423 lines
8.1 KiB
Go
423 lines
8.1 KiB
Go
|
// The MIT License (MIT)
|
||
|
//
|
||
|
// Copyright (C) 2016-2017 Vivint, Inc.
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to deal
|
||
|
// in the Software without restriction, including without limitation the rights
|
||
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
// copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in all
|
||
|
// copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
// SOFTWARE.
|
||
|
|
||
|
package infectious
|
||
|
|
||
|
import (
|
||
|
"fmt"
|
||
|
"strings"
|
||
|
"unsafe"
|
||
|
)
|
||
|
|
||
|
//
|
||
|
// basic helpers around gf(2^8) values
|
||
|
//
|
||
|
|
||
|
type gfVal byte
|
||
|
|
||
|
func gfConst(val byte) gfVal {
|
||
|
return gfVal(val)
|
||
|
}
|
||
|
|
||
|
func (b gfVal) pow(val int) gfVal {
|
||
|
out := gfVal(1)
|
||
|
mul_base := gf_mul_table[b][:]
|
||
|
for i := 0; i < val; i++ {
|
||
|
out = gfVal(mul_base[out])
|
||
|
}
|
||
|
return out
|
||
|
}
|
||
|
|
||
|
func (a gfVal) mul(b gfVal) gfVal {
|
||
|
return gfVal(gf_mul_table[a][b])
|
||
|
}
|
||
|
|
||
|
func (a gfVal) div(b gfVal) (gfVal, error) {
|
||
|
if b == 0 {
|
||
|
return 0, Error.New("divide by zero")
|
||
|
}
|
||
|
if a == 0 {
|
||
|
return 0, nil
|
||
|
}
|
||
|
return gfVal(gf_exp[gf_log[a]-gf_log[b]]), nil
|
||
|
}
|
||
|
|
||
|
func (a gfVal) add(b gfVal) gfVal {
|
||
|
return gfVal(a ^ b)
|
||
|
}
|
||
|
|
||
|
func (a gfVal) isZero() bool {
|
||
|
return a == 0
|
||
|
}
|
||
|
|
||
|
func (a gfVal) inv() (gfVal, error) {
|
||
|
if a == 0 {
|
||
|
return 0, Error.New("invert zero")
|
||
|
}
|
||
|
return gfVal(gf_exp[255-gf_log[a]]), nil
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// basic helpers about a slice of gf(2^8) values
|
||
|
//
|
||
|
|
||
|
type gfVals []gfVal
|
||
|
|
||
|
func (a gfVals) unsafeBytes() []byte {
|
||
|
return *(*[]byte)(unsafe.Pointer(&a))
|
||
|
}
|
||
|
|
||
|
func (a gfVals) dot(b gfVals) gfVal {
|
||
|
out := gfConst(0)
|
||
|
for i := range a {
|
||
|
out = out.add(a[i].mul(b[i]))
|
||
|
}
|
||
|
return out
|
||
|
}
|
||
|
|
||
|
func (a gfVals) String() string {
|
||
|
return fmt.Sprintf("%02x", a.unsafeBytes())
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// basic helpers for dealing with polynomials with coefficients in gf(2^8)
|
||
|
//
|
||
|
|
||
|
type gfPoly []gfVal
|
||
|
|
||
|
func polyZero(size int) gfPoly {
|
||
|
out := make(gfPoly, size)
|
||
|
for i := range out {
|
||
|
out[i] = gfConst(0)
|
||
|
}
|
||
|
return out
|
||
|
}
|
||
|
|
||
|
func (p gfPoly) isZero() bool {
|
||
|
for _, coef := range p {
|
||
|
if !coef.isZero() {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
func (p gfPoly) deg() int {
|
||
|
return len(p) - 1
|
||
|
}
|
||
|
|
||
|
func (p gfPoly) index(power int) gfVal {
|
||
|
if power < 0 {
|
||
|
return gfConst(0)
|
||
|
}
|
||
|
which := p.deg() - power
|
||
|
if which < 0 {
|
||
|
return gfConst(0)
|
||
|
}
|
||
|
return p[which]
|
||
|
}
|
||
|
|
||
|
func (p gfPoly) scale(factor gfVal) gfPoly {
|
||
|
out := make(gfPoly, len(p))
|
||
|
for i, coef := range p {
|
||
|
out[i] = coef.mul(factor)
|
||
|
}
|
||
|
return out
|
||
|
}
|
||
|
|
||
|
func (p *gfPoly) set(pow int, coef gfVal) {
|
||
|
which := p.deg() - pow
|
||
|
if which < 0 {
|
||
|
*p = append(polyZero(-which), *p...)
|
||
|
which = p.deg() - pow
|
||
|
}
|
||
|
(*p)[which] = coef
|
||
|
}
|
||
|
|
||
|
func (p gfPoly) add(b gfPoly) gfPoly {
|
||
|
size := len(p)
|
||
|
if lb := len(b); lb > size {
|
||
|
size = lb
|
||
|
}
|
||
|
out := make(gfPoly, size)
|
||
|
for i := range out {
|
||
|
pi := p.index(i)
|
||
|
bi := b.index(i)
|
||
|
out.set(i, pi.add(bi))
|
||
|
}
|
||
|
return out
|
||
|
}
|
||
|
|
||
|
func (p gfPoly) div(b gfPoly) (q, r gfPoly, err error) {
|
||
|
// sanitize the divisor by removing leading zeros.
|
||
|
for len(b) > 0 && b[0].isZero() {
|
||
|
b = b[1:]
|
||
|
}
|
||
|
if len(b) == 0 {
|
||
|
return nil, nil, Error.New("divide by zero")
|
||
|
}
|
||
|
|
||
|
// sanitize the base poly as well
|
||
|
for len(p) > 0 && p[0].isZero() {
|
||
|
p = p[1:]
|
||
|
}
|
||
|
if len(p) == 0 {
|
||
|
return polyZero(1), polyZero(1), nil
|
||
|
}
|
||
|
|
||
|
const debug = false
|
||
|
indent := 2*len(b) + 1
|
||
|
|
||
|
if debug {
|
||
|
fmt.Printf("%02x %02x\n", b, p)
|
||
|
}
|
||
|
|
||
|
for b.deg() <= p.deg() {
|
||
|
leading_p := p.index(p.deg())
|
||
|
leading_b := b.index(b.deg())
|
||
|
|
||
|
if debug {
|
||
|
fmt.Printf("leading_p: %02x leading_b: %02x\n",
|
||
|
leading_p, leading_b)
|
||
|
}
|
||
|
|
||
|
coef, err := leading_p.div(leading_b)
|
||
|
if err != nil {
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
|
||
|
if debug {
|
||
|
fmt.Printf("coef: %02x\n", coef)
|
||
|
}
|
||
|
|
||
|
q = append(q, coef)
|
||
|
|
||
|
scaled := b.scale(coef)
|
||
|
padded := append(scaled, polyZero(p.deg()-scaled.deg())...)
|
||
|
|
||
|
if debug {
|
||
|
fmt.Printf("%s%02x\n", strings.Repeat(" ", indent), padded)
|
||
|
indent += 2
|
||
|
}
|
||
|
|
||
|
p = p.add(padded)
|
||
|
if !p[0].isZero() {
|
||
|
return nil, nil, Error.New("alg error: %x", p)
|
||
|
}
|
||
|
p = p[1:]
|
||
|
}
|
||
|
|
||
|
for len(p) > 1 && p[0].isZero() {
|
||
|
p = p[1:]
|
||
|
}
|
||
|
|
||
|
return q, p, nil
|
||
|
}
|
||
|
|
||
|
func (p gfPoly) eval(x gfVal) gfVal {
|
||
|
out := gfConst(0)
|
||
|
for i := 0; i <= p.deg(); i++ {
|
||
|
x_i := x.pow(i)
|
||
|
p_i := p.index(i)
|
||
|
out = out.add(p_i.mul(x_i))
|
||
|
}
|
||
|
return out
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// basic helpers for matrices in gf(2^8)
|
||
|
//
|
||
|
|
||
|
type gfMat struct {
|
||
|
d gfVals
|
||
|
r, c int
|
||
|
}
|
||
|
|
||
|
func matrixNew(i, j int) gfMat {
|
||
|
return gfMat{
|
||
|
d: make(gfVals, i*j),
|
||
|
r: i, c: j,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (m gfMat) String() (out string) {
|
||
|
if m.r == 0 {
|
||
|
return ""
|
||
|
}
|
||
|
|
||
|
for i := 0; i < m.r-1; i++ {
|
||
|
out += fmt.Sprintln(m.indexRow(i))
|
||
|
}
|
||
|
out += fmt.Sprint(m.indexRow(m.r - 1))
|
||
|
|
||
|
return out
|
||
|
}
|
||
|
|
||
|
func (m gfMat) index(i, j int) int {
|
||
|
return m.c*i + j
|
||
|
}
|
||
|
|
||
|
func (m gfMat) get(i, j int) gfVal {
|
||
|
return m.d[m.index(i, j)]
|
||
|
}
|
||
|
|
||
|
func (m gfMat) set(i, j int, val gfVal) {
|
||
|
m.d[m.index(i, j)] = val
|
||
|
}
|
||
|
|
||
|
func (m gfMat) indexRow(i int) gfVals {
|
||
|
return m.d[m.index(i, 0):m.index(i+1, 0)]
|
||
|
}
|
||
|
|
||
|
func (m gfMat) swapRow(i, j int) {
|
||
|
tmp := make(gfVals, m.r)
|
||
|
ri := m.indexRow(i)
|
||
|
rj := m.indexRow(j)
|
||
|
copy(tmp, ri)
|
||
|
copy(ri, rj)
|
||
|
copy(rj, tmp)
|
||
|
}
|
||
|
|
||
|
func (m gfMat) scaleRow(i int, val gfVal) {
|
||
|
ri := m.indexRow(i)
|
||
|
for i := range ri {
|
||
|
ri[i] = ri[i].mul(val)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (m gfMat) addmulRow(i, j int, val gfVal) {
|
||
|
ri := m.indexRow(i)
|
||
|
rj := m.indexRow(j)
|
||
|
addmul(rj.unsafeBytes(), ri.unsafeBytes(), byte(val))
|
||
|
}
|
||
|
|
||
|
// in place invert. the output is put into a and m is turned into the identity
|
||
|
// matrix. a is expected to be the identity matrix.
|
||
|
func (m gfMat) invertWith(a gfMat) error {
|
||
|
for i := 0; i < m.r; i++ {
|
||
|
p_row, p_val := i, m.get(i, i)
|
||
|
for j := i + 1; j < m.r && p_val.isZero(); j++ {
|
||
|
p_row, p_val = j, m.get(j, i)
|
||
|
}
|
||
|
if p_val.isZero() {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
if p_row != i {
|
||
|
m.swapRow(i, p_row)
|
||
|
a.swapRow(i, p_row)
|
||
|
}
|
||
|
|
||
|
inv, err := p_val.inv()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
m.scaleRow(i, inv)
|
||
|
a.scaleRow(i, inv)
|
||
|
|
||
|
for j := i + 1; j < m.r; j++ {
|
||
|
leading := m.get(j, i)
|
||
|
m.addmulRow(i, j, leading)
|
||
|
a.addmulRow(i, j, leading)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for i := m.r - 1; i > 0; i-- {
|
||
|
for j := i - 1; j >= 0; j-- {
|
||
|
trailing := m.get(j, i)
|
||
|
m.addmulRow(i, j, trailing)
|
||
|
a.addmulRow(i, j, trailing)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// in place standardize.
|
||
|
func (m gfMat) standardize() error {
|
||
|
for i := 0; i < m.r; i++ {
|
||
|
p_row, p_val := i, m.get(i, i)
|
||
|
for j := i + 1; j < m.r && p_val.isZero(); j++ {
|
||
|
p_row, p_val = j, m.get(j, i)
|
||
|
}
|
||
|
if p_val.isZero() {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
if p_row != i {
|
||
|
m.swapRow(i, p_row)
|
||
|
}
|
||
|
|
||
|
inv, err := p_val.inv()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
m.scaleRow(i, inv)
|
||
|
|
||
|
for j := i + 1; j < m.r; j++ {
|
||
|
leading := m.get(j, i)
|
||
|
m.addmulRow(i, j, leading)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for i := m.r - 1; i > 0; i-- {
|
||
|
for j := i - 1; j >= 0; j-- {
|
||
|
trailing := m.get(j, i)
|
||
|
m.addmulRow(i, j, trailing)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// parity returns the new matrix because it changes dimensions and stuff. it
|
||
|
// can be done in place, but is easier to implement with a copy.
|
||
|
func (m gfMat) parity() gfMat {
|
||
|
// we assume m is in standard form already
|
||
|
// it is of form [I_r | P]
|
||
|
// our output will be [-P_transpose | I_(c - r)]
|
||
|
// but our field is of characteristic 2 so we do not need the negative.
|
||
|
|
||
|
// In terms of m:
|
||
|
// I_r has r rows and r columns.
|
||
|
// P has r rows and c-r columns.
|
||
|
// P_transpose has c-r rows, and r columns.
|
||
|
// I_(c-r) has c-r rows and c-r columns.
|
||
|
// so: out.r == c-r, out.c == r + c - r == c
|
||
|
|
||
|
out := matrixNew(m.c-m.r, m.c)
|
||
|
|
||
|
// step 1. fill in the identity. it starts at column offset r.
|
||
|
for i := 0; i < m.c-m.r; i++ {
|
||
|
out.set(i, i+m.r, gfConst(1))
|
||
|
}
|
||
|
|
||
|
// step 2: fill in the transposed P matrix. i and j are in terms of out.
|
||
|
for i := 0; i < m.c-m.r; i++ {
|
||
|
for j := 0; j < m.r; j++ {
|
||
|
out.set(i, j, m.get(j, i+m.r))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return out
|
||
|
}
|