to view the contents of the updated
// data element.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation UpdateEvaluation for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) UpdateEvaluation ( input * UpdateEvaluationInput ) ( * UpdateEvaluationOutput , error ) {
req , out := c . UpdateEvaluationRequest ( input )
return out , req . Send ( )
}
// UpdateEvaluationWithContext is the same as UpdateEvaluation with the addition of
// the ability to pass a context and additional request options.
//
// See UpdateEvaluation for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) UpdateEvaluationWithContext ( ctx aws . Context , input * UpdateEvaluationInput , opts ... request . Option ) ( * UpdateEvaluationOutput , error ) {
req , out := c . UpdateEvaluationRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
const opUpdateMLModel = "UpdateMLModel"
// UpdateMLModelRequest generates a "aws/request.Request" representing the
// client's request for the UpdateMLModel operation. The "output" return
2017-09-30 14:27:27 +00:00
// value will be populated with the request's response once the request complets
// successfuly.
//
// Use "Send" method on the returned Request to send the API call to the service.
// the "output" return value is not valid until after Send returns without error.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// See UpdateMLModel for more information on using the UpdateMLModel
// API call, and error handling.
2017-05-11 14:39:54 +00:00
//
2017-09-30 14:27:27 +00:00
// This method is useful when you want to inject custom logic or configuration
// into the SDK's request lifecycle. Such as custom headers, or retry logic.
2017-05-11 14:39:54 +00:00
//
//
// // Example sending a request using the UpdateMLModelRequest method.
// req, resp := client.UpdateMLModelRequest(params)
//
// err := req.Send()
// if err == nil { // resp is now filled
// fmt.Println(resp)
// }
func ( c * MachineLearning ) UpdateMLModelRequest ( input * UpdateMLModelInput ) ( req * request . Request , output * UpdateMLModelOutput ) {
op := & request . Operation {
Name : opUpdateMLModel ,
HTTPMethod : "POST" ,
HTTPPath : "/" ,
}
if input == nil {
input = & UpdateMLModelInput { }
}
output = & UpdateMLModelOutput { }
req = c . newRequest ( op , input , output )
return
}
// UpdateMLModel API operation for Amazon Machine Learning.
//
// Updates the MLModelName and the ScoreThreshold of an MLModel.
//
// You can use the GetMLModel operation to view the contents of the updated
// data element.
//
// Returns awserr.Error for service API and SDK errors. Use runtime type assertions
// with awserr.Error's Code and Message methods to get detailed information about
// the error.
//
// See the AWS API reference guide for Amazon Machine Learning's
// API operation UpdateMLModel for usage and error information.
//
// Returned Error Codes:
// * ErrCodeInvalidInputException "InvalidInputException"
// An error on the client occurred. Typically, the cause is an invalid input
// value.
//
// * ErrCodeResourceNotFoundException "ResourceNotFoundException"
// A specified resource cannot be located.
//
// * ErrCodeInternalServerException "InternalServerException"
// An error on the server occurred when trying to process a request.
//
func ( c * MachineLearning ) UpdateMLModel ( input * UpdateMLModelInput ) ( * UpdateMLModelOutput , error ) {
req , out := c . UpdateMLModelRequest ( input )
return out , req . Send ( )
}
// UpdateMLModelWithContext is the same as UpdateMLModel with the addition of
// the ability to pass a context and additional request options.
//
// See UpdateMLModel for details on how to use this API operation.
//
// The context must be non-nil and will be used for request cancellation. If
// the context is nil a panic will occur. In the future the SDK may create
// sub-contexts for http.Requests. See https://golang.org/pkg/context/
// for more information on using Contexts.
func ( c * MachineLearning ) UpdateMLModelWithContext ( ctx aws . Context , input * UpdateMLModelInput , opts ... request . Option ) ( * UpdateMLModelOutput , error ) {
req , out := c . UpdateMLModelRequest ( input )
req . SetContext ( ctx )
req . ApplyOptions ( opts ... )
return out , req . Send ( )
}
type AddTagsInput struct {
_ struct { } ` type:"structure" `
// The ID of the ML object to tag. For example, exampleModelId.
//
// ResourceId is a required field
ResourceId * string ` min:"1" type:"string" required:"true" `
// The type of the ML object to tag.
//
// ResourceType is a required field
ResourceType * string ` type:"string" required:"true" enum:"TaggableResourceType" `
// The key-value pairs to use to create tags. If you specify a key without specifying
// a value, Amazon ML creates a tag with the specified key and a value of null.
//
// Tags is a required field
Tags [ ] * Tag ` type:"list" required:"true" `
}
// String returns the string representation
func ( s AddTagsInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s AddTagsInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * AddTagsInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "AddTagsInput" }
if s . ResourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "ResourceId" ) )
}
if s . ResourceId != nil && len ( * s . ResourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "ResourceId" , 1 ) )
}
if s . ResourceType == nil {
invalidParams . Add ( request . NewErrParamRequired ( "ResourceType" ) )
}
if s . Tags == nil {
invalidParams . Add ( request . NewErrParamRequired ( "Tags" ) )
}
if s . Tags != nil {
for i , v := range s . Tags {
if v == nil {
continue
}
if err := v . Validate ( ) ; err != nil {
invalidParams . AddNested ( fmt . Sprintf ( "%s[%v]" , "Tags" , i ) , err . ( request . ErrInvalidParams ) )
}
}
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetResourceId sets the ResourceId field's value.
func ( s * AddTagsInput ) SetResourceId ( v string ) * AddTagsInput {
s . ResourceId = & v
return s
}
// SetResourceType sets the ResourceType field's value.
func ( s * AddTagsInput ) SetResourceType ( v string ) * AddTagsInput {
s . ResourceType = & v
return s
}
// SetTags sets the Tags field's value.
func ( s * AddTagsInput ) SetTags ( v [ ] * Tag ) * AddTagsInput {
s . Tags = v
return s
}
// Amazon ML returns the following elements.
type AddTagsOutput struct {
_ struct { } ` type:"structure" `
// The ID of the ML object that was tagged.
ResourceId * string ` min:"1" type:"string" `
// The type of the ML object that was tagged.
ResourceType * string ` type:"string" enum:"TaggableResourceType" `
}
// String returns the string representation
func ( s AddTagsOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s AddTagsOutput ) GoString ( ) string {
return s . String ( )
}
// SetResourceId sets the ResourceId field's value.
func ( s * AddTagsOutput ) SetResourceId ( v string ) * AddTagsOutput {
s . ResourceId = & v
return s
}
// SetResourceType sets the ResourceType field's value.
func ( s * AddTagsOutput ) SetResourceType ( v string ) * AddTagsOutput {
s . ResourceType = & v
return s
}
// Represents the output of a GetBatchPrediction operation.
//
// The content consists of the detailed metadata, the status, and the data file
// information of a Batch Prediction.
type BatchPrediction struct {
_ struct { } ` type:"structure" `
// The ID of the DataSource that points to the group of observations to predict.
BatchPredictionDataSourceId * string ` min:"1" type:"string" `
// The ID assigned to the BatchPrediction at creation. This value should be
// identical to the value of the BatchPredictionID in the request.
BatchPredictionId * string ` min:"1" type:"string" `
// Long integer type that is a 64-bit signed number.
ComputeTime * int64 ` type:"long" `
// The time that the BatchPrediction was created. The time is expressed in epoch
// time.
CreatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The AWS user account that invoked the BatchPrediction. The account type can
// be either an AWS root account or an AWS Identity and Access Management (IAM)
// user account.
CreatedByIamUser * string ` type:"string" `
// A timestamp represented in epoch time.
FinishedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The location of the data file or directory in Amazon Simple Storage Service
// (Amazon S3).
InputDataLocationS3 * string ` type:"string" `
// Long integer type that is a 64-bit signed number.
InvalidRecordCount * int64 ` type:"long" `
// The time of the most recent edit to the BatchPrediction. The time is expressed
// in epoch time.
LastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The ID of the MLModel that generated predictions for the BatchPrediction
// request.
MLModelId * string ` min:"1" type:"string" `
// A description of the most recent details about processing the batch prediction
// request.
Message * string ` type:"string" `
// A user-supplied name or description of the BatchPrediction.
Name * string ` type:"string" `
// The location of an Amazon S3 bucket or directory to receive the operation
// results. The following substrings are not allowed in the s3 key portion of
// the outputURI field: ':', '//', '/./', '/../'.
OutputUri * string ` type:"string" `
// A timestamp represented in epoch time.
StartedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The status of the BatchPrediction. This element can have one of the following
// values:
//
// * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
// generate predictions for a batch of observations.
// * INPROGRESS - The process is underway.
// * FAILED - The request to perform a batch prediction did not run to completion.
// It is not usable.
// * COMPLETED - The batch prediction process completed successfully.
// * DELETED - The BatchPrediction is marked as deleted. It is not usable.
Status * string ` type:"string" enum:"EntityStatus" `
// Long integer type that is a 64-bit signed number.
TotalRecordCount * int64 ` type:"long" `
}
// String returns the string representation
func ( s BatchPrediction ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s BatchPrediction ) GoString ( ) string {
return s . String ( )
}
// SetBatchPredictionDataSourceId sets the BatchPredictionDataSourceId field's value.
func ( s * BatchPrediction ) SetBatchPredictionDataSourceId ( v string ) * BatchPrediction {
s . BatchPredictionDataSourceId = & v
return s
}
// SetBatchPredictionId sets the BatchPredictionId field's value.
func ( s * BatchPrediction ) SetBatchPredictionId ( v string ) * BatchPrediction {
s . BatchPredictionId = & v
return s
}
// SetComputeTime sets the ComputeTime field's value.
func ( s * BatchPrediction ) SetComputeTime ( v int64 ) * BatchPrediction {
s . ComputeTime = & v
return s
}
// SetCreatedAt sets the CreatedAt field's value.
func ( s * BatchPrediction ) SetCreatedAt ( v time . Time ) * BatchPrediction {
s . CreatedAt = & v
return s
}
// SetCreatedByIamUser sets the CreatedByIamUser field's value.
func ( s * BatchPrediction ) SetCreatedByIamUser ( v string ) * BatchPrediction {
s . CreatedByIamUser = & v
return s
}
// SetFinishedAt sets the FinishedAt field's value.
func ( s * BatchPrediction ) SetFinishedAt ( v time . Time ) * BatchPrediction {
s . FinishedAt = & v
return s
}
// SetInputDataLocationS3 sets the InputDataLocationS3 field's value.
func ( s * BatchPrediction ) SetInputDataLocationS3 ( v string ) * BatchPrediction {
s . InputDataLocationS3 = & v
return s
}
// SetInvalidRecordCount sets the InvalidRecordCount field's value.
func ( s * BatchPrediction ) SetInvalidRecordCount ( v int64 ) * BatchPrediction {
s . InvalidRecordCount = & v
return s
}
// SetLastUpdatedAt sets the LastUpdatedAt field's value.
func ( s * BatchPrediction ) SetLastUpdatedAt ( v time . Time ) * BatchPrediction {
s . LastUpdatedAt = & v
return s
}
// SetMLModelId sets the MLModelId field's value.
func ( s * BatchPrediction ) SetMLModelId ( v string ) * BatchPrediction {
s . MLModelId = & v
return s
}
// SetMessage sets the Message field's value.
func ( s * BatchPrediction ) SetMessage ( v string ) * BatchPrediction {
s . Message = & v
return s
}
// SetName sets the Name field's value.
func ( s * BatchPrediction ) SetName ( v string ) * BatchPrediction {
s . Name = & v
return s
}
// SetOutputUri sets the OutputUri field's value.
func ( s * BatchPrediction ) SetOutputUri ( v string ) * BatchPrediction {
s . OutputUri = & v
return s
}
// SetStartedAt sets the StartedAt field's value.
func ( s * BatchPrediction ) SetStartedAt ( v time . Time ) * BatchPrediction {
s . StartedAt = & v
return s
}
// SetStatus sets the Status field's value.
func ( s * BatchPrediction ) SetStatus ( v string ) * BatchPrediction {
s . Status = & v
return s
}
// SetTotalRecordCount sets the TotalRecordCount field's value.
func ( s * BatchPrediction ) SetTotalRecordCount ( v int64 ) * BatchPrediction {
s . TotalRecordCount = & v
return s
}
type CreateBatchPredictionInput struct {
_ struct { } ` type:"structure" `
// The ID of the DataSource that points to the group of observations to predict.
//
// BatchPredictionDataSourceId is a required field
BatchPredictionDataSourceId * string ` min:"1" type:"string" required:"true" `
// A user-supplied ID that uniquely identifies the BatchPrediction.
//
// BatchPredictionId is a required field
BatchPredictionId * string ` min:"1" type:"string" required:"true" `
// A user-supplied name or description of the BatchPrediction. BatchPredictionName
// can only use the UTF-8 character set.
BatchPredictionName * string ` type:"string" `
// The ID of the MLModel that will generate predictions for the group of observations.
//
// MLModelId is a required field
MLModelId * string ` min:"1" type:"string" required:"true" `
// The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory
// to store the batch prediction results. The following substrings are not allowed
// in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'.
//
// Amazon ML needs permissions to store and retrieve the logs on your behalf.
// For information about how to set permissions, see the Amazon Machine Learning
// Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
//
// OutputUri is a required field
OutputUri * string ` type:"string" required:"true" `
}
// String returns the string representation
func ( s CreateBatchPredictionInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateBatchPredictionInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * CreateBatchPredictionInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "CreateBatchPredictionInput" }
if s . BatchPredictionDataSourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "BatchPredictionDataSourceId" ) )
}
if s . BatchPredictionDataSourceId != nil && len ( * s . BatchPredictionDataSourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "BatchPredictionDataSourceId" , 1 ) )
}
if s . BatchPredictionId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "BatchPredictionId" ) )
}
if s . BatchPredictionId != nil && len ( * s . BatchPredictionId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "BatchPredictionId" , 1 ) )
}
if s . MLModelId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelId" ) )
}
if s . MLModelId != nil && len ( * s . MLModelId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "MLModelId" , 1 ) )
}
if s . OutputUri == nil {
invalidParams . Add ( request . NewErrParamRequired ( "OutputUri" ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetBatchPredictionDataSourceId sets the BatchPredictionDataSourceId field's value.
func ( s * CreateBatchPredictionInput ) SetBatchPredictionDataSourceId ( v string ) * CreateBatchPredictionInput {
s . BatchPredictionDataSourceId = & v
return s
}
// SetBatchPredictionId sets the BatchPredictionId field's value.
func ( s * CreateBatchPredictionInput ) SetBatchPredictionId ( v string ) * CreateBatchPredictionInput {
s . BatchPredictionId = & v
return s
}
// SetBatchPredictionName sets the BatchPredictionName field's value.
func ( s * CreateBatchPredictionInput ) SetBatchPredictionName ( v string ) * CreateBatchPredictionInput {
s . BatchPredictionName = & v
return s
}
// SetMLModelId sets the MLModelId field's value.
func ( s * CreateBatchPredictionInput ) SetMLModelId ( v string ) * CreateBatchPredictionInput {
s . MLModelId = & v
return s
}
// SetOutputUri sets the OutputUri field's value.
func ( s * CreateBatchPredictionInput ) SetOutputUri ( v string ) * CreateBatchPredictionInput {
s . OutputUri = & v
return s
}
// Represents the output of a CreateBatchPrediction operation, and is an acknowledgement
// that Amazon ML received the request.
//
// The CreateBatchPrediction operation is asynchronous. You can poll for status
// updates by using the >GetBatchPrediction operation and checking the Status
// parameter of the result.
type CreateBatchPredictionOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the BatchPrediction. This value
// is identical to the value of the BatchPredictionId in the request.
BatchPredictionId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s CreateBatchPredictionOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateBatchPredictionOutput ) GoString ( ) string {
return s . String ( )
}
// SetBatchPredictionId sets the BatchPredictionId field's value.
func ( s * CreateBatchPredictionOutput ) SetBatchPredictionId ( v string ) * CreateBatchPredictionOutput {
s . BatchPredictionId = & v
return s
}
type CreateDataSourceFromRDSInput struct {
_ struct { } ` type:"structure" `
// The compute statistics for a DataSource. The statistics are generated from
// the observation data referenced by a DataSource. Amazon ML uses the statistics
// internally during MLModel training. This parameter must be set to true if
// the DataSource needs to be used for MLModel training.
ComputeStatistics * bool ` type:"boolean" `
// A user-supplied ID that uniquely identifies the DataSource. Typically, an
// Amazon Resource Number (ARN) becomes the ID for a DataSource.
//
// DataSourceId is a required field
DataSourceId * string ` min:"1" type:"string" required:"true" `
// A user-supplied name or description of the DataSource.
DataSourceName * string ` type:"string" `
// The data specification of an Amazon RDS DataSource:
//
// RDSData is a required field
RDSData * RDSDataSpec ` type:"structure" required:"true" `
// The role that Amazon ML assumes on behalf of the user to create and activate
// a data pipeline in the user's account and copy data using the SelectSqlQuery
// query from Amazon RDS to Amazon S3.
//
// RoleARN is a required field
RoleARN * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s CreateDataSourceFromRDSInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateDataSourceFromRDSInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * CreateDataSourceFromRDSInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "CreateDataSourceFromRDSInput" }
if s . DataSourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataSourceId" ) )
}
if s . DataSourceId != nil && len ( * s . DataSourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "DataSourceId" , 1 ) )
}
if s . RDSData == nil {
invalidParams . Add ( request . NewErrParamRequired ( "RDSData" ) )
}
if s . RoleARN == nil {
invalidParams . Add ( request . NewErrParamRequired ( "RoleARN" ) )
}
if s . RoleARN != nil && len ( * s . RoleARN ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "RoleARN" , 1 ) )
}
if s . RDSData != nil {
if err := s . RDSData . Validate ( ) ; err != nil {
invalidParams . AddNested ( "RDSData" , err . ( request . ErrInvalidParams ) )
}
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetComputeStatistics sets the ComputeStatistics field's value.
func ( s * CreateDataSourceFromRDSInput ) SetComputeStatistics ( v bool ) * CreateDataSourceFromRDSInput {
s . ComputeStatistics = & v
return s
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * CreateDataSourceFromRDSInput ) SetDataSourceId ( v string ) * CreateDataSourceFromRDSInput {
s . DataSourceId = & v
return s
}
// SetDataSourceName sets the DataSourceName field's value.
func ( s * CreateDataSourceFromRDSInput ) SetDataSourceName ( v string ) * CreateDataSourceFromRDSInput {
s . DataSourceName = & v
return s
}
// SetRDSData sets the RDSData field's value.
func ( s * CreateDataSourceFromRDSInput ) SetRDSData ( v * RDSDataSpec ) * CreateDataSourceFromRDSInput {
s . RDSData = v
return s
}
// SetRoleARN sets the RoleARN field's value.
func ( s * CreateDataSourceFromRDSInput ) SetRoleARN ( v string ) * CreateDataSourceFromRDSInput {
s . RoleARN = & v
return s
}
// Represents the output of a CreateDataSourceFromRDS operation, and is an acknowledgement
// that Amazon ML received the request.
//
// The CreateDataSourceFromRDS> operation is asynchronous. You can poll for
// updates by using the GetBatchPrediction operation and checking the Status
// parameter. You can inspect the Message when Status shows up as FAILED. You
// can also check the progress of the copy operation by going to the DataPipeline
// console and looking up the pipeline using the pipelineId from the describe
// call.
type CreateDataSourceFromRDSOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the datasource. This value should
// be identical to the value of the DataSourceID in the request.
DataSourceId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s CreateDataSourceFromRDSOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateDataSourceFromRDSOutput ) GoString ( ) string {
return s . String ( )
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * CreateDataSourceFromRDSOutput ) SetDataSourceId ( v string ) * CreateDataSourceFromRDSOutput {
s . DataSourceId = & v
return s
}
type CreateDataSourceFromRedshiftInput struct {
_ struct { } ` type:"structure" `
// The compute statistics for a DataSource. The statistics are generated from
// the observation data referenced by a DataSource. Amazon ML uses the statistics
// internally during MLModel training. This parameter must be set to true if
// the DataSource needs to be used for MLModel training.
ComputeStatistics * bool ` type:"boolean" `
// A user-supplied ID that uniquely identifies the DataSource.
//
// DataSourceId is a required field
DataSourceId * string ` min:"1" type:"string" required:"true" `
// A user-supplied name or description of the DataSource.
DataSourceName * string ` type:"string" `
// The data specification of an Amazon Redshift DataSource:
//
// * DatabaseInformation - DatabaseName - The name of the Amazon Redshift
// database.
// ClusterIdentifier - The unique ID for the Amazon Redshift cluster.
//
// * DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials
// that are used to connect to the Amazon Redshift database.
//
// * SelectSqlQuery - The query that is used to retrieve the observation
// data for the Datasource.
//
// * S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location
// for staging Amazon Redshift data. The data retrieved from Amazon Redshift
// using the SelectSqlQuery query is stored in this location.
//
// * DataSchemaUri - The Amazon S3 location of the DataSchema.
//
// * DataSchema - A JSON string representing the schema. This is not required
// if DataSchemaUri is specified.
//
// * DataRearrangement - A JSON string that represents the splitting and
// rearrangement requirements for the DataSource.
//
// Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
//
// DataSpec is a required field
DataSpec * RedshiftDataSpec ` type:"structure" required:"true" `
// A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the
// role on behalf of the user to create the following:
//
// A security group to allow Amazon ML to execute the SelectSqlQuery query on
// an Amazon Redshift cluster
//
// An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the
// S3StagingLocation
//
// RoleARN is a required field
RoleARN * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s CreateDataSourceFromRedshiftInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateDataSourceFromRedshiftInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * CreateDataSourceFromRedshiftInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "CreateDataSourceFromRedshiftInput" }
if s . DataSourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataSourceId" ) )
}
if s . DataSourceId != nil && len ( * s . DataSourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "DataSourceId" , 1 ) )
}
if s . DataSpec == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataSpec" ) )
}
if s . RoleARN == nil {
invalidParams . Add ( request . NewErrParamRequired ( "RoleARN" ) )
}
if s . RoleARN != nil && len ( * s . RoleARN ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "RoleARN" , 1 ) )
}
if s . DataSpec != nil {
if err := s . DataSpec . Validate ( ) ; err != nil {
invalidParams . AddNested ( "DataSpec" , err . ( request . ErrInvalidParams ) )
}
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetComputeStatistics sets the ComputeStatistics field's value.
func ( s * CreateDataSourceFromRedshiftInput ) SetComputeStatistics ( v bool ) * CreateDataSourceFromRedshiftInput {
s . ComputeStatistics = & v
return s
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * CreateDataSourceFromRedshiftInput ) SetDataSourceId ( v string ) * CreateDataSourceFromRedshiftInput {
s . DataSourceId = & v
return s
}
// SetDataSourceName sets the DataSourceName field's value.
func ( s * CreateDataSourceFromRedshiftInput ) SetDataSourceName ( v string ) * CreateDataSourceFromRedshiftInput {
s . DataSourceName = & v
return s
}
// SetDataSpec sets the DataSpec field's value.
func ( s * CreateDataSourceFromRedshiftInput ) SetDataSpec ( v * RedshiftDataSpec ) * CreateDataSourceFromRedshiftInput {
s . DataSpec = v
return s
}
// SetRoleARN sets the RoleARN field's value.
func ( s * CreateDataSourceFromRedshiftInput ) SetRoleARN ( v string ) * CreateDataSourceFromRedshiftInput {
s . RoleARN = & v
return s
}
// Represents the output of a CreateDataSourceFromRedshift operation, and is
// an acknowledgement that Amazon ML received the request.
//
// The CreateDataSourceFromRedshift operation is asynchronous. You can poll
// for updates by using the GetBatchPrediction operation and checking the Status
// parameter.
type CreateDataSourceFromRedshiftOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the datasource. This value should
// be identical to the value of the DataSourceID in the request.
DataSourceId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s CreateDataSourceFromRedshiftOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateDataSourceFromRedshiftOutput ) GoString ( ) string {
return s . String ( )
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * CreateDataSourceFromRedshiftOutput ) SetDataSourceId ( v string ) * CreateDataSourceFromRedshiftOutput {
s . DataSourceId = & v
return s
}
type CreateDataSourceFromS3Input struct {
_ struct { } ` type:"structure" `
// The compute statistics for a DataSource. The statistics are generated from
// the observation data referenced by a DataSource. Amazon ML uses the statistics
// internally during MLModel training. This parameter must be set to true if
// the DataSource needs to be used for MLModel training.
ComputeStatistics * bool ` type:"boolean" `
// A user-supplied identifier that uniquely identifies the DataSource.
//
// DataSourceId is a required field
DataSourceId * string ` min:"1" type:"string" required:"true" `
// A user-supplied name or description of the DataSource.
DataSourceName * string ` type:"string" `
// The data specification of a DataSource:
//
// * DataLocationS3 - The Amazon S3 location of the observation data.
//
// * DataSchemaLocationS3 - The Amazon S3 location of the DataSchema.
//
// * DataSchema - A JSON string representing the schema. This is not required
// if DataSchemaUri is specified.
//
// * DataRearrangement - A JSON string that represents the splitting and
// rearrangement requirements for the Datasource.
//
// Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
//
// DataSpec is a required field
DataSpec * S3DataSpec ` type:"structure" required:"true" `
}
// String returns the string representation
func ( s CreateDataSourceFromS3Input ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateDataSourceFromS3Input ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * CreateDataSourceFromS3Input ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "CreateDataSourceFromS3Input" }
if s . DataSourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataSourceId" ) )
}
if s . DataSourceId != nil && len ( * s . DataSourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "DataSourceId" , 1 ) )
}
if s . DataSpec == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataSpec" ) )
}
if s . DataSpec != nil {
if err := s . DataSpec . Validate ( ) ; err != nil {
invalidParams . AddNested ( "DataSpec" , err . ( request . ErrInvalidParams ) )
}
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetComputeStatistics sets the ComputeStatistics field's value.
func ( s * CreateDataSourceFromS3Input ) SetComputeStatistics ( v bool ) * CreateDataSourceFromS3Input {
s . ComputeStatistics = & v
return s
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * CreateDataSourceFromS3Input ) SetDataSourceId ( v string ) * CreateDataSourceFromS3Input {
s . DataSourceId = & v
return s
}
// SetDataSourceName sets the DataSourceName field's value.
func ( s * CreateDataSourceFromS3Input ) SetDataSourceName ( v string ) * CreateDataSourceFromS3Input {
s . DataSourceName = & v
return s
}
// SetDataSpec sets the DataSpec field's value.
func ( s * CreateDataSourceFromS3Input ) SetDataSpec ( v * S3DataSpec ) * CreateDataSourceFromS3Input {
s . DataSpec = v
return s
}
// Represents the output of a CreateDataSourceFromS3 operation, and is an acknowledgement
// that Amazon ML received the request.
//
// The CreateDataSourceFromS3 operation is asynchronous. You can poll for updates
// by using the GetBatchPrediction operation and checking the Status parameter.
type CreateDataSourceFromS3Output struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the DataSource. This value should
// be identical to the value of the DataSourceID in the request.
DataSourceId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s CreateDataSourceFromS3Output ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateDataSourceFromS3Output ) GoString ( ) string {
return s . String ( )
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * CreateDataSourceFromS3Output ) SetDataSourceId ( v string ) * CreateDataSourceFromS3Output {
s . DataSourceId = & v
return s
}
type CreateEvaluationInput struct {
_ struct { } ` type:"structure" `
// The ID of the DataSource for the evaluation. The schema of the DataSource
// must match the schema used to create the MLModel.
//
// EvaluationDataSourceId is a required field
EvaluationDataSourceId * string ` min:"1" type:"string" required:"true" `
// A user-supplied ID that uniquely identifies the Evaluation.
//
// EvaluationId is a required field
EvaluationId * string ` min:"1" type:"string" required:"true" `
// A user-supplied name or description of the Evaluation.
EvaluationName * string ` type:"string" `
// The ID of the MLModel to evaluate.
//
// The schema used in creating the MLModel must match the schema of the DataSource
// used in the Evaluation.
//
// MLModelId is a required field
MLModelId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s CreateEvaluationInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateEvaluationInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * CreateEvaluationInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "CreateEvaluationInput" }
if s . EvaluationDataSourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "EvaluationDataSourceId" ) )
}
if s . EvaluationDataSourceId != nil && len ( * s . EvaluationDataSourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "EvaluationDataSourceId" , 1 ) )
}
if s . EvaluationId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "EvaluationId" ) )
}
if s . EvaluationId != nil && len ( * s . EvaluationId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "EvaluationId" , 1 ) )
}
if s . MLModelId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelId" ) )
}
if s . MLModelId != nil && len ( * s . MLModelId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "MLModelId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetEvaluationDataSourceId sets the EvaluationDataSourceId field's value.
func ( s * CreateEvaluationInput ) SetEvaluationDataSourceId ( v string ) * CreateEvaluationInput {
s . EvaluationDataSourceId = & v
return s
}
// SetEvaluationId sets the EvaluationId field's value.
func ( s * CreateEvaluationInput ) SetEvaluationId ( v string ) * CreateEvaluationInput {
s . EvaluationId = & v
return s
}
// SetEvaluationName sets the EvaluationName field's value.
func ( s * CreateEvaluationInput ) SetEvaluationName ( v string ) * CreateEvaluationInput {
s . EvaluationName = & v
return s
}
// SetMLModelId sets the MLModelId field's value.
func ( s * CreateEvaluationInput ) SetMLModelId ( v string ) * CreateEvaluationInput {
s . MLModelId = & v
return s
}
// Represents the output of a CreateEvaluation operation, and is an acknowledgement
// that Amazon ML received the request.
//
// CreateEvaluation operation is asynchronous. You can poll for status updates
// by using the GetEvcaluation operation and checking the Status parameter.
type CreateEvaluationOutput struct {
_ struct { } ` type:"structure" `
// The user-supplied ID that uniquely identifies the Evaluation. This value
// should be identical to the value of the EvaluationId in the request.
EvaluationId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s CreateEvaluationOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateEvaluationOutput ) GoString ( ) string {
return s . String ( )
}
// SetEvaluationId sets the EvaluationId field's value.
func ( s * CreateEvaluationOutput ) SetEvaluationId ( v string ) * CreateEvaluationOutput {
s . EvaluationId = & v
return s
}
type CreateMLModelInput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the MLModel.
//
// MLModelId is a required field
MLModelId * string ` min:"1" type:"string" required:"true" `
// A user-supplied name or description of the MLModel.
MLModelName * string ` type:"string" `
// The category of supervised learning that this MLModel will address. Choose
// from the following types:
//
// * Choose REGRESSION if the MLModel will be used to predict a numeric value.
//
// * Choose BINARY if the MLModel result has two possible values.
// * Choose MULTICLASS if the MLModel result has a limited number of values.
//
// For more information, see the Amazon Machine Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
//
// MLModelType is a required field
MLModelType * string ` type:"string" required:"true" enum:"MLModelType" `
// A list of the training parameters in the MLModel. The list is implemented
// as a map of key-value pairs.
//
// The following is the current set of training parameters:
//
// * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
// on the input data, the size of the model might affect its performance.
//
// The value is an integer that ranges from 100000 to 2147483648. The default
// value is 33554432.
//
// * sgd.maxPasses - The number of times that the training process traverses
// the observations to build the MLModel. The value is an integer that ranges
// from 1 to 10000. The default value is 10.
//
// * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
// the data improves a model's ability to find the optimal solution for a
// variety of data types. The valid values are auto and none. The default
// value is none. We strongly recommend that you shuffle your data.
//
// * sgd.l1RegularizationAmount - The coefficient regularization L1 norm.
// It controls overfitting the data by penalizing large coefficients. This
// tends to drive coefficients to zero, resulting in a sparse feature set.
// If you use this parameter, start by specifying a small value, such as
// 1.0E-08.
//
// The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
// not use L1 normalization. This parameter can't be used when L2 is specified.
// Use this parameter sparingly.
//
// * sgd.l2RegularizationAmount - The coefficient regularization L2 norm.
// It controls overfitting the data by penalizing large coefficients. This
// tends to drive coefficients to small, nonzero values. If you use this
// parameter, start by specifying a small value, such as 1.0E-08.
//
// The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
// not use L2 normalization. This parameter can't be used when L1 is specified.
// Use this parameter sparingly.
Parameters map [ string ] * string ` type:"map" `
// The data recipe for creating the MLModel. You must specify either the recipe
// or its URI. If you don't specify a recipe or its URI, Amazon ML creates a
// default.
Recipe * string ` type:"string" `
// The Amazon Simple Storage Service (Amazon S3) location and file name that
// contains the MLModel recipe. You must specify either the recipe or its URI.
// If you don't specify a recipe or its URI, Amazon ML creates a default.
RecipeUri * string ` type:"string" `
// The DataSource that points to the training data.
//
// TrainingDataSourceId is a required field
TrainingDataSourceId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s CreateMLModelInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateMLModelInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * CreateMLModelInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "CreateMLModelInput" }
if s . MLModelId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelId" ) )
}
if s . MLModelId != nil && len ( * s . MLModelId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "MLModelId" , 1 ) )
}
if s . MLModelType == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelType" ) )
}
if s . TrainingDataSourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "TrainingDataSourceId" ) )
}
if s . TrainingDataSourceId != nil && len ( * s . TrainingDataSourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "TrainingDataSourceId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetMLModelId sets the MLModelId field's value.
func ( s * CreateMLModelInput ) SetMLModelId ( v string ) * CreateMLModelInput {
s . MLModelId = & v
return s
}
// SetMLModelName sets the MLModelName field's value.
func ( s * CreateMLModelInput ) SetMLModelName ( v string ) * CreateMLModelInput {
s . MLModelName = & v
return s
}
// SetMLModelType sets the MLModelType field's value.
func ( s * CreateMLModelInput ) SetMLModelType ( v string ) * CreateMLModelInput {
s . MLModelType = & v
return s
}
// SetParameters sets the Parameters field's value.
func ( s * CreateMLModelInput ) SetParameters ( v map [ string ] * string ) * CreateMLModelInput {
s . Parameters = v
return s
}
// SetRecipe sets the Recipe field's value.
func ( s * CreateMLModelInput ) SetRecipe ( v string ) * CreateMLModelInput {
s . Recipe = & v
return s
}
// SetRecipeUri sets the RecipeUri field's value.
func ( s * CreateMLModelInput ) SetRecipeUri ( v string ) * CreateMLModelInput {
s . RecipeUri = & v
return s
}
// SetTrainingDataSourceId sets the TrainingDataSourceId field's value.
func ( s * CreateMLModelInput ) SetTrainingDataSourceId ( v string ) * CreateMLModelInput {
s . TrainingDataSourceId = & v
return s
}
// Represents the output of a CreateMLModel operation, and is an acknowledgement
// that Amazon ML received the request.
//
// The CreateMLModel operation is asynchronous. You can poll for status updates
// by using the GetMLModel operation and checking the Status parameter.
type CreateMLModelOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the MLModel. This value should
// be identical to the value of the MLModelId in the request.
MLModelId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s CreateMLModelOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateMLModelOutput ) GoString ( ) string {
return s . String ( )
}
// SetMLModelId sets the MLModelId field's value.
func ( s * CreateMLModelOutput ) SetMLModelId ( v string ) * CreateMLModelOutput {
s . MLModelId = & v
return s
}
type CreateRealtimeEndpointInput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the MLModel during creation.
//
// MLModelId is a required field
MLModelId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s CreateRealtimeEndpointInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateRealtimeEndpointInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * CreateRealtimeEndpointInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "CreateRealtimeEndpointInput" }
if s . MLModelId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelId" ) )
}
if s . MLModelId != nil && len ( * s . MLModelId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "MLModelId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetMLModelId sets the MLModelId field's value.
func ( s * CreateRealtimeEndpointInput ) SetMLModelId ( v string ) * CreateRealtimeEndpointInput {
s . MLModelId = & v
return s
}
// Represents the output of an CreateRealtimeEndpoint operation.
//
// The result contains the MLModelId and the endpoint information for the MLModel.
//
// The endpoint information includes the URI of the MLModel; that is, the location
// to send online prediction requests for the specified MLModel.
type CreateRealtimeEndpointOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the MLModel. This value should
// be identical to the value of the MLModelId in the request.
MLModelId * string ` min:"1" type:"string" `
// The endpoint information of the MLModel
RealtimeEndpointInfo * RealtimeEndpointInfo ` type:"structure" `
}
// String returns the string representation
func ( s CreateRealtimeEndpointOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s CreateRealtimeEndpointOutput ) GoString ( ) string {
return s . String ( )
}
// SetMLModelId sets the MLModelId field's value.
func ( s * CreateRealtimeEndpointOutput ) SetMLModelId ( v string ) * CreateRealtimeEndpointOutput {
s . MLModelId = & v
return s
}
// SetRealtimeEndpointInfo sets the RealtimeEndpointInfo field's value.
func ( s * CreateRealtimeEndpointOutput ) SetRealtimeEndpointInfo ( v * RealtimeEndpointInfo ) * CreateRealtimeEndpointOutput {
s . RealtimeEndpointInfo = v
return s
}
// Represents the output of the GetDataSource operation.
//
// The content consists of the detailed metadata and data file information and
// the current status of the DataSource.
type DataSource struct {
_ struct { } ` type:"structure" `
// The parameter is true if statistics need to be generated from the observation
// data.
ComputeStatistics * bool ` type:"boolean" `
// Long integer type that is a 64-bit signed number.
ComputeTime * int64 ` type:"long" `
// The time that the DataSource was created. The time is expressed in epoch
// time.
CreatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The AWS user account from which the DataSource was created. The account type
// can be either an AWS root account or an AWS Identity and Access Management
// (IAM) user account.
CreatedByIamUser * string ` type:"string" `
// The location and name of the data in Amazon Simple Storage Service (Amazon
// S3) that is used by a DataSource.
DataLocationS3 * string ` type:"string" `
// A JSON string that represents the splitting and rearrangement requirement
// used when this DataSource was created.
DataRearrangement * string ` type:"string" `
// The total number of observations contained in the data files that the DataSource
// references.
DataSizeInBytes * int64 ` type:"long" `
// The ID that is assigned to the DataSource during creation.
DataSourceId * string ` min:"1" type:"string" `
// A timestamp represented in epoch time.
FinishedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The time of the most recent edit to the BatchPrediction. The time is expressed
// in epoch time.
LastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// A description of the most recent details about creating the DataSource.
Message * string ` type:"string" `
// A user-supplied name or description of the DataSource.
Name * string ` type:"string" `
// The number of data files referenced by the DataSource.
NumberOfFiles * int64 ` type:"long" `
// The datasource details that are specific to Amazon RDS.
RDSMetadata * RDSMetadata ` type:"structure" `
// Describes the DataSource details specific to Amazon Redshift.
RedshiftMetadata * RedshiftMetadata ` type:"structure" `
// The Amazon Resource Name (ARN) of an AWS IAM Role (http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts),
// such as the following: arn:aws:iam::account:role/rolename.
RoleARN * string ` min:"1" type:"string" `
// A timestamp represented in epoch time.
StartedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The current status of the DataSource. This element can have one of the following
// values:
//
// * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
// create a DataSource.
// * INPROGRESS - The creation process is underway.
// * FAILED - The request to create a DataSource did not run to completion.
// It is not usable.
// * COMPLETED - The creation process completed successfully.
// * DELETED - The DataSource is marked as deleted. It is not usable.
Status * string ` type:"string" enum:"EntityStatus" `
}
// String returns the string representation
func ( s DataSource ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DataSource ) GoString ( ) string {
return s . String ( )
}
// SetComputeStatistics sets the ComputeStatistics field's value.
func ( s * DataSource ) SetComputeStatistics ( v bool ) * DataSource {
s . ComputeStatistics = & v
return s
}
// SetComputeTime sets the ComputeTime field's value.
func ( s * DataSource ) SetComputeTime ( v int64 ) * DataSource {
s . ComputeTime = & v
return s
}
// SetCreatedAt sets the CreatedAt field's value.
func ( s * DataSource ) SetCreatedAt ( v time . Time ) * DataSource {
s . CreatedAt = & v
return s
}
// SetCreatedByIamUser sets the CreatedByIamUser field's value.
func ( s * DataSource ) SetCreatedByIamUser ( v string ) * DataSource {
s . CreatedByIamUser = & v
return s
}
// SetDataLocationS3 sets the DataLocationS3 field's value.
func ( s * DataSource ) SetDataLocationS3 ( v string ) * DataSource {
s . DataLocationS3 = & v
return s
}
// SetDataRearrangement sets the DataRearrangement field's value.
func ( s * DataSource ) SetDataRearrangement ( v string ) * DataSource {
s . DataRearrangement = & v
return s
}
// SetDataSizeInBytes sets the DataSizeInBytes field's value.
func ( s * DataSource ) SetDataSizeInBytes ( v int64 ) * DataSource {
s . DataSizeInBytes = & v
return s
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * DataSource ) SetDataSourceId ( v string ) * DataSource {
s . DataSourceId = & v
return s
}
// SetFinishedAt sets the FinishedAt field's value.
func ( s * DataSource ) SetFinishedAt ( v time . Time ) * DataSource {
s . FinishedAt = & v
return s
}
// SetLastUpdatedAt sets the LastUpdatedAt field's value.
func ( s * DataSource ) SetLastUpdatedAt ( v time . Time ) * DataSource {
s . LastUpdatedAt = & v
return s
}
// SetMessage sets the Message field's value.
func ( s * DataSource ) SetMessage ( v string ) * DataSource {
s . Message = & v
return s
}
// SetName sets the Name field's value.
func ( s * DataSource ) SetName ( v string ) * DataSource {
s . Name = & v
return s
}
// SetNumberOfFiles sets the NumberOfFiles field's value.
func ( s * DataSource ) SetNumberOfFiles ( v int64 ) * DataSource {
s . NumberOfFiles = & v
return s
}
// SetRDSMetadata sets the RDSMetadata field's value.
func ( s * DataSource ) SetRDSMetadata ( v * RDSMetadata ) * DataSource {
s . RDSMetadata = v
return s
}
// SetRedshiftMetadata sets the RedshiftMetadata field's value.
func ( s * DataSource ) SetRedshiftMetadata ( v * RedshiftMetadata ) * DataSource {
s . RedshiftMetadata = v
return s
}
// SetRoleARN sets the RoleARN field's value.
func ( s * DataSource ) SetRoleARN ( v string ) * DataSource {
s . RoleARN = & v
return s
}
// SetStartedAt sets the StartedAt field's value.
func ( s * DataSource ) SetStartedAt ( v time . Time ) * DataSource {
s . StartedAt = & v
return s
}
// SetStatus sets the Status field's value.
func ( s * DataSource ) SetStatus ( v string ) * DataSource {
s . Status = & v
return s
}
type DeleteBatchPredictionInput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the BatchPrediction.
//
// BatchPredictionId is a required field
BatchPredictionId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s DeleteBatchPredictionInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteBatchPredictionInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DeleteBatchPredictionInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DeleteBatchPredictionInput" }
if s . BatchPredictionId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "BatchPredictionId" ) )
}
if s . BatchPredictionId != nil && len ( * s . BatchPredictionId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "BatchPredictionId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetBatchPredictionId sets the BatchPredictionId field's value.
func ( s * DeleteBatchPredictionInput ) SetBatchPredictionId ( v string ) * DeleteBatchPredictionInput {
s . BatchPredictionId = & v
return s
}
// Represents the output of a DeleteBatchPrediction operation.
//
// You can use the GetBatchPrediction operation and check the value of the Status
// parameter to see whether a BatchPrediction is marked as DELETED.
type DeleteBatchPredictionOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the BatchPrediction. This value
// should be identical to the value of the BatchPredictionID in the request.
BatchPredictionId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s DeleteBatchPredictionOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteBatchPredictionOutput ) GoString ( ) string {
return s . String ( )
}
// SetBatchPredictionId sets the BatchPredictionId field's value.
func ( s * DeleteBatchPredictionOutput ) SetBatchPredictionId ( v string ) * DeleteBatchPredictionOutput {
s . BatchPredictionId = & v
return s
}
type DeleteDataSourceInput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the DataSource.
//
// DataSourceId is a required field
DataSourceId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s DeleteDataSourceInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteDataSourceInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DeleteDataSourceInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DeleteDataSourceInput" }
if s . DataSourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataSourceId" ) )
}
if s . DataSourceId != nil && len ( * s . DataSourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "DataSourceId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * DeleteDataSourceInput ) SetDataSourceId ( v string ) * DeleteDataSourceInput {
s . DataSourceId = & v
return s
}
// Represents the output of a DeleteDataSource operation.
type DeleteDataSourceOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the DataSource. This value should
// be identical to the value of the DataSourceID in the request.
DataSourceId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s DeleteDataSourceOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteDataSourceOutput ) GoString ( ) string {
return s . String ( )
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * DeleteDataSourceOutput ) SetDataSourceId ( v string ) * DeleteDataSourceOutput {
s . DataSourceId = & v
return s
}
type DeleteEvaluationInput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the Evaluation to delete.
//
// EvaluationId is a required field
EvaluationId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s DeleteEvaluationInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteEvaluationInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DeleteEvaluationInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DeleteEvaluationInput" }
if s . EvaluationId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "EvaluationId" ) )
}
if s . EvaluationId != nil && len ( * s . EvaluationId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "EvaluationId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetEvaluationId sets the EvaluationId field's value.
func ( s * DeleteEvaluationInput ) SetEvaluationId ( v string ) * DeleteEvaluationInput {
s . EvaluationId = & v
return s
}
// Represents the output of a DeleteEvaluation operation. The output indicates
// that Amazon Machine Learning (Amazon ML) received the request.
//
// You can use the GetEvaluation operation and check the value of the Status
// parameter to see whether an Evaluation is marked as DELETED.
type DeleteEvaluationOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the Evaluation. This value should
// be identical to the value of the EvaluationId in the request.
EvaluationId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s DeleteEvaluationOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteEvaluationOutput ) GoString ( ) string {
return s . String ( )
}
// SetEvaluationId sets the EvaluationId field's value.
func ( s * DeleteEvaluationOutput ) SetEvaluationId ( v string ) * DeleteEvaluationOutput {
s . EvaluationId = & v
return s
}
type DeleteMLModelInput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the MLModel.
//
// MLModelId is a required field
MLModelId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s DeleteMLModelInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteMLModelInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DeleteMLModelInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DeleteMLModelInput" }
if s . MLModelId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelId" ) )
}
if s . MLModelId != nil && len ( * s . MLModelId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "MLModelId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetMLModelId sets the MLModelId field's value.
func ( s * DeleteMLModelInput ) SetMLModelId ( v string ) * DeleteMLModelInput {
s . MLModelId = & v
return s
}
// Represents the output of a DeleteMLModel operation.
//
// You can use the GetMLModel operation and check the value of the Status parameter
// to see whether an MLModel is marked as DELETED.
type DeleteMLModelOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the MLModel. This value should
// be identical to the value of the MLModelID in the request.
MLModelId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s DeleteMLModelOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteMLModelOutput ) GoString ( ) string {
return s . String ( )
}
// SetMLModelId sets the MLModelId field's value.
func ( s * DeleteMLModelOutput ) SetMLModelId ( v string ) * DeleteMLModelOutput {
s . MLModelId = & v
return s
}
type DeleteRealtimeEndpointInput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the MLModel during creation.
//
// MLModelId is a required field
MLModelId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s DeleteRealtimeEndpointInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteRealtimeEndpointInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DeleteRealtimeEndpointInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DeleteRealtimeEndpointInput" }
if s . MLModelId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelId" ) )
}
if s . MLModelId != nil && len ( * s . MLModelId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "MLModelId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetMLModelId sets the MLModelId field's value.
func ( s * DeleteRealtimeEndpointInput ) SetMLModelId ( v string ) * DeleteRealtimeEndpointInput {
s . MLModelId = & v
return s
}
// Represents the output of an DeleteRealtimeEndpoint operation.
//
// The result contains the MLModelId and the endpoint information for the MLModel.
type DeleteRealtimeEndpointOutput struct {
_ struct { } ` type:"structure" `
// A user-supplied ID that uniquely identifies the MLModel. This value should
// be identical to the value of the MLModelId in the request.
MLModelId * string ` min:"1" type:"string" `
// The endpoint information of the MLModel
RealtimeEndpointInfo * RealtimeEndpointInfo ` type:"structure" `
}
// String returns the string representation
func ( s DeleteRealtimeEndpointOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteRealtimeEndpointOutput ) GoString ( ) string {
return s . String ( )
}
// SetMLModelId sets the MLModelId field's value.
func ( s * DeleteRealtimeEndpointOutput ) SetMLModelId ( v string ) * DeleteRealtimeEndpointOutput {
s . MLModelId = & v
return s
}
// SetRealtimeEndpointInfo sets the RealtimeEndpointInfo field's value.
func ( s * DeleteRealtimeEndpointOutput ) SetRealtimeEndpointInfo ( v * RealtimeEndpointInfo ) * DeleteRealtimeEndpointOutput {
s . RealtimeEndpointInfo = v
return s
}
type DeleteTagsInput struct {
_ struct { } ` type:"structure" `
// The ID of the tagged ML object. For example, exampleModelId.
//
// ResourceId is a required field
ResourceId * string ` min:"1" type:"string" required:"true" `
// The type of the tagged ML object.
//
// ResourceType is a required field
ResourceType * string ` type:"string" required:"true" enum:"TaggableResourceType" `
// One or more tags to delete.
//
// TagKeys is a required field
TagKeys [ ] * string ` type:"list" required:"true" `
}
// String returns the string representation
func ( s DeleteTagsInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteTagsInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DeleteTagsInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DeleteTagsInput" }
if s . ResourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "ResourceId" ) )
}
if s . ResourceId != nil && len ( * s . ResourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "ResourceId" , 1 ) )
}
if s . ResourceType == nil {
invalidParams . Add ( request . NewErrParamRequired ( "ResourceType" ) )
}
if s . TagKeys == nil {
invalidParams . Add ( request . NewErrParamRequired ( "TagKeys" ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetResourceId sets the ResourceId field's value.
func ( s * DeleteTagsInput ) SetResourceId ( v string ) * DeleteTagsInput {
s . ResourceId = & v
return s
}
// SetResourceType sets the ResourceType field's value.
func ( s * DeleteTagsInput ) SetResourceType ( v string ) * DeleteTagsInput {
s . ResourceType = & v
return s
}
// SetTagKeys sets the TagKeys field's value.
func ( s * DeleteTagsInput ) SetTagKeys ( v [ ] * string ) * DeleteTagsInput {
s . TagKeys = v
return s
}
// Amazon ML returns the following elements.
type DeleteTagsOutput struct {
_ struct { } ` type:"structure" `
// The ID of the ML object from which tags were deleted.
ResourceId * string ` min:"1" type:"string" `
// The type of the ML object from which tags were deleted.
ResourceType * string ` type:"string" enum:"TaggableResourceType" `
}
// String returns the string representation
func ( s DeleteTagsOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DeleteTagsOutput ) GoString ( ) string {
return s . String ( )
}
// SetResourceId sets the ResourceId field's value.
func ( s * DeleteTagsOutput ) SetResourceId ( v string ) * DeleteTagsOutput {
s . ResourceId = & v
return s
}
// SetResourceType sets the ResourceType field's value.
func ( s * DeleteTagsOutput ) SetResourceType ( v string ) * DeleteTagsOutput {
s . ResourceType = & v
return s
}
type DescribeBatchPredictionsInput struct {
_ struct { } ` type:"structure" `
// The equal to operator. The BatchPrediction results will have FilterVariable
// values that exactly match the value specified with EQ.
EQ * string ` type:"string" `
// Use one of the following variables to filter a list of BatchPrediction:
//
// * CreatedAt - Sets the search criteria to the BatchPrediction creation
// date.
// * Status - Sets the search criteria to the BatchPrediction status.
// * Name - Sets the search criteria to the contents of the BatchPredictionName.
//
// * IAMUser - Sets the search criteria to the user account that invoked
// the BatchPrediction creation.
// * MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction.
//
// * DataSourceId - Sets the search criteria to the DataSource used in the
// BatchPrediction.
// * DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction.
// The URL can identify either a file or an Amazon Simple Storage Solution
// (Amazon S3) bucket or directory.
FilterVariable * string ` type:"string" enum:"BatchPredictionFilterVariable" `
// The greater than or equal to operator. The BatchPrediction results will have
// FilterVariable values that are greater than or equal to the value specified
// with GE.
GE * string ` type:"string" `
// The greater than operator. The BatchPrediction results will have FilterVariable
// values that are greater than the value specified with GT.
GT * string ` type:"string" `
// The less than or equal to operator. The BatchPrediction results will have
// FilterVariable values that are less than or equal to the value specified
// with LE.
LE * string ` type:"string" `
// The less than operator. The BatchPrediction results will have FilterVariable
// values that are less than the value specified with LT.
LT * string ` type:"string" `
// The number of pages of information to include in the result. The range of
// acceptable values is 1 through 100. The default value is 100.
Limit * int64 ` min:"1" type:"integer" `
// The not equal to operator. The BatchPrediction results will have FilterVariable
// values not equal to the value specified with NE.
NE * string ` type:"string" `
// An ID of the page in the paginated results.
NextToken * string ` type:"string" `
// A string that is found at the beginning of a variable, such as Name or Id.
//
// For example, a Batch Prediction operation could have the Name2014-09-09-HolidayGiftMailer.
// To search for this BatchPrediction, select Name for the FilterVariable and
// any of the following strings for the Prefix:
//
// * 2014-09
//
// * 2014-09-09
//
// * 2014-09-09-Holiday
Prefix * string ` type:"string" `
// A two-value parameter that determines the sequence of the resulting list
// of MLModels.
//
// * asc - Arranges the list in ascending order (A-Z, 0-9).
// * dsc - Arranges the list in descending order (Z-A, 9-0).
// Results are sorted by FilterVariable.
SortOrder * string ` type:"string" enum:"SortOrder" `
}
// String returns the string representation
func ( s DescribeBatchPredictionsInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeBatchPredictionsInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DescribeBatchPredictionsInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DescribeBatchPredictionsInput" }
if s . Limit != nil && * s . Limit < 1 {
invalidParams . Add ( request . NewErrParamMinValue ( "Limit" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetEQ sets the EQ field's value.
func ( s * DescribeBatchPredictionsInput ) SetEQ ( v string ) * DescribeBatchPredictionsInput {
s . EQ = & v
return s
}
// SetFilterVariable sets the FilterVariable field's value.
func ( s * DescribeBatchPredictionsInput ) SetFilterVariable ( v string ) * DescribeBatchPredictionsInput {
s . FilterVariable = & v
return s
}
// SetGE sets the GE field's value.
func ( s * DescribeBatchPredictionsInput ) SetGE ( v string ) * DescribeBatchPredictionsInput {
s . GE = & v
return s
}
// SetGT sets the GT field's value.
func ( s * DescribeBatchPredictionsInput ) SetGT ( v string ) * DescribeBatchPredictionsInput {
s . GT = & v
return s
}
// SetLE sets the LE field's value.
func ( s * DescribeBatchPredictionsInput ) SetLE ( v string ) * DescribeBatchPredictionsInput {
s . LE = & v
return s
}
// SetLT sets the LT field's value.
func ( s * DescribeBatchPredictionsInput ) SetLT ( v string ) * DescribeBatchPredictionsInput {
s . LT = & v
return s
}
// SetLimit sets the Limit field's value.
func ( s * DescribeBatchPredictionsInput ) SetLimit ( v int64 ) * DescribeBatchPredictionsInput {
s . Limit = & v
return s
}
// SetNE sets the NE field's value.
func ( s * DescribeBatchPredictionsInput ) SetNE ( v string ) * DescribeBatchPredictionsInput {
s . NE = & v
return s
}
// SetNextToken sets the NextToken field's value.
func ( s * DescribeBatchPredictionsInput ) SetNextToken ( v string ) * DescribeBatchPredictionsInput {
s . NextToken = & v
return s
}
// SetPrefix sets the Prefix field's value.
func ( s * DescribeBatchPredictionsInput ) SetPrefix ( v string ) * DescribeBatchPredictionsInput {
s . Prefix = & v
return s
}
// SetSortOrder sets the SortOrder field's value.
func ( s * DescribeBatchPredictionsInput ) SetSortOrder ( v string ) * DescribeBatchPredictionsInput {
s . SortOrder = & v
return s
}
// Represents the output of a DescribeBatchPredictions operation. The content
// is essentially a list of BatchPredictions.
type DescribeBatchPredictionsOutput struct {
_ struct { } ` type:"structure" `
// The ID of the next page in the paginated results that indicates at least
// one more page follows.
NextToken * string ` type:"string" `
// A list of BatchPrediction objects that meet the search criteria.
Results [ ] * BatchPrediction ` type:"list" `
}
// String returns the string representation
func ( s DescribeBatchPredictionsOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeBatchPredictionsOutput ) GoString ( ) string {
return s . String ( )
}
// SetNextToken sets the NextToken field's value.
func ( s * DescribeBatchPredictionsOutput ) SetNextToken ( v string ) * DescribeBatchPredictionsOutput {
s . NextToken = & v
return s
}
// SetResults sets the Results field's value.
func ( s * DescribeBatchPredictionsOutput ) SetResults ( v [ ] * BatchPrediction ) * DescribeBatchPredictionsOutput {
s . Results = v
return s
}
type DescribeDataSourcesInput struct {
_ struct { } ` type:"structure" `
// The equal to operator. The DataSource results will have FilterVariable values
// that exactly match the value specified with EQ.
EQ * string ` type:"string" `
// Use one of the following variables to filter a list of DataSource:
//
// * CreatedAt - Sets the search criteria to DataSource creation dates.
// * Status - Sets the search criteria to DataSource statuses.
// * Name - Sets the search criteria to the contents of DataSourceName.
// * DataUri - Sets the search criteria to the URI of data files used to
// create the DataSource. The URI can identify either a file or an Amazon
// Simple Storage Service (Amazon S3) bucket or directory.
// * IAMUser - Sets the search criteria to the user account that invoked
// the DataSource creation.
FilterVariable * string ` type:"string" enum:"DataSourceFilterVariable" `
// The greater than or equal to operator. The DataSource results will have FilterVariable
// values that are greater than or equal to the value specified with GE.
GE * string ` type:"string" `
// The greater than operator. The DataSource results will have FilterVariable
// values that are greater than the value specified with GT.
GT * string ` type:"string" `
// The less than or equal to operator. The DataSource results will have FilterVariable
// values that are less than or equal to the value specified with LE.
LE * string ` type:"string" `
// The less than operator. The DataSource results will have FilterVariable values
// that are less than the value specified with LT.
LT * string ` type:"string" `
// The maximum number of DataSource to include in the result.
Limit * int64 ` min:"1" type:"integer" `
// The not equal to operator. The DataSource results will have FilterVariable
// values not equal to the value specified with NE.
NE * string ` type:"string" `
// The ID of the page in the paginated results.
NextToken * string ` type:"string" `
// A string that is found at the beginning of a variable, such as Name or Id.
//
// For example, a DataSource could have the Name2014-09-09-HolidayGiftMailer.
// To search for this DataSource, select Name for the FilterVariable and any
// of the following strings for the Prefix:
//
// * 2014-09
//
// * 2014-09-09
//
// * 2014-09-09-Holiday
Prefix * string ` type:"string" `
// A two-value parameter that determines the sequence of the resulting list
// of DataSource.
//
// * asc - Arranges the list in ascending order (A-Z, 0-9).
// * dsc - Arranges the list in descending order (Z-A, 9-0).
// Results are sorted by FilterVariable.
SortOrder * string ` type:"string" enum:"SortOrder" `
}
// String returns the string representation
func ( s DescribeDataSourcesInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeDataSourcesInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DescribeDataSourcesInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DescribeDataSourcesInput" }
if s . Limit != nil && * s . Limit < 1 {
invalidParams . Add ( request . NewErrParamMinValue ( "Limit" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetEQ sets the EQ field's value.
func ( s * DescribeDataSourcesInput ) SetEQ ( v string ) * DescribeDataSourcesInput {
s . EQ = & v
return s
}
// SetFilterVariable sets the FilterVariable field's value.
func ( s * DescribeDataSourcesInput ) SetFilterVariable ( v string ) * DescribeDataSourcesInput {
s . FilterVariable = & v
return s
}
// SetGE sets the GE field's value.
func ( s * DescribeDataSourcesInput ) SetGE ( v string ) * DescribeDataSourcesInput {
s . GE = & v
return s
}
// SetGT sets the GT field's value.
func ( s * DescribeDataSourcesInput ) SetGT ( v string ) * DescribeDataSourcesInput {
s . GT = & v
return s
}
// SetLE sets the LE field's value.
func ( s * DescribeDataSourcesInput ) SetLE ( v string ) * DescribeDataSourcesInput {
s . LE = & v
return s
}
// SetLT sets the LT field's value.
func ( s * DescribeDataSourcesInput ) SetLT ( v string ) * DescribeDataSourcesInput {
s . LT = & v
return s
}
// SetLimit sets the Limit field's value.
func ( s * DescribeDataSourcesInput ) SetLimit ( v int64 ) * DescribeDataSourcesInput {
s . Limit = & v
return s
}
// SetNE sets the NE field's value.
func ( s * DescribeDataSourcesInput ) SetNE ( v string ) * DescribeDataSourcesInput {
s . NE = & v
return s
}
// SetNextToken sets the NextToken field's value.
func ( s * DescribeDataSourcesInput ) SetNextToken ( v string ) * DescribeDataSourcesInput {
s . NextToken = & v
return s
}
// SetPrefix sets the Prefix field's value.
func ( s * DescribeDataSourcesInput ) SetPrefix ( v string ) * DescribeDataSourcesInput {
s . Prefix = & v
return s
}
// SetSortOrder sets the SortOrder field's value.
func ( s * DescribeDataSourcesInput ) SetSortOrder ( v string ) * DescribeDataSourcesInput {
s . SortOrder = & v
return s
}
// Represents the query results from a DescribeDataSources operation. The content
// is essentially a list of DataSource.
type DescribeDataSourcesOutput struct {
_ struct { } ` type:"structure" `
// An ID of the next page in the paginated results that indicates at least one
// more page follows.
NextToken * string ` type:"string" `
// A list of DataSource that meet the search criteria.
Results [ ] * DataSource ` type:"list" `
}
// String returns the string representation
func ( s DescribeDataSourcesOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeDataSourcesOutput ) GoString ( ) string {
return s . String ( )
}
// SetNextToken sets the NextToken field's value.
func ( s * DescribeDataSourcesOutput ) SetNextToken ( v string ) * DescribeDataSourcesOutput {
s . NextToken = & v
return s
}
// SetResults sets the Results field's value.
func ( s * DescribeDataSourcesOutput ) SetResults ( v [ ] * DataSource ) * DescribeDataSourcesOutput {
s . Results = v
return s
}
type DescribeEvaluationsInput struct {
_ struct { } ` type:"structure" `
// The equal to operator. The Evaluation results will have FilterVariable values
// that exactly match the value specified with EQ.
EQ * string ` type:"string" `
// Use one of the following variable to filter a list of Evaluation objects:
//
// * CreatedAt - Sets the search criteria to the Evaluation creation date.
//
// * Status - Sets the search criteria to the Evaluation status.
// * Name - Sets the search criteria to the contents of EvaluationName.
// * IAMUser - Sets the search criteria to the user account that invoked
// an Evaluation.
// * MLModelId - Sets the search criteria to the MLModel that was evaluated.
//
// * DataSourceId - Sets the search criteria to the DataSource used in Evaluation.
//
// * DataUri - Sets the search criteria to the data file(s) used in Evaluation.
// The URL can identify either a file or an Amazon Simple Storage Solution
// (Amazon S3) bucket or directory.
FilterVariable * string ` type:"string" enum:"EvaluationFilterVariable" `
// The greater than or equal to operator. The Evaluation results will have FilterVariable
// values that are greater than or equal to the value specified with GE.
GE * string ` type:"string" `
// The greater than operator. The Evaluation results will have FilterVariable
// values that are greater than the value specified with GT.
GT * string ` type:"string" `
// The less than or equal to operator. The Evaluation results will have FilterVariable
// values that are less than or equal to the value specified with LE.
LE * string ` type:"string" `
// The less than operator. The Evaluation results will have FilterVariable values
// that are less than the value specified with LT.
LT * string ` type:"string" `
// The maximum number of Evaluation to include in the result.
Limit * int64 ` min:"1" type:"integer" `
// The not equal to operator. The Evaluation results will have FilterVariable
// values not equal to the value specified with NE.
NE * string ` type:"string" `
// The ID of the page in the paginated results.
NextToken * string ` type:"string" `
// A string that is found at the beginning of a variable, such as Name or Id.
//
// For example, an Evaluation could have the Name2014-09-09-HolidayGiftMailer.
// To search for this Evaluation, select Name for the FilterVariable and any
// of the following strings for the Prefix:
//
// * 2014-09
//
// * 2014-09-09
//
// * 2014-09-09-Holiday
Prefix * string ` type:"string" `
// A two-value parameter that determines the sequence of the resulting list
// of Evaluation.
//
// * asc - Arranges the list in ascending order (A-Z, 0-9).
// * dsc - Arranges the list in descending order (Z-A, 9-0).
// Results are sorted by FilterVariable.
SortOrder * string ` type:"string" enum:"SortOrder" `
}
// String returns the string representation
func ( s DescribeEvaluationsInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeEvaluationsInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DescribeEvaluationsInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DescribeEvaluationsInput" }
if s . Limit != nil && * s . Limit < 1 {
invalidParams . Add ( request . NewErrParamMinValue ( "Limit" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetEQ sets the EQ field's value.
func ( s * DescribeEvaluationsInput ) SetEQ ( v string ) * DescribeEvaluationsInput {
s . EQ = & v
return s
}
// SetFilterVariable sets the FilterVariable field's value.
func ( s * DescribeEvaluationsInput ) SetFilterVariable ( v string ) * DescribeEvaluationsInput {
s . FilterVariable = & v
return s
}
// SetGE sets the GE field's value.
func ( s * DescribeEvaluationsInput ) SetGE ( v string ) * DescribeEvaluationsInput {
s . GE = & v
return s
}
// SetGT sets the GT field's value.
func ( s * DescribeEvaluationsInput ) SetGT ( v string ) * DescribeEvaluationsInput {
s . GT = & v
return s
}
// SetLE sets the LE field's value.
func ( s * DescribeEvaluationsInput ) SetLE ( v string ) * DescribeEvaluationsInput {
s . LE = & v
return s
}
// SetLT sets the LT field's value.
func ( s * DescribeEvaluationsInput ) SetLT ( v string ) * DescribeEvaluationsInput {
s . LT = & v
return s
}
// SetLimit sets the Limit field's value.
func ( s * DescribeEvaluationsInput ) SetLimit ( v int64 ) * DescribeEvaluationsInput {
s . Limit = & v
return s
}
// SetNE sets the NE field's value.
func ( s * DescribeEvaluationsInput ) SetNE ( v string ) * DescribeEvaluationsInput {
s . NE = & v
return s
}
// SetNextToken sets the NextToken field's value.
func ( s * DescribeEvaluationsInput ) SetNextToken ( v string ) * DescribeEvaluationsInput {
s . NextToken = & v
return s
}
// SetPrefix sets the Prefix field's value.
func ( s * DescribeEvaluationsInput ) SetPrefix ( v string ) * DescribeEvaluationsInput {
s . Prefix = & v
return s
}
// SetSortOrder sets the SortOrder field's value.
func ( s * DescribeEvaluationsInput ) SetSortOrder ( v string ) * DescribeEvaluationsInput {
s . SortOrder = & v
return s
}
// Represents the query results from a DescribeEvaluations operation. The content
// is essentially a list of Evaluation.
type DescribeEvaluationsOutput struct {
_ struct { } ` type:"structure" `
// The ID of the next page in the paginated results that indicates at least
// one more page follows.
NextToken * string ` type:"string" `
// A list of Evaluation that meet the search criteria.
Results [ ] * Evaluation ` type:"list" `
}
// String returns the string representation
func ( s DescribeEvaluationsOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeEvaluationsOutput ) GoString ( ) string {
return s . String ( )
}
// SetNextToken sets the NextToken field's value.
func ( s * DescribeEvaluationsOutput ) SetNextToken ( v string ) * DescribeEvaluationsOutput {
s . NextToken = & v
return s
}
// SetResults sets the Results field's value.
func ( s * DescribeEvaluationsOutput ) SetResults ( v [ ] * Evaluation ) * DescribeEvaluationsOutput {
s . Results = v
return s
}
type DescribeMLModelsInput struct {
_ struct { } ` type:"structure" `
// The equal to operator. The MLModel results will have FilterVariable values
// that exactly match the value specified with EQ.
EQ * string ` type:"string" `
// Use one of the following variables to filter a list of MLModel:
//
// * CreatedAt - Sets the search criteria to MLModel creation date.
// * Status - Sets the search criteria to MLModel status.
// * Name - Sets the search criteria to the contents of MLModelName.
// * IAMUser - Sets the search criteria to the user account that invoked
// the MLModel creation.
// * TrainingDataSourceId - Sets the search criteria to the DataSource used
// to train one or more MLModel.
// * RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time
// endpoint status.
// * MLModelType - Sets the search criteria to MLModel type: binary, regression,
// or multi-class.
// * Algorithm - Sets the search criteria to the algorithm that the MLModel
// uses.
// * TrainingDataURI - Sets the search criteria to the data file(s) used
// in training a MLModel. The URL can identify either a file or an Amazon
// Simple Storage Service (Amazon S3) bucket or directory.
FilterVariable * string ` type:"string" enum:"MLModelFilterVariable" `
// The greater than or equal to operator. The MLModel results will have FilterVariable
// values that are greater than or equal to the value specified with GE.
GE * string ` type:"string" `
// The greater than operator. The MLModel results will have FilterVariable values
// that are greater than the value specified with GT.
GT * string ` type:"string" `
// The less than or equal to operator. The MLModel results will have FilterVariable
// values that are less than or equal to the value specified with LE.
LE * string ` type:"string" `
// The less than operator. The MLModel results will have FilterVariable values
// that are less than the value specified with LT.
LT * string ` type:"string" `
// The number of pages of information to include in the result. The range of
// acceptable values is 1 through 100. The default value is 100.
Limit * int64 ` min:"1" type:"integer" `
// The not equal to operator. The MLModel results will have FilterVariable values
// not equal to the value specified with NE.
NE * string ` type:"string" `
// The ID of the page in the paginated results.
NextToken * string ` type:"string" `
// A string that is found at the beginning of a variable, such as Name or Id.
//
// For example, an MLModel could have the Name2014-09-09-HolidayGiftMailer.
// To search for this MLModel, select Name for the FilterVariable and any of
// the following strings for the Prefix:
//
// * 2014-09
//
// * 2014-09-09
//
// * 2014-09-09-Holiday
Prefix * string ` type:"string" `
// A two-value parameter that determines the sequence of the resulting list
// of MLModel.
//
// * asc - Arranges the list in ascending order (A-Z, 0-9).
// * dsc - Arranges the list in descending order (Z-A, 9-0).
// Results are sorted by FilterVariable.
SortOrder * string ` type:"string" enum:"SortOrder" `
}
// String returns the string representation
func ( s DescribeMLModelsInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeMLModelsInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DescribeMLModelsInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DescribeMLModelsInput" }
if s . Limit != nil && * s . Limit < 1 {
invalidParams . Add ( request . NewErrParamMinValue ( "Limit" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetEQ sets the EQ field's value.
func ( s * DescribeMLModelsInput ) SetEQ ( v string ) * DescribeMLModelsInput {
s . EQ = & v
return s
}
// SetFilterVariable sets the FilterVariable field's value.
func ( s * DescribeMLModelsInput ) SetFilterVariable ( v string ) * DescribeMLModelsInput {
s . FilterVariable = & v
return s
}
// SetGE sets the GE field's value.
func ( s * DescribeMLModelsInput ) SetGE ( v string ) * DescribeMLModelsInput {
s . GE = & v
return s
}
// SetGT sets the GT field's value.
func ( s * DescribeMLModelsInput ) SetGT ( v string ) * DescribeMLModelsInput {
s . GT = & v
return s
}
// SetLE sets the LE field's value.
func ( s * DescribeMLModelsInput ) SetLE ( v string ) * DescribeMLModelsInput {
s . LE = & v
return s
}
// SetLT sets the LT field's value.
func ( s * DescribeMLModelsInput ) SetLT ( v string ) * DescribeMLModelsInput {
s . LT = & v
return s
}
// SetLimit sets the Limit field's value.
func ( s * DescribeMLModelsInput ) SetLimit ( v int64 ) * DescribeMLModelsInput {
s . Limit = & v
return s
}
// SetNE sets the NE field's value.
func ( s * DescribeMLModelsInput ) SetNE ( v string ) * DescribeMLModelsInput {
s . NE = & v
return s
}
// SetNextToken sets the NextToken field's value.
func ( s * DescribeMLModelsInput ) SetNextToken ( v string ) * DescribeMLModelsInput {
s . NextToken = & v
return s
}
// SetPrefix sets the Prefix field's value.
func ( s * DescribeMLModelsInput ) SetPrefix ( v string ) * DescribeMLModelsInput {
s . Prefix = & v
return s
}
// SetSortOrder sets the SortOrder field's value.
func ( s * DescribeMLModelsInput ) SetSortOrder ( v string ) * DescribeMLModelsInput {
s . SortOrder = & v
return s
}
// Represents the output of a DescribeMLModels operation. The content is essentially
// a list of MLModel.
type DescribeMLModelsOutput struct {
_ struct { } ` type:"structure" `
// The ID of the next page in the paginated results that indicates at least
// one more page follows.
NextToken * string ` type:"string" `
// A list of MLModel that meet the search criteria.
Results [ ] * MLModel ` type:"list" `
}
// String returns the string representation
func ( s DescribeMLModelsOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeMLModelsOutput ) GoString ( ) string {
return s . String ( )
}
// SetNextToken sets the NextToken field's value.
func ( s * DescribeMLModelsOutput ) SetNextToken ( v string ) * DescribeMLModelsOutput {
s . NextToken = & v
return s
}
// SetResults sets the Results field's value.
func ( s * DescribeMLModelsOutput ) SetResults ( v [ ] * MLModel ) * DescribeMLModelsOutput {
s . Results = v
return s
}
type DescribeTagsInput struct {
_ struct { } ` type:"structure" `
// The ID of the ML object. For example, exampleModelId.
//
// ResourceId is a required field
ResourceId * string ` min:"1" type:"string" required:"true" `
// The type of the ML object.
//
// ResourceType is a required field
ResourceType * string ` type:"string" required:"true" enum:"TaggableResourceType" `
}
// String returns the string representation
func ( s DescribeTagsInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeTagsInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * DescribeTagsInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "DescribeTagsInput" }
if s . ResourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "ResourceId" ) )
}
if s . ResourceId != nil && len ( * s . ResourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "ResourceId" , 1 ) )
}
if s . ResourceType == nil {
invalidParams . Add ( request . NewErrParamRequired ( "ResourceType" ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetResourceId sets the ResourceId field's value.
func ( s * DescribeTagsInput ) SetResourceId ( v string ) * DescribeTagsInput {
s . ResourceId = & v
return s
}
// SetResourceType sets the ResourceType field's value.
func ( s * DescribeTagsInput ) SetResourceType ( v string ) * DescribeTagsInput {
s . ResourceType = & v
return s
}
// Amazon ML returns the following elements.
type DescribeTagsOutput struct {
_ struct { } ` type:"structure" `
// The ID of the tagged ML object.
ResourceId * string ` min:"1" type:"string" `
// The type of the tagged ML object.
ResourceType * string ` type:"string" enum:"TaggableResourceType" `
// A list of tags associated with the ML object.
Tags [ ] * Tag ` type:"list" `
}
// String returns the string representation
func ( s DescribeTagsOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s DescribeTagsOutput ) GoString ( ) string {
return s . String ( )
}
// SetResourceId sets the ResourceId field's value.
func ( s * DescribeTagsOutput ) SetResourceId ( v string ) * DescribeTagsOutput {
s . ResourceId = & v
return s
}
// SetResourceType sets the ResourceType field's value.
func ( s * DescribeTagsOutput ) SetResourceType ( v string ) * DescribeTagsOutput {
s . ResourceType = & v
return s
}
// SetTags sets the Tags field's value.
func ( s * DescribeTagsOutput ) SetTags ( v [ ] * Tag ) * DescribeTagsOutput {
s . Tags = v
return s
}
// Represents the output of GetEvaluation operation.
//
// The content consists of the detailed metadata and data file information and
// the current status of the Evaluation.
type Evaluation struct {
_ struct { } ` type:"structure" `
// Long integer type that is a 64-bit signed number.
ComputeTime * int64 ` type:"long" `
// The time that the Evaluation was created. The time is expressed in epoch
// time.
CreatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The AWS user account that invoked the evaluation. The account type can be
// either an AWS root account or an AWS Identity and Access Management (IAM)
// user account.
CreatedByIamUser * string ` type:"string" `
// The ID of the DataSource that is used to evaluate the MLModel.
EvaluationDataSourceId * string ` min:"1" type:"string" `
// The ID that is assigned to the Evaluation at creation.
EvaluationId * string ` min:"1" type:"string" `
// A timestamp represented in epoch time.
FinishedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The location and name of the data in Amazon Simple Storage Server (Amazon
// S3) that is used in the evaluation.
InputDataLocationS3 * string ` type:"string" `
// The time of the most recent edit to the Evaluation. The time is expressed
// in epoch time.
LastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The ID of the MLModel that is the focus of the evaluation.
MLModelId * string ` min:"1" type:"string" `
// A description of the most recent details about evaluating the MLModel.
Message * string ` type:"string" `
// A user-supplied name or description of the Evaluation.
Name * string ` type:"string" `
// Measurements of how well the MLModel performed, using observations referenced
// by the DataSource. One of the following metrics is returned, based on the
// type of the MLModel:
//
// * BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique
// to measure performance.
//
// * RegressionRMSE: A regression MLModel uses the Root Mean Square Error
// (RMSE) technique to measure performance. RMSE measures the difference
// between predicted and actual values for a single variable.
//
// * MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique
// to measure performance.
//
// For more information about performance metrics, please see the Amazon Machine
// Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
PerformanceMetrics * PerformanceMetrics ` type:"structure" `
// A timestamp represented in epoch time.
StartedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The status of the evaluation. This element can have one of the following
// values:
//
// * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
// evaluate an MLModel.
// * INPROGRESS - The evaluation is underway.
// * FAILED - The request to evaluate an MLModel did not run to completion.
// It is not usable.
// * COMPLETED - The evaluation process completed successfully.
// * DELETED - The Evaluation is marked as deleted. It is not usable.
Status * string ` type:"string" enum:"EntityStatus" `
}
// String returns the string representation
func ( s Evaluation ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s Evaluation ) GoString ( ) string {
return s . String ( )
}
// SetComputeTime sets the ComputeTime field's value.
func ( s * Evaluation ) SetComputeTime ( v int64 ) * Evaluation {
s . ComputeTime = & v
return s
}
// SetCreatedAt sets the CreatedAt field's value.
func ( s * Evaluation ) SetCreatedAt ( v time . Time ) * Evaluation {
s . CreatedAt = & v
return s
}
// SetCreatedByIamUser sets the CreatedByIamUser field's value.
func ( s * Evaluation ) SetCreatedByIamUser ( v string ) * Evaluation {
s . CreatedByIamUser = & v
return s
}
// SetEvaluationDataSourceId sets the EvaluationDataSourceId field's value.
func ( s * Evaluation ) SetEvaluationDataSourceId ( v string ) * Evaluation {
s . EvaluationDataSourceId = & v
return s
}
// SetEvaluationId sets the EvaluationId field's value.
func ( s * Evaluation ) SetEvaluationId ( v string ) * Evaluation {
s . EvaluationId = & v
return s
}
// SetFinishedAt sets the FinishedAt field's value.
func ( s * Evaluation ) SetFinishedAt ( v time . Time ) * Evaluation {
s . FinishedAt = & v
return s
}
// SetInputDataLocationS3 sets the InputDataLocationS3 field's value.
func ( s * Evaluation ) SetInputDataLocationS3 ( v string ) * Evaluation {
s . InputDataLocationS3 = & v
return s
}
// SetLastUpdatedAt sets the LastUpdatedAt field's value.
func ( s * Evaluation ) SetLastUpdatedAt ( v time . Time ) * Evaluation {
s . LastUpdatedAt = & v
return s
}
// SetMLModelId sets the MLModelId field's value.
func ( s * Evaluation ) SetMLModelId ( v string ) * Evaluation {
s . MLModelId = & v
return s
}
// SetMessage sets the Message field's value.
func ( s * Evaluation ) SetMessage ( v string ) * Evaluation {
s . Message = & v
return s
}
// SetName sets the Name field's value.
func ( s * Evaluation ) SetName ( v string ) * Evaluation {
s . Name = & v
return s
}
// SetPerformanceMetrics sets the PerformanceMetrics field's value.
func ( s * Evaluation ) SetPerformanceMetrics ( v * PerformanceMetrics ) * Evaluation {
s . PerformanceMetrics = v
return s
}
// SetStartedAt sets the StartedAt field's value.
func ( s * Evaluation ) SetStartedAt ( v time . Time ) * Evaluation {
s . StartedAt = & v
return s
}
// SetStatus sets the Status field's value.
func ( s * Evaluation ) SetStatus ( v string ) * Evaluation {
s . Status = & v
return s
}
type GetBatchPredictionInput struct {
_ struct { } ` type:"structure" `
// An ID assigned to the BatchPrediction at creation.
//
// BatchPredictionId is a required field
BatchPredictionId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s GetBatchPredictionInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s GetBatchPredictionInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * GetBatchPredictionInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "GetBatchPredictionInput" }
if s . BatchPredictionId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "BatchPredictionId" ) )
}
if s . BatchPredictionId != nil && len ( * s . BatchPredictionId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "BatchPredictionId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetBatchPredictionId sets the BatchPredictionId field's value.
func ( s * GetBatchPredictionInput ) SetBatchPredictionId ( v string ) * GetBatchPredictionInput {
s . BatchPredictionId = & v
return s
}
// Represents the output of a GetBatchPrediction operation and describes a BatchPrediction.
type GetBatchPredictionOutput struct {
_ struct { } ` type:"structure" `
// The ID of the DataSource that was used to create the BatchPrediction.
BatchPredictionDataSourceId * string ` min:"1" type:"string" `
// An ID assigned to the BatchPrediction at creation. This value should be identical
// to the value of the BatchPredictionID in the request.
BatchPredictionId * string ` min:"1" type:"string" `
// The approximate CPU time in milliseconds that Amazon Machine Learning spent
// processing the BatchPrediction, normalized and scaled on computation resources.
// ComputeTime is only available if the BatchPrediction is in the COMPLETED
// state.
ComputeTime * int64 ` type:"long" `
// The time when the BatchPrediction was created. The time is expressed in epoch
// time.
CreatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The AWS user account that invoked the BatchPrediction. The account type can
// be either an AWS root account or an AWS Identity and Access Management (IAM)
// user account.
CreatedByIamUser * string ` type:"string" `
// The epoch time when Amazon Machine Learning marked the BatchPrediction as
// COMPLETED or FAILED. FinishedAt is only available when the BatchPrediction
// is in the COMPLETED or FAILED state.
FinishedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The location of the data file or directory in Amazon Simple Storage Service
// (Amazon S3).
InputDataLocationS3 * string ` type:"string" `
// The number of invalid records that Amazon Machine Learning saw while processing
// the BatchPrediction.
InvalidRecordCount * int64 ` type:"long" `
// The time of the most recent edit to BatchPrediction. The time is expressed
// in epoch time.
LastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// A link to the file that contains logs of the CreateBatchPrediction operation.
LogUri * string ` type:"string" `
// The ID of the MLModel that generated predictions for the BatchPrediction
// request.
MLModelId * string ` min:"1" type:"string" `
// A description of the most recent details about processing the batch prediction
// request.
Message * string ` type:"string" `
// A user-supplied name or description of the BatchPrediction.
Name * string ` type:"string" `
// The location of an Amazon S3 bucket or directory to receive the operation
// results.
OutputUri * string ` type:"string" `
// The epoch time when Amazon Machine Learning marked the BatchPrediction as
// INPROGRESS. StartedAt isn't available if the BatchPrediction is in the PENDING
// state.
StartedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The status of the BatchPrediction, which can be one of the following values:
//
// * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
// generate batch predictions.
// * INPROGRESS - The batch predictions are in progress.
// * FAILED - The request to perform a batch prediction did not run to completion.
// It is not usable.
// * COMPLETED - The batch prediction process completed successfully.
// * DELETED - The BatchPrediction is marked as deleted. It is not usable.
Status * string ` type:"string" enum:"EntityStatus" `
// The number of total records that Amazon Machine Learning saw while processing
// the BatchPrediction.
TotalRecordCount * int64 ` type:"long" `
}
// String returns the string representation
func ( s GetBatchPredictionOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s GetBatchPredictionOutput ) GoString ( ) string {
return s . String ( )
}
// SetBatchPredictionDataSourceId sets the BatchPredictionDataSourceId field's value.
func ( s * GetBatchPredictionOutput ) SetBatchPredictionDataSourceId ( v string ) * GetBatchPredictionOutput {
s . BatchPredictionDataSourceId = & v
return s
}
// SetBatchPredictionId sets the BatchPredictionId field's value.
func ( s * GetBatchPredictionOutput ) SetBatchPredictionId ( v string ) * GetBatchPredictionOutput {
s . BatchPredictionId = & v
return s
}
// SetComputeTime sets the ComputeTime field's value.
func ( s * GetBatchPredictionOutput ) SetComputeTime ( v int64 ) * GetBatchPredictionOutput {
s . ComputeTime = & v
return s
}
// SetCreatedAt sets the CreatedAt field's value.
func ( s * GetBatchPredictionOutput ) SetCreatedAt ( v time . Time ) * GetBatchPredictionOutput {
s . CreatedAt = & v
return s
}
// SetCreatedByIamUser sets the CreatedByIamUser field's value.
func ( s * GetBatchPredictionOutput ) SetCreatedByIamUser ( v string ) * GetBatchPredictionOutput {
s . CreatedByIamUser = & v
return s
}
// SetFinishedAt sets the FinishedAt field's value.
func ( s * GetBatchPredictionOutput ) SetFinishedAt ( v time . Time ) * GetBatchPredictionOutput {
s . FinishedAt = & v
return s
}
// SetInputDataLocationS3 sets the InputDataLocationS3 field's value.
func ( s * GetBatchPredictionOutput ) SetInputDataLocationS3 ( v string ) * GetBatchPredictionOutput {
s . InputDataLocationS3 = & v
return s
}
// SetInvalidRecordCount sets the InvalidRecordCount field's value.
func ( s * GetBatchPredictionOutput ) SetInvalidRecordCount ( v int64 ) * GetBatchPredictionOutput {
s . InvalidRecordCount = & v
return s
}
// SetLastUpdatedAt sets the LastUpdatedAt field's value.
func ( s * GetBatchPredictionOutput ) SetLastUpdatedAt ( v time . Time ) * GetBatchPredictionOutput {
s . LastUpdatedAt = & v
return s
}
// SetLogUri sets the LogUri field's value.
func ( s * GetBatchPredictionOutput ) SetLogUri ( v string ) * GetBatchPredictionOutput {
s . LogUri = & v
return s
}
// SetMLModelId sets the MLModelId field's value.
func ( s * GetBatchPredictionOutput ) SetMLModelId ( v string ) * GetBatchPredictionOutput {
s . MLModelId = & v
return s
}
// SetMessage sets the Message field's value.
func ( s * GetBatchPredictionOutput ) SetMessage ( v string ) * GetBatchPredictionOutput {
s . Message = & v
return s
}
// SetName sets the Name field's value.
func ( s * GetBatchPredictionOutput ) SetName ( v string ) * GetBatchPredictionOutput {
s . Name = & v
return s
}
// SetOutputUri sets the OutputUri field's value.
func ( s * GetBatchPredictionOutput ) SetOutputUri ( v string ) * GetBatchPredictionOutput {
s . OutputUri = & v
return s
}
// SetStartedAt sets the StartedAt field's value.
func ( s * GetBatchPredictionOutput ) SetStartedAt ( v time . Time ) * GetBatchPredictionOutput {
s . StartedAt = & v
return s
}
// SetStatus sets the Status field's value.
func ( s * GetBatchPredictionOutput ) SetStatus ( v string ) * GetBatchPredictionOutput {
s . Status = & v
return s
}
// SetTotalRecordCount sets the TotalRecordCount field's value.
func ( s * GetBatchPredictionOutput ) SetTotalRecordCount ( v int64 ) * GetBatchPredictionOutput {
s . TotalRecordCount = & v
return s
}
type GetDataSourceInput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the DataSource at creation.
//
// DataSourceId is a required field
DataSourceId * string ` min:"1" type:"string" required:"true" `
// Specifies whether the GetDataSource operation should return DataSourceSchema.
//
// If true, DataSourceSchema is returned.
//
// If false, DataSourceSchema is not returned.
Verbose * bool ` type:"boolean" `
}
// String returns the string representation
func ( s GetDataSourceInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s GetDataSourceInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * GetDataSourceInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "GetDataSourceInput" }
if s . DataSourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataSourceId" ) )
}
if s . DataSourceId != nil && len ( * s . DataSourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "DataSourceId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * GetDataSourceInput ) SetDataSourceId ( v string ) * GetDataSourceInput {
s . DataSourceId = & v
return s
}
// SetVerbose sets the Verbose field's value.
func ( s * GetDataSourceInput ) SetVerbose ( v bool ) * GetDataSourceInput {
s . Verbose = & v
return s
}
// Represents the output of a GetDataSource operation and describes a DataSource.
type GetDataSourceOutput struct {
_ struct { } ` type:"structure" `
// The parameter is true if statistics need to be generated from the observation
// data.
ComputeStatistics * bool ` type:"boolean" `
// The approximate CPU time in milliseconds that Amazon Machine Learning spent
// processing the DataSource, normalized and scaled on computation resources.
// ComputeTime is only available if the DataSource is in the COMPLETED state
// and the ComputeStatistics is set to true.
ComputeTime * int64 ` type:"long" `
// The time that the DataSource was created. The time is expressed in epoch
// time.
CreatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The AWS user account from which the DataSource was created. The account type
// can be either an AWS root account or an AWS Identity and Access Management
// (IAM) user account.
CreatedByIamUser * string ` type:"string" `
// The location of the data file or directory in Amazon Simple Storage Service
// (Amazon S3).
DataLocationS3 * string ` type:"string" `
// A JSON string that represents the splitting and rearrangement requirement
// used when this DataSource was created.
DataRearrangement * string ` type:"string" `
// The total size of observations in the data files.
DataSizeInBytes * int64 ` type:"long" `
// The ID assigned to the DataSource at creation. This value should be identical
// to the value of the DataSourceId in the request.
DataSourceId * string ` min:"1" type:"string" `
// The schema used by all of the data files of this DataSource.
//
// NoteThis parameter is provided as part of the verbose format.
DataSourceSchema * string ` type:"string" `
// The epoch time when Amazon Machine Learning marked the DataSource as COMPLETED
// or FAILED. FinishedAt is only available when the DataSource is in the COMPLETED
// or FAILED state.
FinishedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The time of the most recent edit to the DataSource. The time is expressed
// in epoch time.
LastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// A link to the file containing logs of CreateDataSourceFrom* operations.
LogUri * string ` type:"string" `
// The user-supplied description of the most recent details about creating the
// DataSource.
Message * string ` type:"string" `
// A user-supplied name or description of the DataSource.
Name * string ` type:"string" `
// The number of data files referenced by the DataSource.
NumberOfFiles * int64 ` type:"long" `
// The datasource details that are specific to Amazon RDS.
RDSMetadata * RDSMetadata ` type:"structure" `
// Describes the DataSource details specific to Amazon Redshift.
RedshiftMetadata * RedshiftMetadata ` type:"structure" `
// The Amazon Resource Name (ARN) of an AWS IAM Role (http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts),
// such as the following: arn:aws:iam::account:role/rolename.
RoleARN * string ` min:"1" type:"string" `
// The epoch time when Amazon Machine Learning marked the DataSource as INPROGRESS.
// StartedAt isn't available if the DataSource is in the PENDING state.
StartedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The current status of the DataSource. This element can have one of the following
// values:
//
// * PENDING - Amazon ML submitted a request to create a DataSource.
// * INPROGRESS - The creation process is underway.
// * FAILED - The request to create a DataSource did not run to completion.
// It is not usable.
// * COMPLETED - The creation process completed successfully.
// * DELETED - The DataSource is marked as deleted. It is not usable.
Status * string ` type:"string" enum:"EntityStatus" `
}
// String returns the string representation
func ( s GetDataSourceOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s GetDataSourceOutput ) GoString ( ) string {
return s . String ( )
}
// SetComputeStatistics sets the ComputeStatistics field's value.
func ( s * GetDataSourceOutput ) SetComputeStatistics ( v bool ) * GetDataSourceOutput {
s . ComputeStatistics = & v
return s
}
// SetComputeTime sets the ComputeTime field's value.
func ( s * GetDataSourceOutput ) SetComputeTime ( v int64 ) * GetDataSourceOutput {
s . ComputeTime = & v
return s
}
// SetCreatedAt sets the CreatedAt field's value.
func ( s * GetDataSourceOutput ) SetCreatedAt ( v time . Time ) * GetDataSourceOutput {
s . CreatedAt = & v
return s
}
// SetCreatedByIamUser sets the CreatedByIamUser field's value.
func ( s * GetDataSourceOutput ) SetCreatedByIamUser ( v string ) * GetDataSourceOutput {
s . CreatedByIamUser = & v
return s
}
// SetDataLocationS3 sets the DataLocationS3 field's value.
func ( s * GetDataSourceOutput ) SetDataLocationS3 ( v string ) * GetDataSourceOutput {
s . DataLocationS3 = & v
return s
}
// SetDataRearrangement sets the DataRearrangement field's value.
func ( s * GetDataSourceOutput ) SetDataRearrangement ( v string ) * GetDataSourceOutput {
s . DataRearrangement = & v
return s
}
// SetDataSizeInBytes sets the DataSizeInBytes field's value.
func ( s * GetDataSourceOutput ) SetDataSizeInBytes ( v int64 ) * GetDataSourceOutput {
s . DataSizeInBytes = & v
return s
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * GetDataSourceOutput ) SetDataSourceId ( v string ) * GetDataSourceOutput {
s . DataSourceId = & v
return s
}
// SetDataSourceSchema sets the DataSourceSchema field's value.
func ( s * GetDataSourceOutput ) SetDataSourceSchema ( v string ) * GetDataSourceOutput {
s . DataSourceSchema = & v
return s
}
// SetFinishedAt sets the FinishedAt field's value.
func ( s * GetDataSourceOutput ) SetFinishedAt ( v time . Time ) * GetDataSourceOutput {
s . FinishedAt = & v
return s
}
// SetLastUpdatedAt sets the LastUpdatedAt field's value.
func ( s * GetDataSourceOutput ) SetLastUpdatedAt ( v time . Time ) * GetDataSourceOutput {
s . LastUpdatedAt = & v
return s
}
// SetLogUri sets the LogUri field's value.
func ( s * GetDataSourceOutput ) SetLogUri ( v string ) * GetDataSourceOutput {
s . LogUri = & v
return s
}
// SetMessage sets the Message field's value.
func ( s * GetDataSourceOutput ) SetMessage ( v string ) * GetDataSourceOutput {
s . Message = & v
return s
}
// SetName sets the Name field's value.
func ( s * GetDataSourceOutput ) SetName ( v string ) * GetDataSourceOutput {
s . Name = & v
return s
}
// SetNumberOfFiles sets the NumberOfFiles field's value.
func ( s * GetDataSourceOutput ) SetNumberOfFiles ( v int64 ) * GetDataSourceOutput {
s . NumberOfFiles = & v
return s
}
// SetRDSMetadata sets the RDSMetadata field's value.
func ( s * GetDataSourceOutput ) SetRDSMetadata ( v * RDSMetadata ) * GetDataSourceOutput {
s . RDSMetadata = v
return s
}
// SetRedshiftMetadata sets the RedshiftMetadata field's value.
func ( s * GetDataSourceOutput ) SetRedshiftMetadata ( v * RedshiftMetadata ) * GetDataSourceOutput {
s . RedshiftMetadata = v
return s
}
// SetRoleARN sets the RoleARN field's value.
func ( s * GetDataSourceOutput ) SetRoleARN ( v string ) * GetDataSourceOutput {
s . RoleARN = & v
return s
}
// SetStartedAt sets the StartedAt field's value.
func ( s * GetDataSourceOutput ) SetStartedAt ( v time . Time ) * GetDataSourceOutput {
s . StartedAt = & v
return s
}
// SetStatus sets the Status field's value.
func ( s * GetDataSourceOutput ) SetStatus ( v string ) * GetDataSourceOutput {
s . Status = & v
return s
}
type GetEvaluationInput struct {
_ struct { } ` type:"structure" `
// The ID of the Evaluation to retrieve. The evaluation of each MLModel is recorded
// and cataloged. The ID provides the means to access the information.
//
// EvaluationId is a required field
EvaluationId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s GetEvaluationInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s GetEvaluationInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * GetEvaluationInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "GetEvaluationInput" }
if s . EvaluationId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "EvaluationId" ) )
}
if s . EvaluationId != nil && len ( * s . EvaluationId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "EvaluationId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetEvaluationId sets the EvaluationId field's value.
func ( s * GetEvaluationInput ) SetEvaluationId ( v string ) * GetEvaluationInput {
s . EvaluationId = & v
return s
}
// Represents the output of a GetEvaluation operation and describes an Evaluation.
type GetEvaluationOutput struct {
_ struct { } ` type:"structure" `
// The approximate CPU time in milliseconds that Amazon Machine Learning spent
// processing the Evaluation, normalized and scaled on computation resources.
// ComputeTime is only available if the Evaluation is in the COMPLETED state.
ComputeTime * int64 ` type:"long" `
// The time that the Evaluation was created. The time is expressed in epoch
// time.
CreatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The AWS user account that invoked the evaluation. The account type can be
// either an AWS root account or an AWS Identity and Access Management (IAM)
// user account.
CreatedByIamUser * string ` type:"string" `
// The DataSource used for this evaluation.
EvaluationDataSourceId * string ` min:"1" type:"string" `
// The evaluation ID which is same as the EvaluationId in the request.
EvaluationId * string ` min:"1" type:"string" `
// The epoch time when Amazon Machine Learning marked the Evaluation as COMPLETED
// or FAILED. FinishedAt is only available when the Evaluation is in the COMPLETED
// or FAILED state.
FinishedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The location of the data file or directory in Amazon Simple Storage Service
// (Amazon S3).
InputDataLocationS3 * string ` type:"string" `
// The time of the most recent edit to the Evaluation. The time is expressed
// in epoch time.
LastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// A link to the file that contains logs of the CreateEvaluation operation.
LogUri * string ` type:"string" `
// The ID of the MLModel that was the focus of the evaluation.
MLModelId * string ` min:"1" type:"string" `
// A description of the most recent details about evaluating the MLModel.
Message * string ` type:"string" `
// A user-supplied name or description of the Evaluation.
Name * string ` type:"string" `
// Measurements of how well the MLModel performed using observations referenced
// by the DataSource. One of the following metric is returned based on the type
// of the MLModel:
//
// * BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique
// to measure performance.
//
// * RegressionRMSE: A regression MLModel uses the Root Mean Square Error
// (RMSE) technique to measure performance. RMSE measures the difference
// between predicted and actual values for a single variable.
//
// * MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique
// to measure performance.
//
// For more information about performance metrics, please see the Amazon Machine
// Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
PerformanceMetrics * PerformanceMetrics ` type:"structure" `
// The epoch time when Amazon Machine Learning marked the Evaluation as INPROGRESS.
// StartedAt isn't available if the Evaluation is in the PENDING state.
StartedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The status of the evaluation. This element can have one of the following
// values:
//
// * PENDING - Amazon Machine Language (Amazon ML) submitted a request to
// evaluate an MLModel.
// * INPROGRESS - The evaluation is underway.
// * FAILED - The request to evaluate an MLModel did not run to completion.
// It is not usable.
// * COMPLETED - The evaluation process completed successfully.
// * DELETED - The Evaluation is marked as deleted. It is not usable.
Status * string ` type:"string" enum:"EntityStatus" `
}
// String returns the string representation
func ( s GetEvaluationOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s GetEvaluationOutput ) GoString ( ) string {
return s . String ( )
}
// SetComputeTime sets the ComputeTime field's value.
func ( s * GetEvaluationOutput ) SetComputeTime ( v int64 ) * GetEvaluationOutput {
s . ComputeTime = & v
return s
}
// SetCreatedAt sets the CreatedAt field's value.
func ( s * GetEvaluationOutput ) SetCreatedAt ( v time . Time ) * GetEvaluationOutput {
s . CreatedAt = & v
return s
}
// SetCreatedByIamUser sets the CreatedByIamUser field's value.
func ( s * GetEvaluationOutput ) SetCreatedByIamUser ( v string ) * GetEvaluationOutput {
s . CreatedByIamUser = & v
return s
}
// SetEvaluationDataSourceId sets the EvaluationDataSourceId field's value.
func ( s * GetEvaluationOutput ) SetEvaluationDataSourceId ( v string ) * GetEvaluationOutput {
s . EvaluationDataSourceId = & v
return s
}
// SetEvaluationId sets the EvaluationId field's value.
func ( s * GetEvaluationOutput ) SetEvaluationId ( v string ) * GetEvaluationOutput {
s . EvaluationId = & v
return s
}
// SetFinishedAt sets the FinishedAt field's value.
func ( s * GetEvaluationOutput ) SetFinishedAt ( v time . Time ) * GetEvaluationOutput {
s . FinishedAt = & v
return s
}
// SetInputDataLocationS3 sets the InputDataLocationS3 field's value.
func ( s * GetEvaluationOutput ) SetInputDataLocationS3 ( v string ) * GetEvaluationOutput {
s . InputDataLocationS3 = & v
return s
}
// SetLastUpdatedAt sets the LastUpdatedAt field's value.
func ( s * GetEvaluationOutput ) SetLastUpdatedAt ( v time . Time ) * GetEvaluationOutput {
s . LastUpdatedAt = & v
return s
}
// SetLogUri sets the LogUri field's value.
func ( s * GetEvaluationOutput ) SetLogUri ( v string ) * GetEvaluationOutput {
s . LogUri = & v
return s
}
// SetMLModelId sets the MLModelId field's value.
func ( s * GetEvaluationOutput ) SetMLModelId ( v string ) * GetEvaluationOutput {
s . MLModelId = & v
return s
}
// SetMessage sets the Message field's value.
func ( s * GetEvaluationOutput ) SetMessage ( v string ) * GetEvaluationOutput {
s . Message = & v
return s
}
// SetName sets the Name field's value.
func ( s * GetEvaluationOutput ) SetName ( v string ) * GetEvaluationOutput {
s . Name = & v
return s
}
// SetPerformanceMetrics sets the PerformanceMetrics field's value.
func ( s * GetEvaluationOutput ) SetPerformanceMetrics ( v * PerformanceMetrics ) * GetEvaluationOutput {
s . PerformanceMetrics = v
return s
}
// SetStartedAt sets the StartedAt field's value.
func ( s * GetEvaluationOutput ) SetStartedAt ( v time . Time ) * GetEvaluationOutput {
s . StartedAt = & v
return s
}
// SetStatus sets the Status field's value.
func ( s * GetEvaluationOutput ) SetStatus ( v string ) * GetEvaluationOutput {
s . Status = & v
return s
}
type GetMLModelInput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the MLModel at creation.
//
// MLModelId is a required field
MLModelId * string ` min:"1" type:"string" required:"true" `
// Specifies whether the GetMLModel operation should return Recipe.
//
// If true, Recipe is returned.
//
// If false, Recipe is not returned.
Verbose * bool ` type:"boolean" `
}
// String returns the string representation
func ( s GetMLModelInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s GetMLModelInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * GetMLModelInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "GetMLModelInput" }
if s . MLModelId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelId" ) )
}
if s . MLModelId != nil && len ( * s . MLModelId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "MLModelId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetMLModelId sets the MLModelId field's value.
func ( s * GetMLModelInput ) SetMLModelId ( v string ) * GetMLModelInput {
s . MLModelId = & v
return s
}
// SetVerbose sets the Verbose field's value.
func ( s * GetMLModelInput ) SetVerbose ( v bool ) * GetMLModelInput {
s . Verbose = & v
return s
}
// Represents the output of a GetMLModel operation, and provides detailed information
// about a MLModel.
type GetMLModelOutput struct {
_ struct { } ` type:"structure" `
// The approximate CPU time in milliseconds that Amazon Machine Learning spent
// processing the MLModel, normalized and scaled on computation resources. ComputeTime
// is only available if the MLModel is in the COMPLETED state.
ComputeTime * int64 ` type:"long" `
// The time that the MLModel was created. The time is expressed in epoch time.
CreatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The AWS user account from which the MLModel was created. The account type
// can be either an AWS root account or an AWS Identity and Access Management
// (IAM) user account.
CreatedByIamUser * string ` type:"string" `
// The current endpoint of the MLModel
EndpointInfo * RealtimeEndpointInfo ` type:"structure" `
// The epoch time when Amazon Machine Learning marked the MLModel as COMPLETED
// or FAILED. FinishedAt is only available when the MLModel is in the COMPLETED
// or FAILED state.
FinishedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The location of the data file or directory in Amazon Simple Storage Service
// (Amazon S3).
InputDataLocationS3 * string ` type:"string" `
// The time of the most recent edit to the MLModel. The time is expressed in
// epoch time.
LastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// A link to the file that contains logs of the CreateMLModel operation.
LogUri * string ` type:"string" `
// The MLModel ID, which is same as the MLModelId in the request.
MLModelId * string ` min:"1" type:"string" `
// Identifies the MLModel category. The following are the available types:
//
// * REGRESSION -- Produces a numeric result. For example, "What price should
// a house be listed at?"
// * BINARY -- Produces one of two possible results. For example, "Is this
// an e-commerce website?"
// * MULTICLASS -- Produces one of several possible results. For example,
// "Is this a HIGH, LOW or MEDIUM risk trade?"
MLModelType * string ` type:"string" enum:"MLModelType" `
// A description of the most recent details about accessing the MLModel.
Message * string ` type:"string" `
// A user-supplied name or description of the MLModel.
Name * string ` type:"string" `
// The recipe to use when training the MLModel. The Recipe provides detailed
// information about the observation data to use during training, and manipulations
// to perform on the observation data during training.
//
// NoteThis parameter is provided as part of the verbose format.
Recipe * string ` type:"string" `
// The schema used by all of the data files referenced by the DataSource.
//
// NoteThis parameter is provided as part of the verbose format.
Schema * string ` type:"string" `
// The scoring threshold is used in binary classification MLModelmodels. It
// marks the boundary between a positive prediction and a negative prediction.
//
// Output values greater than or equal to the threshold receive a positive result
// from the MLModel, such as true. Output values less than the threshold receive
// a negative response from the MLModel, such as false.
ScoreThreshold * float64 ` type:"float" `
// The time of the most recent edit to the ScoreThreshold. The time is expressed
// in epoch time.
ScoreThresholdLastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// Long integer type that is a 64-bit signed number.
SizeInBytes * int64 ` type:"long" `
// The epoch time when Amazon Machine Learning marked the MLModel as INPROGRESS.
// StartedAt isn't available if the MLModel is in the PENDING state.
StartedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The current status of the MLModel. This element can have one of the following
// values:
//
// * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
// describe a MLModel.
// * INPROGRESS - The request is processing.
// * FAILED - The request did not run to completion. The ML model isn't usable.
//
// * COMPLETED - The request completed successfully.
// * DELETED - The MLModel is marked as deleted. It isn't usable.
Status * string ` type:"string" enum:"EntityStatus" `
// The ID of the training DataSource.
TrainingDataSourceId * string ` min:"1" type:"string" `
// A list of the training parameters in the MLModel. The list is implemented
// as a map of key-value pairs.
//
// The following is the current set of training parameters:
//
// * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
// on the input data, the size of the model might affect its performance.
//
// The value is an integer that ranges from 100000 to 2147483648. The default
// value is 33554432.
//
// * sgd.maxPasses - The number of times that the training process traverses
// the observations to build the MLModel. The value is an integer that ranges
// from 1 to 10000. The default value is 10.
//
// * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
// data improves a model's ability to find the optimal solution for a variety
// of data types. The valid values are auto and none. The default value is
// none. We strongly recommend that you shuffle your data.
//
// * sgd.l1RegularizationAmount - The coefficient regularization L1 norm.
// It controls overfitting the data by penalizing large coefficients. This
// tends to drive coefficients to zero, resulting in a sparse feature set.
// If you use this parameter, start by specifying a small value, such as
// 1.0E-08.
//
// The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
// not use L1 normalization. This parameter can't be used when L2 is specified.
// Use this parameter sparingly.
//
// * sgd.l2RegularizationAmount - The coefficient regularization L2 norm.
// It controls overfitting the data by penalizing large coefficients. This
// tends to drive coefficients to small, nonzero values. If you use this
// parameter, start by specifying a small value, such as 1.0E-08.
//
// The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
// not use L2 normalization. This parameter can't be used when L1 is specified.
// Use this parameter sparingly.
TrainingParameters map [ string ] * string ` type:"map" `
}
// String returns the string representation
func ( s GetMLModelOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s GetMLModelOutput ) GoString ( ) string {
return s . String ( )
}
// SetComputeTime sets the ComputeTime field's value.
func ( s * GetMLModelOutput ) SetComputeTime ( v int64 ) * GetMLModelOutput {
s . ComputeTime = & v
return s
}
// SetCreatedAt sets the CreatedAt field's value.
func ( s * GetMLModelOutput ) SetCreatedAt ( v time . Time ) * GetMLModelOutput {
s . CreatedAt = & v
return s
}
// SetCreatedByIamUser sets the CreatedByIamUser field's value.
func ( s * GetMLModelOutput ) SetCreatedByIamUser ( v string ) * GetMLModelOutput {
s . CreatedByIamUser = & v
return s
}
// SetEndpointInfo sets the EndpointInfo field's value.
func ( s * GetMLModelOutput ) SetEndpointInfo ( v * RealtimeEndpointInfo ) * GetMLModelOutput {
s . EndpointInfo = v
return s
}
// SetFinishedAt sets the FinishedAt field's value.
func ( s * GetMLModelOutput ) SetFinishedAt ( v time . Time ) * GetMLModelOutput {
s . FinishedAt = & v
return s
}
// SetInputDataLocationS3 sets the InputDataLocationS3 field's value.
func ( s * GetMLModelOutput ) SetInputDataLocationS3 ( v string ) * GetMLModelOutput {
s . InputDataLocationS3 = & v
return s
}
// SetLastUpdatedAt sets the LastUpdatedAt field's value.
func ( s * GetMLModelOutput ) SetLastUpdatedAt ( v time . Time ) * GetMLModelOutput {
s . LastUpdatedAt = & v
return s
}
// SetLogUri sets the LogUri field's value.
func ( s * GetMLModelOutput ) SetLogUri ( v string ) * GetMLModelOutput {
s . LogUri = & v
return s
}
// SetMLModelId sets the MLModelId field's value.
func ( s * GetMLModelOutput ) SetMLModelId ( v string ) * GetMLModelOutput {
s . MLModelId = & v
return s
}
// SetMLModelType sets the MLModelType field's value.
func ( s * GetMLModelOutput ) SetMLModelType ( v string ) * GetMLModelOutput {
s . MLModelType = & v
return s
}
// SetMessage sets the Message field's value.
func ( s * GetMLModelOutput ) SetMessage ( v string ) * GetMLModelOutput {
s . Message = & v
return s
}
// SetName sets the Name field's value.
func ( s * GetMLModelOutput ) SetName ( v string ) * GetMLModelOutput {
s . Name = & v
return s
}
// SetRecipe sets the Recipe field's value.
func ( s * GetMLModelOutput ) SetRecipe ( v string ) * GetMLModelOutput {
s . Recipe = & v
return s
}
// SetSchema sets the Schema field's value.
func ( s * GetMLModelOutput ) SetSchema ( v string ) * GetMLModelOutput {
s . Schema = & v
return s
}
// SetScoreThreshold sets the ScoreThreshold field's value.
func ( s * GetMLModelOutput ) SetScoreThreshold ( v float64 ) * GetMLModelOutput {
s . ScoreThreshold = & v
return s
}
// SetScoreThresholdLastUpdatedAt sets the ScoreThresholdLastUpdatedAt field's value.
func ( s * GetMLModelOutput ) SetScoreThresholdLastUpdatedAt ( v time . Time ) * GetMLModelOutput {
s . ScoreThresholdLastUpdatedAt = & v
return s
}
// SetSizeInBytes sets the SizeInBytes field's value.
func ( s * GetMLModelOutput ) SetSizeInBytes ( v int64 ) * GetMLModelOutput {
s . SizeInBytes = & v
return s
}
// SetStartedAt sets the StartedAt field's value.
func ( s * GetMLModelOutput ) SetStartedAt ( v time . Time ) * GetMLModelOutput {
s . StartedAt = & v
return s
}
// SetStatus sets the Status field's value.
func ( s * GetMLModelOutput ) SetStatus ( v string ) * GetMLModelOutput {
s . Status = & v
return s
}
// SetTrainingDataSourceId sets the TrainingDataSourceId field's value.
func ( s * GetMLModelOutput ) SetTrainingDataSourceId ( v string ) * GetMLModelOutput {
s . TrainingDataSourceId = & v
return s
}
// SetTrainingParameters sets the TrainingParameters field's value.
func ( s * GetMLModelOutput ) SetTrainingParameters ( v map [ string ] * string ) * GetMLModelOutput {
s . TrainingParameters = v
return s
}
// Represents the output of a GetMLModel operation.
//
// The content consists of the detailed metadata and the current status of the
// MLModel.
type MLModel struct {
_ struct { } ` type:"structure" `
// The algorithm used to train the MLModel. The following algorithm is supported:
//
// * SGD -- Stochastic gradient descent. The goal of SGD is to minimize the
// gradient of the loss function.
Algorithm * string ` type:"string" enum:"Algorithm" `
// Long integer type that is a 64-bit signed number.
ComputeTime * int64 ` type:"long" `
// The time that the MLModel was created. The time is expressed in epoch time.
CreatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The AWS user account from which the MLModel was created. The account type
// can be either an AWS root account or an AWS Identity and Access Management
// (IAM) user account.
CreatedByIamUser * string ` type:"string" `
// The current endpoint of the MLModel.
EndpointInfo * RealtimeEndpointInfo ` type:"structure" `
// A timestamp represented in epoch time.
FinishedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The location of the data file or directory in Amazon Simple Storage Service
// (Amazon S3).
InputDataLocationS3 * string ` type:"string" `
// The time of the most recent edit to the MLModel. The time is expressed in
// epoch time.
LastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The ID assigned to the MLModel at creation.
MLModelId * string ` min:"1" type:"string" `
// Identifies the MLModel category. The following are the available types:
//
// * REGRESSION - Produces a numeric result. For example, "What price should
// a house be listed at?"
// * BINARY - Produces one of two possible results. For example, "Is this
// a child-friendly web site?".
// * MULTICLASS - Produces one of several possible results. For example,
// "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
MLModelType * string ` type:"string" enum:"MLModelType" `
// A description of the most recent details about accessing the MLModel.
Message * string ` type:"string" `
// A user-supplied name or description of the MLModel.
Name * string ` type:"string" `
ScoreThreshold * float64 ` type:"float" `
// The time of the most recent edit to the ScoreThreshold. The time is expressed
// in epoch time.
ScoreThresholdLastUpdatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// Long integer type that is a 64-bit signed number.
SizeInBytes * int64 ` type:"long" `
// A timestamp represented in epoch time.
StartedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The current status of an MLModel. This element can have one of the following
// values:
//
// * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
// create an MLModel.
// * INPROGRESS - The creation process is underway.
// * FAILED - The request to create an MLModel didn't run to completion.
// The model isn't usable.
// * COMPLETED - The creation process completed successfully.
// * DELETED - The MLModel is marked as deleted. It isn't usable.
Status * string ` type:"string" enum:"EntityStatus" `
// The ID of the training DataSource. The CreateMLModel operation uses the TrainingDataSourceId.
TrainingDataSourceId * string ` min:"1" type:"string" `
// A list of the training parameters in the MLModel. The list is implemented
// as a map of key-value pairs.
//
// The following is the current set of training parameters:
//
// * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
// on the input data, the size of the model might affect its performance.
//
// The value is an integer that ranges from 100000 to 2147483648. The default
// value is 33554432.
//
// * sgd.maxPasses - The number of times that the training process traverses
// the observations to build the MLModel. The value is an integer that ranges
// from 1 to 10000. The default value is 10.
//
// * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
// the data improves a model's ability to find the optimal solution for a
// variety of data types. The valid values are auto and none. The default
// value is none.
//
// * sgd.l1RegularizationAmount - The coefficient regularization L1 norm,
// which controls overfitting the data by penalizing large coefficients.
// This parameter tends to drive coefficients to zero, resulting in sparse
// feature set. If you use this parameter, start by specifying a small value,
// such as 1.0E-08.
//
// The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
// not use L1 normalization. This parameter can't be used when L2 is specified.
// Use this parameter sparingly.
//
// * sgd.l2RegularizationAmount - The coefficient regularization L2 norm,
// which controls overfitting the data by penalizing large coefficients.
// This tends to drive coefficients to small, nonzero values. If you use
// this parameter, start by specifying a small value, such as 1.0E-08.
//
// The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
// not use L2 normalization. This parameter can't be used when L1 is specified.
// Use this parameter sparingly.
TrainingParameters map [ string ] * string ` type:"map" `
}
// String returns the string representation
func ( s MLModel ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s MLModel ) GoString ( ) string {
return s . String ( )
}
// SetAlgorithm sets the Algorithm field's value.
func ( s * MLModel ) SetAlgorithm ( v string ) * MLModel {
s . Algorithm = & v
return s
}
// SetComputeTime sets the ComputeTime field's value.
func ( s * MLModel ) SetComputeTime ( v int64 ) * MLModel {
s . ComputeTime = & v
return s
}
// SetCreatedAt sets the CreatedAt field's value.
func ( s * MLModel ) SetCreatedAt ( v time . Time ) * MLModel {
s . CreatedAt = & v
return s
}
// SetCreatedByIamUser sets the CreatedByIamUser field's value.
func ( s * MLModel ) SetCreatedByIamUser ( v string ) * MLModel {
s . CreatedByIamUser = & v
return s
}
// SetEndpointInfo sets the EndpointInfo field's value.
func ( s * MLModel ) SetEndpointInfo ( v * RealtimeEndpointInfo ) * MLModel {
s . EndpointInfo = v
return s
}
// SetFinishedAt sets the FinishedAt field's value.
func ( s * MLModel ) SetFinishedAt ( v time . Time ) * MLModel {
s . FinishedAt = & v
return s
}
// SetInputDataLocationS3 sets the InputDataLocationS3 field's value.
func ( s * MLModel ) SetInputDataLocationS3 ( v string ) * MLModel {
s . InputDataLocationS3 = & v
return s
}
// SetLastUpdatedAt sets the LastUpdatedAt field's value.
func ( s * MLModel ) SetLastUpdatedAt ( v time . Time ) * MLModel {
s . LastUpdatedAt = & v
return s
}
// SetMLModelId sets the MLModelId field's value.
func ( s * MLModel ) SetMLModelId ( v string ) * MLModel {
s . MLModelId = & v
return s
}
// SetMLModelType sets the MLModelType field's value.
func ( s * MLModel ) SetMLModelType ( v string ) * MLModel {
s . MLModelType = & v
return s
}
// SetMessage sets the Message field's value.
func ( s * MLModel ) SetMessage ( v string ) * MLModel {
s . Message = & v
return s
}
// SetName sets the Name field's value.
func ( s * MLModel ) SetName ( v string ) * MLModel {
s . Name = & v
return s
}
// SetScoreThreshold sets the ScoreThreshold field's value.
func ( s * MLModel ) SetScoreThreshold ( v float64 ) * MLModel {
s . ScoreThreshold = & v
return s
}
// SetScoreThresholdLastUpdatedAt sets the ScoreThresholdLastUpdatedAt field's value.
func ( s * MLModel ) SetScoreThresholdLastUpdatedAt ( v time . Time ) * MLModel {
s . ScoreThresholdLastUpdatedAt = & v
return s
}
// SetSizeInBytes sets the SizeInBytes field's value.
func ( s * MLModel ) SetSizeInBytes ( v int64 ) * MLModel {
s . SizeInBytes = & v
return s
}
// SetStartedAt sets the StartedAt field's value.
func ( s * MLModel ) SetStartedAt ( v time . Time ) * MLModel {
s . StartedAt = & v
return s
}
// SetStatus sets the Status field's value.
func ( s * MLModel ) SetStatus ( v string ) * MLModel {
s . Status = & v
return s
}
// SetTrainingDataSourceId sets the TrainingDataSourceId field's value.
func ( s * MLModel ) SetTrainingDataSourceId ( v string ) * MLModel {
s . TrainingDataSourceId = & v
return s
}
// SetTrainingParameters sets the TrainingParameters field's value.
func ( s * MLModel ) SetTrainingParameters ( v map [ string ] * string ) * MLModel {
s . TrainingParameters = v
return s
}
// Measurements of how well the MLModel performed on known observations. One
// of the following metrics is returned, based on the type of the MLModel:
//
// * BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique
// to measure performance.
//
// * RegressionRMSE: The regression MLModel uses the Root Mean Square Error
// (RMSE) technique to measure performance. RMSE measures the difference
// between predicted and actual values for a single variable.
//
// * MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique
// to measure performance.
//
// For more information about performance metrics, please see the Amazon Machine
// Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg).
type PerformanceMetrics struct {
_ struct { } ` type:"structure" `
Properties map [ string ] * string ` type:"map" `
}
// String returns the string representation
func ( s PerformanceMetrics ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s PerformanceMetrics ) GoString ( ) string {
return s . String ( )
}
// SetProperties sets the Properties field's value.
func ( s * PerformanceMetrics ) SetProperties ( v map [ string ] * string ) * PerformanceMetrics {
s . Properties = v
return s
}
type PredictInput struct {
_ struct { } ` type:"structure" `
// A unique identifier of the MLModel.
//
// MLModelId is a required field
MLModelId * string ` min:"1" type:"string" required:"true" `
// PredictEndpoint is a required field
PredictEndpoint * string ` type:"string" required:"true" `
// A map of variable name-value pairs that represent an observation.
//
// Record is a required field
Record map [ string ] * string ` type:"map" required:"true" `
}
// String returns the string representation
func ( s PredictInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s PredictInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * PredictInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "PredictInput" }
if s . MLModelId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelId" ) )
}
if s . MLModelId != nil && len ( * s . MLModelId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "MLModelId" , 1 ) )
}
if s . PredictEndpoint == nil {
invalidParams . Add ( request . NewErrParamRequired ( "PredictEndpoint" ) )
}
if s . Record == nil {
invalidParams . Add ( request . NewErrParamRequired ( "Record" ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetMLModelId sets the MLModelId field's value.
func ( s * PredictInput ) SetMLModelId ( v string ) * PredictInput {
s . MLModelId = & v
return s
}
// SetPredictEndpoint sets the PredictEndpoint field's value.
func ( s * PredictInput ) SetPredictEndpoint ( v string ) * PredictInput {
s . PredictEndpoint = & v
return s
}
// SetRecord sets the Record field's value.
func ( s * PredictInput ) SetRecord ( v map [ string ] * string ) * PredictInput {
s . Record = v
return s
}
type PredictOutput struct {
_ struct { } ` type:"structure" `
// The output from a Predict operation:
//
// * Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE
// - REGRESSION | BINARY | MULTICLASSDetailsAttributes.ALGORITHM - SGD
//
// * PredictedLabel - Present for either a BINARY or MULTICLASSMLModel request.
//
//
// * PredictedScores - Contains the raw classification score corresponding
// to each label.
//
// * PredictedValue - Present for a REGRESSIONMLModel request.
Prediction * Prediction ` type:"structure" `
}
// String returns the string representation
func ( s PredictOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s PredictOutput ) GoString ( ) string {
return s . String ( )
}
// SetPrediction sets the Prediction field's value.
func ( s * PredictOutput ) SetPrediction ( v * Prediction ) * PredictOutput {
s . Prediction = v
return s
}
// The output from a Predict operation:
//
// * Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE
// - REGRESSION | BINARY | MULTICLASSDetailsAttributes.ALGORITHM - SGD
//
// * PredictedLabel - Present for either a BINARY or MULTICLASSMLModel request.
//
//
// * PredictedScores - Contains the raw classification score corresponding
// to each label.
//
// * PredictedValue - Present for a REGRESSIONMLModel request.
type Prediction struct {
_ struct { } ` type:"structure" `
// Provides any additional details regarding the prediction.
Details map [ string ] * string ` locationName:"details" type:"map" `
// The prediction label for either a BINARY or MULTICLASSMLModel.
PredictedLabel * string ` locationName:"predictedLabel" min:"1" type:"string" `
// Provides the raw classification score corresponding to each label.
PredictedScores map [ string ] * float64 ` locationName:"predictedScores" type:"map" `
// The prediction value for REGRESSIONMLModel
PredictedValue * float64 ` locationName:"predictedValue" type:"float" `
}
// String returns the string representation
func ( s Prediction ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s Prediction ) GoString ( ) string {
return s . String ( )
}
// SetDetails sets the Details field's value.
func ( s * Prediction ) SetDetails ( v map [ string ] * string ) * Prediction {
s . Details = v
return s
}
// SetPredictedLabel sets the PredictedLabel field's value.
func ( s * Prediction ) SetPredictedLabel ( v string ) * Prediction {
s . PredictedLabel = & v
return s
}
// SetPredictedScores sets the PredictedScores field's value.
func ( s * Prediction ) SetPredictedScores ( v map [ string ] * float64 ) * Prediction {
s . PredictedScores = v
return s
}
// SetPredictedValue sets the PredictedValue field's value.
func ( s * Prediction ) SetPredictedValue ( v float64 ) * Prediction {
s . PredictedValue = & v
return s
}
// The data specification of an Amazon Relational Database Service (Amazon RDS)
// DataSource.
type RDSDataSpec struct {
_ struct { } ` type:"structure" `
// A JSON string that represents the splitting and rearrangement processing
// to be applied to a DataSource. If the DataRearrangement parameter is not
// provided, all of the input data is used to create the Datasource.
//
// There are multiple parameters that control what data is used to create a
// datasource:
//
// * percentBegin
//
// Use percentBegin to indicate the beginning of the range of the data used
// to create the Datasource. If you do not include percentBegin and percentEnd,
// Amazon ML includes all of the data when creating the datasource.
//
// * percentEnd
//
// Use percentEnd to indicate the end of the range of the data used to create
// the Datasource. If you do not include percentBegin and percentEnd, Amazon
// ML includes all of the data when creating the datasource.
//
// * complement
//
// The complement parameter instructs Amazon ML to use the data that is not
// included in the range of percentBegin to percentEnd to create a datasource.
// The complement parameter is useful if you need to create complementary
// datasources for training and evaluation. To create a complementary datasource,
// use the same values for percentBegin and percentEnd, along with the complement
// parameter.
//
// For example, the following two datasources do not share any data, and can
// be used to train and evaluate a model. The first datasource has 25 percent
// of the data, and the second one has 75 percent of the data.
//
// Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
//
// Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
// "complement":"true"}}
//
// * strategy
//
// To change how Amazon ML splits the data for a datasource, use the strategy
// parameter.
//
// The default value for the strategy parameter is sequential, meaning that
// Amazon ML takes all of the data records between the percentBegin and percentEnd
// parameters for the datasource, in the order that the records appear in
// the input data.
//
// The following two DataRearrangement lines are examples of sequentially ordered
// training and evaluation datasources:
//
// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"sequential"}}
//
// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"sequential", "complement":"true"}}
//
// To randomly split the input data into the proportions indicated by the percentBegin
// and percentEnd parameters, set the strategy parameter to random and provide
// a string that is used as the seed value for the random data splitting
// (for example, you can use the S3 path to your data as the random seed
// string). If you choose the random split strategy, Amazon ML assigns each
// row of data a pseudo-random number between 0 and 100, and then selects
// the rows that have an assigned number between percentBegin and percentEnd.
// Pseudo-random numbers are assigned using both the input seed string value
// and the byte offset as a seed, so changing the data results in a different
// split. Any existing ordering is preserved. The random splitting strategy
// ensures that variables in the training and evaluation data are distributed
// similarly. It is useful in the cases where the input data may have an
// implicit sort order, which would otherwise result in training and evaluation
// datasources containing non-similar data records.
//
// The following two DataRearrangement lines are examples of non-sequentially
// ordered training and evaluation datasources:
//
// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
//
// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
DataRearrangement * string ` type:"string" `
// A JSON string that represents the schema for an Amazon RDS DataSource. The
// DataSchema defines the structure of the observation data in the data file(s)
// referenced in the DataSource.
//
// A DataSchema is not required if you specify a DataSchemaUri
//
// Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames
// have an array of key-value pairs for their value. Use the following format
// to define your DataSchema.
//
// { "version": "1.0",
//
// "recordAnnotationFieldName": "F1",
//
// "recordWeightFieldName": "F2",
//
// "targetFieldName": "F3",
//
// "dataFormat": "CSV",
//
// "dataFileContainsHeader": true,
//
// "attributes": [
//
// { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
// "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
// "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
// }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
// "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE"
// } ],
//
// "excludedVariableNames": [ "F6" ] }
DataSchema * string ` type:"string" `
// The Amazon S3 location of the DataSchema.
DataSchemaUri * string ` type:"string" `
// The AWS Identity and Access Management (IAM) credentials that are used connect
// to the Amazon RDS database.
//
// DatabaseCredentials is a required field
DatabaseCredentials * RDSDatabaseCredentials ` type:"structure" required:"true" `
// Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.
//
// DatabaseInformation is a required field
DatabaseInformation * RDSDatabase ` type:"structure" required:"true" `
// The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute
// Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS
// to an Amazon S3 task. For more information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
// for data pipelines.
//
// ResourceRole is a required field
ResourceRole * string ` min:"1" type:"string" required:"true" `
// The Amazon S3 location for staging Amazon RDS data. The data retrieved from
// Amazon RDS using SelectSqlQuery is stored in this location.
//
// S3StagingLocation is a required field
S3StagingLocation * string ` type:"string" required:"true" `
// The security group IDs to be used to access a VPC-based RDS DB instance.
// Ensure that there are appropriate ingress rules set up to allow access to
// the RDS DB instance. This attribute is used by Data Pipeline to carry out
// the copy operation from Amazon RDS to an Amazon S3 task.
//
// SecurityGroupIds is a required field
SecurityGroupIds [ ] * string ` type:"list" required:"true" `
// The query that is used to retrieve the observation data for the DataSource.
//
// SelectSqlQuery is a required field
SelectSqlQuery * string ` min:"1" type:"string" required:"true" `
// The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to
// monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
// information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
// for data pipelines.
//
// ServiceRole is a required field
ServiceRole * string ` min:"1" type:"string" required:"true" `
// The subnet ID to be used to access a VPC-based RDS DB instance. This attribute
// is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon
// S3.
//
// SubnetId is a required field
SubnetId * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s RDSDataSpec ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s RDSDataSpec ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * RDSDataSpec ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "RDSDataSpec" }
if s . DatabaseCredentials == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DatabaseCredentials" ) )
}
if s . DatabaseInformation == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DatabaseInformation" ) )
}
if s . ResourceRole == nil {
invalidParams . Add ( request . NewErrParamRequired ( "ResourceRole" ) )
}
if s . ResourceRole != nil && len ( * s . ResourceRole ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "ResourceRole" , 1 ) )
}
if s . S3StagingLocation == nil {
invalidParams . Add ( request . NewErrParamRequired ( "S3StagingLocation" ) )
}
if s . SecurityGroupIds == nil {
invalidParams . Add ( request . NewErrParamRequired ( "SecurityGroupIds" ) )
}
if s . SelectSqlQuery == nil {
invalidParams . Add ( request . NewErrParamRequired ( "SelectSqlQuery" ) )
}
if s . SelectSqlQuery != nil && len ( * s . SelectSqlQuery ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "SelectSqlQuery" , 1 ) )
}
if s . ServiceRole == nil {
invalidParams . Add ( request . NewErrParamRequired ( "ServiceRole" ) )
}
if s . ServiceRole != nil && len ( * s . ServiceRole ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "ServiceRole" , 1 ) )
}
if s . SubnetId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "SubnetId" ) )
}
if s . SubnetId != nil && len ( * s . SubnetId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "SubnetId" , 1 ) )
}
if s . DatabaseCredentials != nil {
if err := s . DatabaseCredentials . Validate ( ) ; err != nil {
invalidParams . AddNested ( "DatabaseCredentials" , err . ( request . ErrInvalidParams ) )
}
}
if s . DatabaseInformation != nil {
if err := s . DatabaseInformation . Validate ( ) ; err != nil {
invalidParams . AddNested ( "DatabaseInformation" , err . ( request . ErrInvalidParams ) )
}
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetDataRearrangement sets the DataRearrangement field's value.
func ( s * RDSDataSpec ) SetDataRearrangement ( v string ) * RDSDataSpec {
s . DataRearrangement = & v
return s
}
// SetDataSchema sets the DataSchema field's value.
func ( s * RDSDataSpec ) SetDataSchema ( v string ) * RDSDataSpec {
s . DataSchema = & v
return s
}
// SetDataSchemaUri sets the DataSchemaUri field's value.
func ( s * RDSDataSpec ) SetDataSchemaUri ( v string ) * RDSDataSpec {
s . DataSchemaUri = & v
return s
}
// SetDatabaseCredentials sets the DatabaseCredentials field's value.
func ( s * RDSDataSpec ) SetDatabaseCredentials ( v * RDSDatabaseCredentials ) * RDSDataSpec {
s . DatabaseCredentials = v
return s
}
// SetDatabaseInformation sets the DatabaseInformation field's value.
func ( s * RDSDataSpec ) SetDatabaseInformation ( v * RDSDatabase ) * RDSDataSpec {
s . DatabaseInformation = v
return s
}
// SetResourceRole sets the ResourceRole field's value.
func ( s * RDSDataSpec ) SetResourceRole ( v string ) * RDSDataSpec {
s . ResourceRole = & v
return s
}
// SetS3StagingLocation sets the S3StagingLocation field's value.
func ( s * RDSDataSpec ) SetS3StagingLocation ( v string ) * RDSDataSpec {
s . S3StagingLocation = & v
return s
}
// SetSecurityGroupIds sets the SecurityGroupIds field's value.
func ( s * RDSDataSpec ) SetSecurityGroupIds ( v [ ] * string ) * RDSDataSpec {
s . SecurityGroupIds = v
return s
}
// SetSelectSqlQuery sets the SelectSqlQuery field's value.
func ( s * RDSDataSpec ) SetSelectSqlQuery ( v string ) * RDSDataSpec {
s . SelectSqlQuery = & v
return s
}
// SetServiceRole sets the ServiceRole field's value.
func ( s * RDSDataSpec ) SetServiceRole ( v string ) * RDSDataSpec {
s . ServiceRole = & v
return s
}
// SetSubnetId sets the SubnetId field's value.
func ( s * RDSDataSpec ) SetSubnetId ( v string ) * RDSDataSpec {
s . SubnetId = & v
return s
}
// The database details of an Amazon RDS database.
type RDSDatabase struct {
_ struct { } ` type:"structure" `
// The name of a database hosted on an RDS DB instance.
//
// DatabaseName is a required field
DatabaseName * string ` min:"1" type:"string" required:"true" `
// The ID of an RDS DB instance.
//
// InstanceIdentifier is a required field
InstanceIdentifier * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s RDSDatabase ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s RDSDatabase ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * RDSDatabase ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "RDSDatabase" }
if s . DatabaseName == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DatabaseName" ) )
}
if s . DatabaseName != nil && len ( * s . DatabaseName ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "DatabaseName" , 1 ) )
}
if s . InstanceIdentifier == nil {
invalidParams . Add ( request . NewErrParamRequired ( "InstanceIdentifier" ) )
}
if s . InstanceIdentifier != nil && len ( * s . InstanceIdentifier ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "InstanceIdentifier" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetDatabaseName sets the DatabaseName field's value.
func ( s * RDSDatabase ) SetDatabaseName ( v string ) * RDSDatabase {
s . DatabaseName = & v
return s
}
// SetInstanceIdentifier sets the InstanceIdentifier field's value.
func ( s * RDSDatabase ) SetInstanceIdentifier ( v string ) * RDSDatabase {
s . InstanceIdentifier = & v
return s
}
// The database credentials to connect to a database on an RDS DB instance.
type RDSDatabaseCredentials struct {
_ struct { } ` type:"structure" `
// The password to be used by Amazon ML to connect to a database on an RDS DB
// instance. The password should have sufficient permissions to execute the
// RDSSelectQuery query.
//
// Password is a required field
Password * string ` min:"8" type:"string" required:"true" `
// The username to be used by Amazon ML to connect to database on an Amazon
// RDS instance. The username should have sufficient permissions to execute
// an RDSSelectSqlQuery query.
//
// Username is a required field
Username * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s RDSDatabaseCredentials ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s RDSDatabaseCredentials ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * RDSDatabaseCredentials ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "RDSDatabaseCredentials" }
if s . Password == nil {
invalidParams . Add ( request . NewErrParamRequired ( "Password" ) )
}
if s . Password != nil && len ( * s . Password ) < 8 {
invalidParams . Add ( request . NewErrParamMinLen ( "Password" , 8 ) )
}
if s . Username == nil {
invalidParams . Add ( request . NewErrParamRequired ( "Username" ) )
}
if s . Username != nil && len ( * s . Username ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "Username" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetPassword sets the Password field's value.
func ( s * RDSDatabaseCredentials ) SetPassword ( v string ) * RDSDatabaseCredentials {
s . Password = & v
return s
}
// SetUsername sets the Username field's value.
func ( s * RDSDatabaseCredentials ) SetUsername ( v string ) * RDSDatabaseCredentials {
s . Username = & v
return s
}
// The datasource details that are specific to Amazon RDS.
type RDSMetadata struct {
_ struct { } ` type:"structure" `
// The ID of the Data Pipeline instance that is used to carry to copy data from
// Amazon RDS to Amazon S3. You can use the ID to find details about the instance
// in the Data Pipeline console.
DataPipelineId * string ` min:"1" type:"string" `
// The database details required to connect to an Amazon RDS.
Database * RDSDatabase ` type:"structure" `
// The username to be used by Amazon ML to connect to database on an Amazon
// RDS instance. The username should have sufficient permissions to execute
// an RDSSelectSqlQuery query.
DatabaseUserName * string ` min:"1" type:"string" `
// The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance
// to carry out the copy task from Amazon RDS to Amazon S3. For more information,
// see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
// for data pipelines.
ResourceRole * string ` min:"1" type:"string" `
// The SQL query that is supplied during CreateDataSourceFromRDS. Returns only
// if Verbose is true in GetDataSourceInput.
SelectSqlQuery * string ` min:"1" type:"string" `
// The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to
// monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
// information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
// for data pipelines.
ServiceRole * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s RDSMetadata ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s RDSMetadata ) GoString ( ) string {
return s . String ( )
}
// SetDataPipelineId sets the DataPipelineId field's value.
func ( s * RDSMetadata ) SetDataPipelineId ( v string ) * RDSMetadata {
s . DataPipelineId = & v
return s
}
// SetDatabase sets the Database field's value.
func ( s * RDSMetadata ) SetDatabase ( v * RDSDatabase ) * RDSMetadata {
s . Database = v
return s
}
// SetDatabaseUserName sets the DatabaseUserName field's value.
func ( s * RDSMetadata ) SetDatabaseUserName ( v string ) * RDSMetadata {
s . DatabaseUserName = & v
return s
}
// SetResourceRole sets the ResourceRole field's value.
func ( s * RDSMetadata ) SetResourceRole ( v string ) * RDSMetadata {
s . ResourceRole = & v
return s
}
// SetSelectSqlQuery sets the SelectSqlQuery field's value.
func ( s * RDSMetadata ) SetSelectSqlQuery ( v string ) * RDSMetadata {
s . SelectSqlQuery = & v
return s
}
// SetServiceRole sets the ServiceRole field's value.
func ( s * RDSMetadata ) SetServiceRole ( v string ) * RDSMetadata {
s . ServiceRole = & v
return s
}
// Describes the real-time endpoint information for an MLModel.
type RealtimeEndpointInfo struct {
_ struct { } ` type:"structure" `
// The time that the request to create the real-time endpoint for the MLModel
// was received. The time is expressed in epoch time.
CreatedAt * time . Time ` type:"timestamp" timestampFormat:"unix" `
// The current status of the real-time endpoint for the MLModel. This element
// can have one of the following values:
//
// * NONE - Endpoint does not exist or was previously deleted.
// * READY - Endpoint is ready to be used for real-time predictions.
// * UPDATING - Updating/creating the endpoint.
EndpointStatus * string ` type:"string" enum:"RealtimeEndpointStatus" `
// The URI that specifies where to send real-time prediction requests for the
// MLModel.
//
// NoteThe application must wait until the real-time endpoint is ready before
// using this URI.
EndpointUrl * string ` type:"string" `
// The maximum processing rate for the real-time endpoint for MLModel, measured
// in incoming requests per second.
PeakRequestsPerSecond * int64 ` type:"integer" `
}
// String returns the string representation
func ( s RealtimeEndpointInfo ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s RealtimeEndpointInfo ) GoString ( ) string {
return s . String ( )
}
// SetCreatedAt sets the CreatedAt field's value.
func ( s * RealtimeEndpointInfo ) SetCreatedAt ( v time . Time ) * RealtimeEndpointInfo {
s . CreatedAt = & v
return s
}
// SetEndpointStatus sets the EndpointStatus field's value.
func ( s * RealtimeEndpointInfo ) SetEndpointStatus ( v string ) * RealtimeEndpointInfo {
s . EndpointStatus = & v
return s
}
// SetEndpointUrl sets the EndpointUrl field's value.
func ( s * RealtimeEndpointInfo ) SetEndpointUrl ( v string ) * RealtimeEndpointInfo {
s . EndpointUrl = & v
return s
}
// SetPeakRequestsPerSecond sets the PeakRequestsPerSecond field's value.
func ( s * RealtimeEndpointInfo ) SetPeakRequestsPerSecond ( v int64 ) * RealtimeEndpointInfo {
s . PeakRequestsPerSecond = & v
return s
}
// Describes the data specification of an Amazon Redshift DataSource.
type RedshiftDataSpec struct {
_ struct { } ` type:"structure" `
// A JSON string that represents the splitting and rearrangement processing
// to be applied to a DataSource. If the DataRearrangement parameter is not
// provided, all of the input data is used to create the Datasource.
//
// There are multiple parameters that control what data is used to create a
// datasource:
//
// * percentBegin
//
// Use percentBegin to indicate the beginning of the range of the data used
// to create the Datasource. If you do not include percentBegin and percentEnd,
// Amazon ML includes all of the data when creating the datasource.
//
// * percentEnd
//
// Use percentEnd to indicate the end of the range of the data used to create
// the Datasource. If you do not include percentBegin and percentEnd, Amazon
// ML includes all of the data when creating the datasource.
//
// * complement
//
// The complement parameter instructs Amazon ML to use the data that is not
// included in the range of percentBegin to percentEnd to create a datasource.
// The complement parameter is useful if you need to create complementary
// datasources for training and evaluation. To create a complementary datasource,
// use the same values for percentBegin and percentEnd, along with the complement
// parameter.
//
// For example, the following two datasources do not share any data, and can
// be used to train and evaluate a model. The first datasource has 25 percent
// of the data, and the second one has 75 percent of the data.
//
// Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
//
// Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
// "complement":"true"}}
//
// * strategy
//
// To change how Amazon ML splits the data for a datasource, use the strategy
// parameter.
//
// The default value for the strategy parameter is sequential, meaning that
// Amazon ML takes all of the data records between the percentBegin and percentEnd
// parameters for the datasource, in the order that the records appear in
// the input data.
//
// The following two DataRearrangement lines are examples of sequentially ordered
// training and evaluation datasources:
//
// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"sequential"}}
//
// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"sequential", "complement":"true"}}
//
// To randomly split the input data into the proportions indicated by the percentBegin
// and percentEnd parameters, set the strategy parameter to random and provide
// a string that is used as the seed value for the random data splitting
// (for example, you can use the S3 path to your data as the random seed
// string). If you choose the random split strategy, Amazon ML assigns each
// row of data a pseudo-random number between 0 and 100, and then selects
// the rows that have an assigned number between percentBegin and percentEnd.
// Pseudo-random numbers are assigned using both the input seed string value
// and the byte offset as a seed, so changing the data results in a different
// split. Any existing ordering is preserved. The random splitting strategy
// ensures that variables in the training and evaluation data are distributed
// similarly. It is useful in the cases where the input data may have an
// implicit sort order, which would otherwise result in training and evaluation
// datasources containing non-similar data records.
//
// The following two DataRearrangement lines are examples of non-sequentially
// ordered training and evaluation datasources:
//
// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
//
// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
DataRearrangement * string ` type:"string" `
// A JSON string that represents the schema for an Amazon Redshift DataSource.
// The DataSchema defines the structure of the observation data in the data
// file(s) referenced in the DataSource.
//
// A DataSchema is not required if you specify a DataSchemaUri.
//
// Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames
// have an array of key-value pairs for their value. Use the following format
// to define your DataSchema.
//
// { "version": "1.0",
//
// "recordAnnotationFieldName": "F1",
//
// "recordWeightFieldName": "F2",
//
// "targetFieldName": "F3",
//
// "dataFormat": "CSV",
//
// "dataFileContainsHeader": true,
//
// "attributes": [
//
// { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
// "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
// "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
// }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
// "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE"
// } ],
//
// "excludedVariableNames": [ "F6" ] }
DataSchema * string ` type:"string" `
// Describes the schema location for an Amazon Redshift DataSource.
DataSchemaUri * string ` type:"string" `
// Describes AWS Identity and Access Management (IAM) credentials that are used
// connect to the Amazon Redshift database.
//
// DatabaseCredentials is a required field
DatabaseCredentials * RedshiftDatabaseCredentials ` type:"structure" required:"true" `
// Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift DataSource.
//
// DatabaseInformation is a required field
DatabaseInformation * RedshiftDatabase ` type:"structure" required:"true" `
// Describes an Amazon S3 location to store the result set of the SelectSqlQuery
// query.
//
// S3StagingLocation is a required field
S3StagingLocation * string ` type:"string" required:"true" `
// Describes the SQL Query to execute on an Amazon Redshift database for an
// Amazon Redshift DataSource.
//
// SelectSqlQuery is a required field
SelectSqlQuery * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s RedshiftDataSpec ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s RedshiftDataSpec ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * RedshiftDataSpec ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "RedshiftDataSpec" }
if s . DatabaseCredentials == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DatabaseCredentials" ) )
}
if s . DatabaseInformation == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DatabaseInformation" ) )
}
if s . S3StagingLocation == nil {
invalidParams . Add ( request . NewErrParamRequired ( "S3StagingLocation" ) )
}
if s . SelectSqlQuery == nil {
invalidParams . Add ( request . NewErrParamRequired ( "SelectSqlQuery" ) )
}
if s . SelectSqlQuery != nil && len ( * s . SelectSqlQuery ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "SelectSqlQuery" , 1 ) )
}
if s . DatabaseCredentials != nil {
if err := s . DatabaseCredentials . Validate ( ) ; err != nil {
invalidParams . AddNested ( "DatabaseCredentials" , err . ( request . ErrInvalidParams ) )
}
}
if s . DatabaseInformation != nil {
if err := s . DatabaseInformation . Validate ( ) ; err != nil {
invalidParams . AddNested ( "DatabaseInformation" , err . ( request . ErrInvalidParams ) )
}
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetDataRearrangement sets the DataRearrangement field's value.
func ( s * RedshiftDataSpec ) SetDataRearrangement ( v string ) * RedshiftDataSpec {
s . DataRearrangement = & v
return s
}
// SetDataSchema sets the DataSchema field's value.
func ( s * RedshiftDataSpec ) SetDataSchema ( v string ) * RedshiftDataSpec {
s . DataSchema = & v
return s
}
// SetDataSchemaUri sets the DataSchemaUri field's value.
func ( s * RedshiftDataSpec ) SetDataSchemaUri ( v string ) * RedshiftDataSpec {
s . DataSchemaUri = & v
return s
}
// SetDatabaseCredentials sets the DatabaseCredentials field's value.
func ( s * RedshiftDataSpec ) SetDatabaseCredentials ( v * RedshiftDatabaseCredentials ) * RedshiftDataSpec {
s . DatabaseCredentials = v
return s
}
// SetDatabaseInformation sets the DatabaseInformation field's value.
func ( s * RedshiftDataSpec ) SetDatabaseInformation ( v * RedshiftDatabase ) * RedshiftDataSpec {
s . DatabaseInformation = v
return s
}
// SetS3StagingLocation sets the S3StagingLocation field's value.
func ( s * RedshiftDataSpec ) SetS3StagingLocation ( v string ) * RedshiftDataSpec {
s . S3StagingLocation = & v
return s
}
// SetSelectSqlQuery sets the SelectSqlQuery field's value.
func ( s * RedshiftDataSpec ) SetSelectSqlQuery ( v string ) * RedshiftDataSpec {
s . SelectSqlQuery = & v
return s
}
// Describes the database details required to connect to an Amazon Redshift
// database.
type RedshiftDatabase struct {
_ struct { } ` type:"structure" `
// The ID of an Amazon Redshift cluster.
//
// ClusterIdentifier is a required field
ClusterIdentifier * string ` min:"1" type:"string" required:"true" `
// The name of a database hosted on an Amazon Redshift cluster.
//
// DatabaseName is a required field
DatabaseName * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s RedshiftDatabase ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s RedshiftDatabase ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * RedshiftDatabase ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "RedshiftDatabase" }
if s . ClusterIdentifier == nil {
invalidParams . Add ( request . NewErrParamRequired ( "ClusterIdentifier" ) )
}
if s . ClusterIdentifier != nil && len ( * s . ClusterIdentifier ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "ClusterIdentifier" , 1 ) )
}
if s . DatabaseName == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DatabaseName" ) )
}
if s . DatabaseName != nil && len ( * s . DatabaseName ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "DatabaseName" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetClusterIdentifier sets the ClusterIdentifier field's value.
func ( s * RedshiftDatabase ) SetClusterIdentifier ( v string ) * RedshiftDatabase {
s . ClusterIdentifier = & v
return s
}
// SetDatabaseName sets the DatabaseName field's value.
func ( s * RedshiftDatabase ) SetDatabaseName ( v string ) * RedshiftDatabase {
s . DatabaseName = & v
return s
}
// Describes the database credentials for connecting to a database on an Amazon
// Redshift cluster.
type RedshiftDatabaseCredentials struct {
_ struct { } ` type:"structure" `
// A password to be used by Amazon ML to connect to a database on an Amazon
// Redshift cluster. The password should have sufficient permissions to execute
// a RedshiftSelectSqlQuery query. The password should be valid for an Amazon
// Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html).
//
// Password is a required field
Password * string ` min:"8" type:"string" required:"true" `
// A username to be used by Amazon Machine Learning (Amazon ML)to connect to
// a database on an Amazon Redshift cluster. The username should have sufficient
// permissions to execute the RedshiftSelectSqlQuery query. The username should
// be valid for an Amazon Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html).
//
// Username is a required field
Username * string ` min:"1" type:"string" required:"true" `
}
// String returns the string representation
func ( s RedshiftDatabaseCredentials ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s RedshiftDatabaseCredentials ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * RedshiftDatabaseCredentials ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "RedshiftDatabaseCredentials" }
if s . Password == nil {
invalidParams . Add ( request . NewErrParamRequired ( "Password" ) )
}
if s . Password != nil && len ( * s . Password ) < 8 {
invalidParams . Add ( request . NewErrParamMinLen ( "Password" , 8 ) )
}
if s . Username == nil {
invalidParams . Add ( request . NewErrParamRequired ( "Username" ) )
}
if s . Username != nil && len ( * s . Username ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "Username" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetPassword sets the Password field's value.
func ( s * RedshiftDatabaseCredentials ) SetPassword ( v string ) * RedshiftDatabaseCredentials {
s . Password = & v
return s
}
// SetUsername sets the Username field's value.
func ( s * RedshiftDatabaseCredentials ) SetUsername ( v string ) * RedshiftDatabaseCredentials {
s . Username = & v
return s
}
// Describes the DataSource details specific to Amazon Redshift.
type RedshiftMetadata struct {
_ struct { } ` type:"structure" `
// A username to be used by Amazon Machine Learning (Amazon ML)to connect to
// a database on an Amazon Redshift cluster. The username should have sufficient
// permissions to execute the RedshiftSelectSqlQuery query. The username should
// be valid for an Amazon Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html).
DatabaseUserName * string ` min:"1" type:"string" `
// Describes the database details required to connect to an Amazon Redshift
// database.
RedshiftDatabase * RedshiftDatabase ` type:"structure" `
// The SQL query that is specified during CreateDataSourceFromRedshift. Returns
// only if Verbose is true in GetDataSourceInput.
SelectSqlQuery * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s RedshiftMetadata ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s RedshiftMetadata ) GoString ( ) string {
return s . String ( )
}
// SetDatabaseUserName sets the DatabaseUserName field's value.
func ( s * RedshiftMetadata ) SetDatabaseUserName ( v string ) * RedshiftMetadata {
s . DatabaseUserName = & v
return s
}
// SetRedshiftDatabase sets the RedshiftDatabase field's value.
func ( s * RedshiftMetadata ) SetRedshiftDatabase ( v * RedshiftDatabase ) * RedshiftMetadata {
s . RedshiftDatabase = v
return s
}
// SetSelectSqlQuery sets the SelectSqlQuery field's value.
func ( s * RedshiftMetadata ) SetSelectSqlQuery ( v string ) * RedshiftMetadata {
s . SelectSqlQuery = & v
return s
}
// Describes the data specification of a DataSource.
type S3DataSpec struct {
_ struct { } ` type:"structure" `
// The location of the data file(s) used by a DataSource. The URI specifies
// a data file or an Amazon Simple Storage Service (Amazon S3) directory or
// bucket containing data files.
//
// DataLocationS3 is a required field
DataLocationS3 * string ` type:"string" required:"true" `
// A JSON string that represents the splitting and rearrangement processing
// to be applied to a DataSource. If the DataRearrangement parameter is not
// provided, all of the input data is used to create the Datasource.
//
// There are multiple parameters that control what data is used to create a
// datasource:
//
// * percentBegin
//
// Use percentBegin to indicate the beginning of the range of the data used
// to create the Datasource. If you do not include percentBegin and percentEnd,
// Amazon ML includes all of the data when creating the datasource.
//
// * percentEnd
//
// Use percentEnd to indicate the end of the range of the data used to create
// the Datasource. If you do not include percentBegin and percentEnd, Amazon
// ML includes all of the data when creating the datasource.
//
// * complement
//
// The complement parameter instructs Amazon ML to use the data that is not
// included in the range of percentBegin to percentEnd to create a datasource.
// The complement parameter is useful if you need to create complementary
// datasources for training and evaluation. To create a complementary datasource,
// use the same values for percentBegin and percentEnd, along with the complement
// parameter.
//
// For example, the following two datasources do not share any data, and can
// be used to train and evaluate a model. The first datasource has 25 percent
// of the data, and the second one has 75 percent of the data.
//
// Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}
//
// Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25,
// "complement":"true"}}
//
// * strategy
//
// To change how Amazon ML splits the data for a datasource, use the strategy
// parameter.
//
// The default value for the strategy parameter is sequential, meaning that
// Amazon ML takes all of the data records between the percentBegin and percentEnd
// parameters for the datasource, in the order that the records appear in
// the input data.
//
// The following two DataRearrangement lines are examples of sequentially ordered
// training and evaluation datasources:
//
// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"sequential"}}
//
// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"sequential", "complement":"true"}}
//
// To randomly split the input data into the proportions indicated by the percentBegin
// and percentEnd parameters, set the strategy parameter to random and provide
// a string that is used as the seed value for the random data splitting
// (for example, you can use the S3 path to your data as the random seed
// string). If you choose the random split strategy, Amazon ML assigns each
// row of data a pseudo-random number between 0 and 100, and then selects
// the rows that have an assigned number between percentBegin and percentEnd.
// Pseudo-random numbers are assigned using both the input seed string value
// and the byte offset as a seed, so changing the data results in a different
// split. Any existing ordering is preserved. The random splitting strategy
// ensures that variables in the training and evaluation data are distributed
// similarly. It is useful in the cases where the input data may have an
// implicit sort order, which would otherwise result in training and evaluation
// datasources containing non-similar data records.
//
// The following two DataRearrangement lines are examples of non-sequentially
// ordered training and evaluation datasources:
//
// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
//
// Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
DataRearrangement * string ` type:"string" `
// A JSON string that represents the schema for an Amazon S3 DataSource. The
// DataSchema defines the structure of the observation data in the data file(s)
// referenced in the DataSource.
//
// You must provide either the DataSchema or the DataSchemaLocationS3.
//
// Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames
// have an array of key-value pairs for their value. Use the following format
// to define your DataSchema.
//
// { "version": "1.0",
//
// "recordAnnotationFieldName": "F1",
//
// "recordWeightFieldName": "F2",
//
// "targetFieldName": "F3",
//
// "dataFormat": "CSV",
//
// "dataFileContainsHeader": true,
//
// "attributes": [
//
// { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType":
// "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName":
// "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL"
// }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType":
// "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE"
// } ],
//
// "excludedVariableNames": [ "F6" ] }
DataSchema * string ` type:"string" `
// Describes the schema location in Amazon S3. You must provide either the DataSchema
// or the DataSchemaLocationS3.
DataSchemaLocationS3 * string ` type:"string" `
}
// String returns the string representation
func ( s S3DataSpec ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s S3DataSpec ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * S3DataSpec ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "S3DataSpec" }
if s . DataLocationS3 == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataLocationS3" ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetDataLocationS3 sets the DataLocationS3 field's value.
func ( s * S3DataSpec ) SetDataLocationS3 ( v string ) * S3DataSpec {
s . DataLocationS3 = & v
return s
}
// SetDataRearrangement sets the DataRearrangement field's value.
func ( s * S3DataSpec ) SetDataRearrangement ( v string ) * S3DataSpec {
s . DataRearrangement = & v
return s
}
// SetDataSchema sets the DataSchema field's value.
func ( s * S3DataSpec ) SetDataSchema ( v string ) * S3DataSpec {
s . DataSchema = & v
return s
}
// SetDataSchemaLocationS3 sets the DataSchemaLocationS3 field's value.
func ( s * S3DataSpec ) SetDataSchemaLocationS3 ( v string ) * S3DataSpec {
s . DataSchemaLocationS3 = & v
return s
}
// A custom key-value pair associated with an ML object, such as an ML model.
type Tag struct {
_ struct { } ` type:"structure" `
// A unique identifier for the tag. Valid characters include Unicode letters,
// digits, white space, _, ., /, =, +, -, %, and @.
Key * string ` min:"1" type:"string" `
// An optional string, typically used to describe or define the tag. Valid characters
// include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.
Value * string ` type:"string" `
}
// String returns the string representation
func ( s Tag ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s Tag ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * Tag ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "Tag" }
if s . Key != nil && len ( * s . Key ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "Key" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetKey sets the Key field's value.
func ( s * Tag ) SetKey ( v string ) * Tag {
s . Key = & v
return s
}
// SetValue sets the Value field's value.
func ( s * Tag ) SetValue ( v string ) * Tag {
s . Value = & v
return s
}
type UpdateBatchPredictionInput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the BatchPrediction during creation.
//
// BatchPredictionId is a required field
BatchPredictionId * string ` min:"1" type:"string" required:"true" `
// A new user-supplied name or description of the BatchPrediction.
//
// BatchPredictionName is a required field
BatchPredictionName * string ` type:"string" required:"true" `
}
// String returns the string representation
func ( s UpdateBatchPredictionInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s UpdateBatchPredictionInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * UpdateBatchPredictionInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "UpdateBatchPredictionInput" }
if s . BatchPredictionId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "BatchPredictionId" ) )
}
if s . BatchPredictionId != nil && len ( * s . BatchPredictionId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "BatchPredictionId" , 1 ) )
}
if s . BatchPredictionName == nil {
invalidParams . Add ( request . NewErrParamRequired ( "BatchPredictionName" ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetBatchPredictionId sets the BatchPredictionId field's value.
func ( s * UpdateBatchPredictionInput ) SetBatchPredictionId ( v string ) * UpdateBatchPredictionInput {
s . BatchPredictionId = & v
return s
}
// SetBatchPredictionName sets the BatchPredictionName field's value.
func ( s * UpdateBatchPredictionInput ) SetBatchPredictionName ( v string ) * UpdateBatchPredictionInput {
s . BatchPredictionName = & v
return s
}
// Represents the output of an UpdateBatchPrediction operation.
//
// You can see the updated content by using the GetBatchPrediction operation.
type UpdateBatchPredictionOutput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the BatchPrediction during creation. This value should
// be identical to the value of the BatchPredictionId in the request.
BatchPredictionId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s UpdateBatchPredictionOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s UpdateBatchPredictionOutput ) GoString ( ) string {
return s . String ( )
}
// SetBatchPredictionId sets the BatchPredictionId field's value.
func ( s * UpdateBatchPredictionOutput ) SetBatchPredictionId ( v string ) * UpdateBatchPredictionOutput {
s . BatchPredictionId = & v
return s
}
type UpdateDataSourceInput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the DataSource during creation.
//
// DataSourceId is a required field
DataSourceId * string ` min:"1" type:"string" required:"true" `
// A new user-supplied name or description of the DataSource that will replace
// the current description.
//
// DataSourceName is a required field
DataSourceName * string ` type:"string" required:"true" `
}
// String returns the string representation
func ( s UpdateDataSourceInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s UpdateDataSourceInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * UpdateDataSourceInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "UpdateDataSourceInput" }
if s . DataSourceId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataSourceId" ) )
}
if s . DataSourceId != nil && len ( * s . DataSourceId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "DataSourceId" , 1 ) )
}
if s . DataSourceName == nil {
invalidParams . Add ( request . NewErrParamRequired ( "DataSourceName" ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * UpdateDataSourceInput ) SetDataSourceId ( v string ) * UpdateDataSourceInput {
s . DataSourceId = & v
return s
}
// SetDataSourceName sets the DataSourceName field's value.
func ( s * UpdateDataSourceInput ) SetDataSourceName ( v string ) * UpdateDataSourceInput {
s . DataSourceName = & v
return s
}
// Represents the output of an UpdateDataSource operation.
//
// You can see the updated content by using the GetBatchPrediction operation.
type UpdateDataSourceOutput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the DataSource during creation. This value should be identical
// to the value of the DataSourceID in the request.
DataSourceId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s UpdateDataSourceOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s UpdateDataSourceOutput ) GoString ( ) string {
return s . String ( )
}
// SetDataSourceId sets the DataSourceId field's value.
func ( s * UpdateDataSourceOutput ) SetDataSourceId ( v string ) * UpdateDataSourceOutput {
s . DataSourceId = & v
return s
}
type UpdateEvaluationInput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the Evaluation during creation.
//
// EvaluationId is a required field
EvaluationId * string ` min:"1" type:"string" required:"true" `
// A new user-supplied name or description of the Evaluation that will replace
// the current content.
//
// EvaluationName is a required field
EvaluationName * string ` type:"string" required:"true" `
}
// String returns the string representation
func ( s UpdateEvaluationInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s UpdateEvaluationInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * UpdateEvaluationInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "UpdateEvaluationInput" }
if s . EvaluationId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "EvaluationId" ) )
}
if s . EvaluationId != nil && len ( * s . EvaluationId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "EvaluationId" , 1 ) )
}
if s . EvaluationName == nil {
invalidParams . Add ( request . NewErrParamRequired ( "EvaluationName" ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetEvaluationId sets the EvaluationId field's value.
func ( s * UpdateEvaluationInput ) SetEvaluationId ( v string ) * UpdateEvaluationInput {
s . EvaluationId = & v
return s
}
// SetEvaluationName sets the EvaluationName field's value.
func ( s * UpdateEvaluationInput ) SetEvaluationName ( v string ) * UpdateEvaluationInput {
s . EvaluationName = & v
return s
}
// Represents the output of an UpdateEvaluation operation.
//
// You can see the updated content by using the GetEvaluation operation.
type UpdateEvaluationOutput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the Evaluation during creation. This value should be identical
// to the value of the Evaluation in the request.
EvaluationId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s UpdateEvaluationOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s UpdateEvaluationOutput ) GoString ( ) string {
return s . String ( )
}
// SetEvaluationId sets the EvaluationId field's value.
func ( s * UpdateEvaluationOutput ) SetEvaluationId ( v string ) * UpdateEvaluationOutput {
s . EvaluationId = & v
return s
}
type UpdateMLModelInput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the MLModel during creation.
//
// MLModelId is a required field
MLModelId * string ` min:"1" type:"string" required:"true" `
// A user-supplied name or description of the MLModel.
MLModelName * string ` type:"string" `
// The ScoreThreshold used in binary classification MLModel that marks the boundary
// between a positive prediction and a negative prediction.
//
// Output values greater than or equal to the ScoreThreshold receive a positive
// result from the MLModel, such as true. Output values less than the ScoreThreshold
// receive a negative response from the MLModel, such as false.
ScoreThreshold * float64 ` type:"float" `
}
// String returns the string representation
func ( s UpdateMLModelInput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s UpdateMLModelInput ) GoString ( ) string {
return s . String ( )
}
// Validate inspects the fields of the type to determine if they are valid.
func ( s * UpdateMLModelInput ) Validate ( ) error {
invalidParams := request . ErrInvalidParams { Context : "UpdateMLModelInput" }
if s . MLModelId == nil {
invalidParams . Add ( request . NewErrParamRequired ( "MLModelId" ) )
}
if s . MLModelId != nil && len ( * s . MLModelId ) < 1 {
invalidParams . Add ( request . NewErrParamMinLen ( "MLModelId" , 1 ) )
}
if invalidParams . Len ( ) > 0 {
return invalidParams
}
return nil
}
// SetMLModelId sets the MLModelId field's value.
func ( s * UpdateMLModelInput ) SetMLModelId ( v string ) * UpdateMLModelInput {
s . MLModelId = & v
return s
}
// SetMLModelName sets the MLModelName field's value.
func ( s * UpdateMLModelInput ) SetMLModelName ( v string ) * UpdateMLModelInput {
s . MLModelName = & v
return s
}
// SetScoreThreshold sets the ScoreThreshold field's value.
func ( s * UpdateMLModelInput ) SetScoreThreshold ( v float64 ) * UpdateMLModelInput {
s . ScoreThreshold = & v
return s
}
// Represents the output of an UpdateMLModel operation.
//
// You can see the updated content by using the GetMLModel operation.
type UpdateMLModelOutput struct {
_ struct { } ` type:"structure" `
// The ID assigned to the MLModel during creation. This value should be identical
// to the value of the MLModelID in the request.
MLModelId * string ` min:"1" type:"string" `
}
// String returns the string representation
func ( s UpdateMLModelOutput ) String ( ) string {
return awsutil . Prettify ( s )
}
// GoString returns the string representation
func ( s UpdateMLModelOutput ) GoString ( ) string {
return s . String ( )
}
// SetMLModelId sets the MLModelId field's value.
func ( s * UpdateMLModelOutput ) SetMLModelId ( v string ) * UpdateMLModelOutput {
s . MLModelId = & v
return s
}
// The function used to train an MLModel. Training choices supported by Amazon
// ML include the following:
//
// * SGD - Stochastic Gradient Descent.
// * RandomForest - Random forest of decision trees.
const (
// AlgorithmSgd is a Algorithm enum value
AlgorithmSgd = "sgd"
)
// A list of the variables to use in searching or filtering BatchPrediction.
//
// * CreatedAt - Sets the search criteria to BatchPrediction creation date.
//
// * Status - Sets the search criteria to BatchPrediction status.
// * Name - Sets the search criteria to the contents of BatchPredictionName.
//
// * IAMUser - Sets the search criteria to the user account that invoked
// the BatchPrediction creation.
// * MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction.
//
// * DataSourceId - Sets the search criteria to the DataSource used in the
// BatchPrediction.
// * DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction.
// The URL can identify either a file or an Amazon Simple Storage Service
// (Amazon S3) bucket or directory.
const (
// BatchPredictionFilterVariableCreatedAt is a BatchPredictionFilterVariable enum value
BatchPredictionFilterVariableCreatedAt = "CreatedAt"
// BatchPredictionFilterVariableLastUpdatedAt is a BatchPredictionFilterVariable enum value
BatchPredictionFilterVariableLastUpdatedAt = "LastUpdatedAt"
// BatchPredictionFilterVariableStatus is a BatchPredictionFilterVariable enum value
BatchPredictionFilterVariableStatus = "Status"
// BatchPredictionFilterVariableName is a BatchPredictionFilterVariable enum value
BatchPredictionFilterVariableName = "Name"
// BatchPredictionFilterVariableIamuser is a BatchPredictionFilterVariable enum value
BatchPredictionFilterVariableIamuser = "IAMUser"
// BatchPredictionFilterVariableMlmodelId is a BatchPredictionFilterVariable enum value
BatchPredictionFilterVariableMlmodelId = "MLModelId"
// BatchPredictionFilterVariableDataSourceId is a BatchPredictionFilterVariable enum value
BatchPredictionFilterVariableDataSourceId = "DataSourceId"
// BatchPredictionFilterVariableDataUri is a BatchPredictionFilterVariable enum value
BatchPredictionFilterVariableDataUri = "DataURI"
)
// A list of the variables to use in searching or filtering DataSource.
//
// * CreatedAt - Sets the search criteria to DataSource creation date.
// * Status - Sets the search criteria to DataSource status.
// * Name - Sets the search criteria to the contents of DataSourceName.
// * DataUri - Sets the search criteria to the URI of data files used to
// create the DataSource. The URI can identify either a file or an Amazon
// Simple Storage Service (Amazon S3) bucket or directory.
// * IAMUser - Sets the search criteria to the user account that invoked
// the DataSource creation.
// NoteThe variable names should match the variable names in the DataSource.
const (
// DataSourceFilterVariableCreatedAt is a DataSourceFilterVariable enum value
DataSourceFilterVariableCreatedAt = "CreatedAt"
// DataSourceFilterVariableLastUpdatedAt is a DataSourceFilterVariable enum value
DataSourceFilterVariableLastUpdatedAt = "LastUpdatedAt"
// DataSourceFilterVariableStatus is a DataSourceFilterVariable enum value
DataSourceFilterVariableStatus = "Status"
// DataSourceFilterVariableName is a DataSourceFilterVariable enum value
DataSourceFilterVariableName = "Name"
// DataSourceFilterVariableDataLocationS3 is a DataSourceFilterVariable enum value
DataSourceFilterVariableDataLocationS3 = "DataLocationS3"
// DataSourceFilterVariableIamuser is a DataSourceFilterVariable enum value
DataSourceFilterVariableIamuser = "IAMUser"
)
// Contains the key values of DetailsMap: PredictiveModelType- Indicates the type of the MLModel. Algorithm- Indicates the algorithm that was used for the MLModel
const (
// DetailsAttributesPredictiveModelType is a DetailsAttributes enum value
DetailsAttributesPredictiveModelType = "PredictiveModelType"
// DetailsAttributesAlgorithm is a DetailsAttributes enum value
DetailsAttributesAlgorithm = "Algorithm"
)
// Object status with the following possible values:
//
// * PENDING
// * INPROGRESS
// * FAILED
// * COMPLETED
// * DELETED
const (
// EntityStatusPending is a EntityStatus enum value
EntityStatusPending = "PENDING"
// EntityStatusInprogress is a EntityStatus enum value
EntityStatusInprogress = "INPROGRESS"
// EntityStatusFailed is a EntityStatus enum value
EntityStatusFailed = "FAILED"
// EntityStatusCompleted is a EntityStatus enum value
EntityStatusCompleted = "COMPLETED"
// EntityStatusDeleted is a EntityStatus enum value
EntityStatusDeleted = "DELETED"
)
// A list of the variables to use in searching or filtering Evaluation.
//
// * CreatedAt - Sets the search criteria to Evaluation creation date.
// * Status - Sets the search criteria to Evaluation status.
// * Name - Sets the search criteria to the contents of EvaluationName.
// * IAMUser - Sets the search criteria to the user account that invoked
// an evaluation.
// * MLModelId - Sets the search criteria to the Predictor that was evaluated.
//
// * DataSourceId - Sets the search criteria to the DataSource used in evaluation.
//
// * DataUri - Sets the search criteria to the data file(s) used in evaluation.
// The URL can identify either a file or an Amazon Simple Storage Service
// (Amazon S3) bucket or directory.
const (
// EvaluationFilterVariableCreatedAt is a EvaluationFilterVariable enum value
EvaluationFilterVariableCreatedAt = "CreatedAt"
// EvaluationFilterVariableLastUpdatedAt is a EvaluationFilterVariable enum value
EvaluationFilterVariableLastUpdatedAt = "LastUpdatedAt"
// EvaluationFilterVariableStatus is a EvaluationFilterVariable enum value
EvaluationFilterVariableStatus = "Status"
// EvaluationFilterVariableName is a EvaluationFilterVariable enum value
EvaluationFilterVariableName = "Name"
// EvaluationFilterVariableIamuser is a EvaluationFilterVariable enum value
EvaluationFilterVariableIamuser = "IAMUser"
// EvaluationFilterVariableMlmodelId is a EvaluationFilterVariable enum value
EvaluationFilterVariableMlmodelId = "MLModelId"
// EvaluationFilterVariableDataSourceId is a EvaluationFilterVariable enum value
EvaluationFilterVariableDataSourceId = "DataSourceId"
// EvaluationFilterVariableDataUri is a EvaluationFilterVariable enum value
EvaluationFilterVariableDataUri = "DataURI"
)
const (
// MLModelFilterVariableCreatedAt is a MLModelFilterVariable enum value
MLModelFilterVariableCreatedAt = "CreatedAt"
// MLModelFilterVariableLastUpdatedAt is a MLModelFilterVariable enum value
MLModelFilterVariableLastUpdatedAt = "LastUpdatedAt"
// MLModelFilterVariableStatus is a MLModelFilterVariable enum value
MLModelFilterVariableStatus = "Status"
// MLModelFilterVariableName is a MLModelFilterVariable enum value
MLModelFilterVariableName = "Name"
// MLModelFilterVariableIamuser is a MLModelFilterVariable enum value
MLModelFilterVariableIamuser = "IAMUser"
// MLModelFilterVariableTrainingDataSourceId is a MLModelFilterVariable enum value
MLModelFilterVariableTrainingDataSourceId = "TrainingDataSourceId"
// MLModelFilterVariableRealtimeEndpointStatus is a MLModelFilterVariable enum value
MLModelFilterVariableRealtimeEndpointStatus = "RealtimeEndpointStatus"
// MLModelFilterVariableMlmodelType is a MLModelFilterVariable enum value
MLModelFilterVariableMlmodelType = "MLModelType"
// MLModelFilterVariableAlgorithm is a MLModelFilterVariable enum value
MLModelFilterVariableAlgorithm = "Algorithm"
// MLModelFilterVariableTrainingDataUri is a MLModelFilterVariable enum value
MLModelFilterVariableTrainingDataUri = "TrainingDataURI"
)
const (
// MLModelTypeRegression is a MLModelType enum value
MLModelTypeRegression = "REGRESSION"
// MLModelTypeBinary is a MLModelType enum value
MLModelTypeBinary = "BINARY"
// MLModelTypeMulticlass is a MLModelType enum value
MLModelTypeMulticlass = "MULTICLASS"
)
const (
// RealtimeEndpointStatusNone is a RealtimeEndpointStatus enum value
RealtimeEndpointStatusNone = "NONE"
// RealtimeEndpointStatusReady is a RealtimeEndpointStatus enum value
RealtimeEndpointStatusReady = "READY"
// RealtimeEndpointStatusUpdating is a RealtimeEndpointStatus enum value
RealtimeEndpointStatusUpdating = "UPDATING"
// RealtimeEndpointStatusFailed is a RealtimeEndpointStatus enum value
RealtimeEndpointStatusFailed = "FAILED"
)
// The sort order specified in a listing condition. Possible values include
// the following:
//
// * asc - Present the information in ascending order (from A-Z).
// * dsc - Present the information in descending order (from Z-A).
const (
// SortOrderAsc is a SortOrder enum value
SortOrderAsc = "asc"
// SortOrderDsc is a SortOrder enum value
SortOrderDsc = "dsc"
)
const (
// TaggableResourceTypeBatchPrediction is a TaggableResourceType enum value
TaggableResourceTypeBatchPrediction = "BatchPrediction"
// TaggableResourceTypeDataSource is a TaggableResourceType enum value
TaggableResourceTypeDataSource = "DataSource"
// TaggableResourceTypeEvaluation is a TaggableResourceType enum value
TaggableResourceTypeEvaluation = "Evaluation"
// TaggableResourceTypeMlmodel is a TaggableResourceType enum value
TaggableResourceTypeMlmodel = "MLModel"
)