246 lines
6 KiB
Go
246 lines
6 KiB
Go
|
// The MIT License (MIT)
|
||
|
//
|
||
|
// Copyright (C) 2016-2017 Vivint, Inc.
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to deal
|
||
|
// in the Software without restriction, including without limitation the rights
|
||
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
// copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in all
|
||
|
// copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
// SOFTWARE.
|
||
|
|
||
|
package infectious
|
||
|
|
||
|
import (
|
||
|
"sort"
|
||
|
)
|
||
|
|
||
|
// Decode will take a destination buffer (can be nil) and a list of shares
|
||
|
// (pieces). It will return the data passed in to the corresponding Encode
|
||
|
// call or return an error.
|
||
|
//
|
||
|
// It will first correct the shares using Correct, mutating and reordering the
|
||
|
// passed-in shares arguments. Then it will rebuild the data using Rebuild.
|
||
|
// Finally it will concatenate the data into the given output buffer dst if it
|
||
|
// has capacity, growing it otherwise.
|
||
|
//
|
||
|
// If you already know your data does not contain errors, Rebuild will be
|
||
|
// faster.
|
||
|
//
|
||
|
// If you only want to identify which pieces are bad, you may be interested in
|
||
|
// Correct.
|
||
|
//
|
||
|
// If you don't want the data concatenated for you, you can use Correct and
|
||
|
// then Rebuild individually.
|
||
|
func (f *FEC) Decode(dst []byte, shares []Share) ([]byte, error) {
|
||
|
err := f.Correct(shares)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if len(shares) == 0 {
|
||
|
return nil, Error.New("must specify at least one share")
|
||
|
}
|
||
|
piece_len := len(shares[0].Data)
|
||
|
result_len := piece_len * f.k
|
||
|
if cap(dst) < result_len {
|
||
|
dst = make([]byte, result_len)
|
||
|
} else {
|
||
|
dst = dst[:result_len]
|
||
|
}
|
||
|
|
||
|
return dst, f.Rebuild(shares, func(s Share) {
|
||
|
copy(dst[s.Number*piece_len:], s.Data)
|
||
|
})
|
||
|
}
|
||
|
|
||
|
func (f *FEC) decode(shares []Share, output func(Share)) error {
|
||
|
err := f.Correct(shares)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
return f.Rebuild(shares, output)
|
||
|
}
|
||
|
|
||
|
// Correct implements the Berlekamp-Welch algorithm for correcting
|
||
|
// errors in given FEC encoded data. It will correct the supplied shares,
|
||
|
// mutating the underlying byte slices and reordering the shares
|
||
|
func (fc *FEC) Correct(shares []Share) error {
|
||
|
if len(shares) < fc.k {
|
||
|
return Error.New("must specify at least the number of required shares")
|
||
|
}
|
||
|
|
||
|
sort.Sort(byNumber(shares))
|
||
|
|
||
|
// fast path: check to see if there are no errors by evaluating it with
|
||
|
// the syndrome matrix.
|
||
|
synd, err := fc.syndromeMatrix(shares)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
buf := make([]byte, len(shares[0].Data))
|
||
|
|
||
|
for i := 0; i < synd.r; i++ {
|
||
|
for j := range buf {
|
||
|
buf[j] = 0
|
||
|
}
|
||
|
|
||
|
for j := 0; j < synd.c; j++ {
|
||
|
addmul(buf, shares[j].Data, byte(synd.get(i, j)))
|
||
|
}
|
||
|
|
||
|
for j := range buf {
|
||
|
if buf[j] == 0 {
|
||
|
continue
|
||
|
}
|
||
|
data, err := fc.berlekampWelch(shares, j)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
for _, share := range shares {
|
||
|
share.Data[j] = data[share.Number]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (fc *FEC) berlekampWelch(shares []Share, index int) ([]byte, error) {
|
||
|
k := fc.k // required size
|
||
|
r := len(shares) // required + redundancy size
|
||
|
e := (r - k) / 2 // deg of E polynomial
|
||
|
q := e + k // def of Q polynomial
|
||
|
|
||
|
if e <= 0 {
|
||
|
return nil, NotEnoughShares.New("")
|
||
|
}
|
||
|
|
||
|
const interp_base = gfVal(2)
|
||
|
|
||
|
eval_point := func(num int) gfVal {
|
||
|
if num == 0 {
|
||
|
return 0
|
||
|
}
|
||
|
return interp_base.pow(num - 1)
|
||
|
}
|
||
|
|
||
|
dim := q + e
|
||
|
|
||
|
// build the system of equations s * u = f
|
||
|
s := matrixNew(dim, dim) // constraint matrix
|
||
|
a := matrixNew(dim, dim) // augmented matrix
|
||
|
f := make(gfVals, dim) // constant column vector
|
||
|
u := make(gfVals, dim) // solution vector
|
||
|
|
||
|
for i := 0; i < dim; i++ {
|
||
|
x_i := eval_point(shares[i].Number)
|
||
|
r_i := gfConst(shares[i].Data[index])
|
||
|
|
||
|
f[i] = x_i.pow(e).mul(r_i)
|
||
|
|
||
|
for j := 0; j < q; j++ {
|
||
|
s.set(i, j, x_i.pow(j))
|
||
|
if i == j {
|
||
|
a.set(i, j, gfConst(1))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for k := 0; k < e; k++ {
|
||
|
j := k + q
|
||
|
|
||
|
s.set(i, j, x_i.pow(k).mul(r_i))
|
||
|
if i == j {
|
||
|
a.set(i, j, gfConst(1))
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// invert and put the result in a
|
||
|
err := s.invertWith(a)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
// multiply the inverted matrix by the column vector
|
||
|
for i := 0; i < dim; i++ {
|
||
|
ri := a.indexRow(i)
|
||
|
u[i] = ri.dot(f)
|
||
|
}
|
||
|
|
||
|
// reverse u for easier construction of the polynomials
|
||
|
for i := 0; i < len(u)/2; i++ {
|
||
|
o := len(u) - i - 1
|
||
|
u[i], u[o] = u[o], u[i]
|
||
|
}
|
||
|
|
||
|
q_poly := gfPoly(u[e:])
|
||
|
e_poly := append(gfPoly{gfConst(1)}, u[:e]...)
|
||
|
|
||
|
p_poly, rem, err := q_poly.div(e_poly)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if !rem.isZero() {
|
||
|
return nil, TooManyErrors.New("")
|
||
|
}
|
||
|
|
||
|
out := make([]byte, fc.n)
|
||
|
for i := range out {
|
||
|
pt := gfConst(0)
|
||
|
if i != 0 {
|
||
|
pt = interp_base.pow(i - 1)
|
||
|
}
|
||
|
out[i] = byte(p_poly.eval(pt))
|
||
|
}
|
||
|
|
||
|
return out, nil
|
||
|
}
|
||
|
|
||
|
func (fc *FEC) syndromeMatrix(shares []Share) (gfMat, error) {
|
||
|
// get a list of keepers
|
||
|
keepers := make([]bool, fc.n)
|
||
|
shareCount := 0
|
||
|
for _, share := range shares {
|
||
|
if !keepers[share.Number] {
|
||
|
keepers[share.Number] = true
|
||
|
shareCount++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// create a vandermonde matrix but skip columns where we're missing the
|
||
|
// share.
|
||
|
out := matrixNew(fc.k, shareCount)
|
||
|
for i := 0; i < fc.k; i++ {
|
||
|
skipped := 0
|
||
|
for j := 0; j < fc.n; j++ {
|
||
|
if !keepers[j] {
|
||
|
skipped++
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
out.set(i, j-skipped, gfConst(fc.vand_matrix[i*fc.n+j]))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// standardize the output and convert into parity form
|
||
|
err := out.standardize()
|
||
|
if err != nil {
|
||
|
return gfMat{}, err
|
||
|
}
|
||
|
|
||
|
return out.parity(), nil
|
||
|
}
|