package accounting import ( "bytes" "context" "fmt" "sort" "strings" "sync" "time" "github.com/rclone/rclone/fs" "github.com/rclone/rclone/fs/fserrors" "github.com/rclone/rclone/fs/rc" "github.com/rclone/rclone/lib/terminal" ) const ( averagePeriodLength = time.Second averageStopAfter = time.Minute ) // MaxCompletedTransfers specifies maximum number of completed transfers in startedTransfers list var MaxCompletedTransfers = 100 // StatsInfo accounts all transfers // N.B.: if this struct is modified, please remember to also update sum() function in stats_groups // to correctly count the updated fields type StatsInfo struct { mu sync.RWMutex ctx context.Context ci *fs.ConfigInfo bytes int64 errors int64 lastError error fatalError bool retryError bool retryAfter time.Time checks int64 checking *transferMap checkQueue int checkQueueSize int64 transfers int64 transferring *transferMap transferQueue int transferQueueSize int64 renames int64 renameQueue int renameQueueSize int64 deletes int64 deletedDirs int64 inProgress *inProgress startedTransfers []*Transfer // currently active transfers oldTimeRanges timeRanges // a merged list of time ranges for the transfers oldDuration time.Duration // duration of transfers we have culled group string startTime time.Time // the moment these stats were initialized or reset average averageValues } type averageValues struct { mu sync.Mutex lpBytes int64 lpTime time.Time speed float64 stop chan bool stopped sync.WaitGroup startOnce sync.Once stopOnce sync.Once } // NewStats creates an initialised StatsInfo func NewStats(ctx context.Context) *StatsInfo { ci := fs.GetConfig(ctx) return &StatsInfo{ ctx: ctx, ci: ci, checking: newTransferMap(ci.Checkers, "checking"), transferring: newTransferMap(ci.Transfers, "transferring"), inProgress: newInProgress(ctx), startTime: time.Now(), average: averageValues{stop: make(chan bool)}, } } // RemoteStats returns stats for rc func (s *StatsInfo) RemoteStats() (out rc.Params, err error) { // NB if adding values here - make sure you update the docs in // stats_groups.go out = make(rc.Params) ts := s.calculateTransferStats() out["totalChecks"] = ts.totalChecks out["totalTransfers"] = ts.totalTransfers out["totalBytes"] = ts.totalBytes out["transferTime"] = ts.transferTime out["speed"] = ts.speed s.mu.RLock() out["bytes"] = s.bytes out["errors"] = s.errors out["fatalError"] = s.fatalError out["retryError"] = s.retryError out["checks"] = s.checks out["transfers"] = s.transfers out["deletes"] = s.deletes out["deletedDirs"] = s.deletedDirs out["renames"] = s.renames out["elapsedTime"] = time.Since(s.startTime).Seconds() eta, etaOK := eta(s.bytes, ts.totalBytes, ts.speed) if etaOK { out["eta"] = eta.Seconds() } else { out["eta"] = nil } s.mu.RUnlock() if !s.checking.empty() { out["checking"] = s.checking.remotes() } if !s.transferring.empty() { out["transferring"] = s.transferring.rcStats(s.inProgress) } if s.errors > 0 { out["lastError"] = s.lastError.Error() } return out, nil } // speed returns the average speed of the transfer in bytes/second // // Call with lock held func (s *StatsInfo) speed() float64 { dt := s.totalDuration() dtSeconds := dt.Seconds() speed := 0.0 if dt > 0 { speed = float64(s.bytes) / dtSeconds } return speed } // timeRange is a start and end time of a transfer type timeRange struct { start time.Time end time.Time } // timeRanges is a list of non-overlapping start and end times for // transfers type timeRanges []timeRange // merge all the overlapping time ranges func (trs *timeRanges) merge() { Trs := *trs // Sort by the starting time. sort.Slice(Trs, func(i, j int) bool { return Trs[i].start.Before(Trs[j].start) }) // Merge overlaps and add distinctive ranges together var ( newTrs = Trs[:0] i, j = 0, 1 ) for i < len(Trs) { if j < len(Trs) { if !Trs[i].end.Before(Trs[j].start) { if Trs[i].end.Before(Trs[j].end) { Trs[i].end = Trs[j].end } j++ continue } } newTrs = append(newTrs, Trs[i]) i = j j++ } *trs = newTrs } // cull remove any ranges whose start and end are before cutoff // returning their duration sum func (trs *timeRanges) cull(cutoff time.Time) (d time.Duration) { var newTrs = (*trs)[:0] for _, tr := range *trs { if cutoff.Before(tr.start) || cutoff.Before(tr.end) { newTrs = append(newTrs, tr) } else { d += tr.end.Sub(tr.start) } } *trs = newTrs return d } // total the time out of the time ranges func (trs timeRanges) total() (total time.Duration) { for _, tr := range trs { total += tr.end.Sub(tr.start) } return total } // Total duration is union of durations of all transfers belonging to this // object. // Needs to be protected by mutex. func (s *StatsInfo) totalDuration() time.Duration { // copy of s.oldTimeRanges with extra room for the current transfers timeRanges := make(timeRanges, len(s.oldTimeRanges), len(s.oldTimeRanges)+len(s.startedTransfers)) copy(timeRanges, s.oldTimeRanges) // Extract time ranges of all transfers. now := time.Now() for i := range s.startedTransfers { start, end := s.startedTransfers[i].TimeRange() if end.IsZero() { end = now } timeRanges = append(timeRanges, timeRange{start, end}) } timeRanges.merge() return s.oldDuration + timeRanges.total() } const ( etaMaxSeconds = (1<<63 - 1) / int64(time.Second) // Largest possible ETA as number of seconds etaMax = time.Duration(etaMaxSeconds) * time.Second // Largest possible ETA, which is in second precision, representing "292y24w3d23h47m16s" ) // eta returns the ETA of the current operation, // rounded to full seconds. // If the ETA cannot be determined 'ok' returns false. func eta(size, total int64, rate float64) (eta time.Duration, ok bool) { if total <= 0 || size < 0 || rate <= 0 { return 0, false } remaining := total - size if remaining < 0 { return 0, false } seconds := int64(float64(remaining) / rate) if seconds < 0 { // Got Int64 overflow eta = etaMax } else if seconds >= etaMaxSeconds { // Would get Int64 overflow if converting from seconds to Duration (nanoseconds) eta = etaMax } else { eta = time.Duration(seconds) * time.Second } return eta, true } // etaString returns the ETA of the current operation, // rounded to full seconds. // If the ETA cannot be determined it returns "-" func etaString(done, total int64, rate float64) string { d, ok := eta(done, total, rate) if !ok { return "-" } if d == etaMax { return "-" } return fs.Duration(d).ShortReadableString() } // percent returns a/b as a percentage rounded to the nearest integer // as a string // // if the percentage is invalid it returns "-" func percent(a int64, b int64) string { if a < 0 || b <= 0 { return "-" } return fmt.Sprintf("%d%%", int(float64(a)*100/float64(b)+0.5)) } // returned from calculateTransferStats type transferStats struct { totalChecks int64 totalTransfers int64 totalBytes int64 transferTime float64 speed float64 } // calculateTransferStats calculates some additional transfer stats not // stored directly in StatsInfo func (s *StatsInfo) calculateTransferStats() (ts transferStats) { // checking and transferring have their own locking so read // here before lock to prevent deadlock on GetBytes transferring, checking := s.transferring.count(), s.checking.count() transferringBytesDone, transferringBytesTotal := s.transferring.progress(s) s.mu.RLock() defer s.mu.RUnlock() ts.totalChecks = int64(s.checkQueue) + s.checks + int64(checking) ts.totalTransfers = int64(s.transferQueue) + s.transfers + int64(transferring) // note that s.bytes already includes transferringBytesDone so // we take it off here to avoid double counting ts.totalBytes = s.transferQueueSize + s.bytes + transferringBytesTotal - transferringBytesDone ts.speed = s.average.speed return ts } func (s *StatsInfo) averageLoop() { var period float64 ticker := time.NewTicker(averagePeriodLength) defer ticker.Stop() startTime := time.Now() a := &s.average defer a.stopped.Done() for { select { case now := <-ticker.C: a.mu.Lock() var elapsed float64 if a.lpTime.IsZero() { elapsed = now.Sub(startTime).Seconds() } else { elapsed = now.Sub(a.lpTime).Seconds() } avg := 0.0 if elapsed > 0 { avg = float64(a.lpBytes) / elapsed } if period < averagePeriod { period++ } a.speed = (avg + a.speed*(period-1)) / period a.lpBytes = 0 a.lpTime = now a.mu.Unlock() case <-a.stop: return } } } func (s *StatsInfo) startAverageLoop() { s.average.startOnce.Do(func() { s.average.stopped.Add(1) go s.averageLoop() }) } func (s *StatsInfo) stopAverageLoop() { s.average.stopOnce.Do(func() { close(s.average.stop) s.average.stopped.Wait() }) } // String convert the StatsInfo to a string for printing func (s *StatsInfo) String() string { // NB if adding more stats in here, remember to add them into // RemoteStats() too. ts := s.calculateTransferStats() s.mu.RLock() var ( buf = &bytes.Buffer{} xfrchkString = "" dateString = "" elapsedTime = time.Since(s.startTime) elapsedTimeSecondsOnly = elapsedTime.Truncate(time.Second/10) % time.Minute displaySpeedString string ) if s.ci.DataRateUnit == "bits" { displaySpeedString = fs.SizeSuffix(ts.speed * 8).BitRateUnit() } else { displaySpeedString = fs.SizeSuffix(ts.speed).ByteRateUnit() } if !s.ci.StatsOneLine { _, _ = fmt.Fprintf(buf, "\nTransferred: ") } else { xfrchk := []string{} if ts.totalTransfers > 0 && s.transferQueue > 0 { xfrchk = append(xfrchk, fmt.Sprintf("xfr#%d/%d", s.transfers, ts.totalTransfers)) } if ts.totalChecks > 0 && s.checkQueue > 0 { xfrchk = append(xfrchk, fmt.Sprintf("chk#%d/%d", s.checks, ts.totalChecks)) } if len(xfrchk) > 0 { xfrchkString = fmt.Sprintf(" (%s)", strings.Join(xfrchk, ", ")) } if s.ci.StatsOneLineDate { t := time.Now() dateString = t.Format(s.ci.StatsOneLineDateFormat) // Including the separator so people can customize it } } _, _ = fmt.Fprintf(buf, "%s%13s / %s, %s, %s, ETA %s%s", dateString, fs.SizeSuffix(s.bytes).ByteUnit(), fs.SizeSuffix(ts.totalBytes).ByteUnit(), percent(s.bytes, ts.totalBytes), displaySpeedString, etaString(s.bytes, ts.totalBytes, ts.speed), xfrchkString, ) if s.ci.ProgressTerminalTitle { // Writes ETA to the terminal title terminal.WriteTerminalTitle("ETA: " + etaString(s.bytes, ts.totalBytes, ts.speed)) } if !s.ci.StatsOneLine { _, _ = buf.WriteRune('\n') errorDetails := "" switch { case s.fatalError: errorDetails = " (fatal error encountered)" case s.retryError: errorDetails = " (retrying may help)" case s.errors != 0: errorDetails = " (no need to retry)" } // Add only non zero stats if s.errors != 0 { _, _ = fmt.Fprintf(buf, "Errors: %10d%s\n", s.errors, errorDetails) } if s.checks != 0 || ts.totalChecks != 0 { _, _ = fmt.Fprintf(buf, "Checks: %10d / %d, %s\n", s.checks, ts.totalChecks, percent(s.checks, ts.totalChecks)) } if s.deletes != 0 || s.deletedDirs != 0 { _, _ = fmt.Fprintf(buf, "Deleted: %10d (files), %d (dirs)\n", s.deletes, s.deletedDirs) } if s.renames != 0 { _, _ = fmt.Fprintf(buf, "Renamed: %10d\n", s.renames) } if s.transfers != 0 || ts.totalTransfers != 0 { _, _ = fmt.Fprintf(buf, "Transferred: %10d / %d, %s\n", s.transfers, ts.totalTransfers, percent(s.transfers, ts.totalTransfers)) } _, _ = fmt.Fprintf(buf, "Elapsed time: %10ss\n", strings.TrimRight(fs.Duration(elapsedTime.Truncate(time.Minute)).ReadableString(), "0s")+fmt.Sprintf("%.1f", elapsedTimeSecondsOnly.Seconds())) } // checking and transferring have their own locking so unlock // here to prevent deadlock on GetBytes s.mu.RUnlock() // Add per transfer stats if required if !s.ci.StatsOneLine { if !s.checking.empty() { _, _ = fmt.Fprintf(buf, "Checking:\n%s\n", s.checking.String(s.ctx, s.inProgress, s.transferring)) } if !s.transferring.empty() { _, _ = fmt.Fprintf(buf, "Transferring:\n%s\n", s.transferring.String(s.ctx, s.inProgress, nil)) } } return buf.String() } // Transferred returns list of all completed transfers including checked and // failed ones. func (s *StatsInfo) Transferred() []TransferSnapshot { s.mu.RLock() defer s.mu.RUnlock() ts := make([]TransferSnapshot, 0, len(s.startedTransfers)) for _, tr := range s.startedTransfers { if tr.IsDone() { ts = append(ts, tr.Snapshot()) } } return ts } // Log outputs the StatsInfo to the log func (s *StatsInfo) Log() { if s.ci.UseJSONLog { out, _ := s.RemoteStats() fs.LogLevelPrintf(s.ci.StatsLogLevel, nil, "%v%v\n", s, fs.LogValueHide("stats", out)) } else { fs.LogLevelPrintf(s.ci.StatsLogLevel, nil, "%v\n", s) } } // Bytes updates the stats for bytes bytes func (s *StatsInfo) Bytes(bytes int64) { s.average.mu.Lock() s.average.lpBytes += bytes s.average.mu.Unlock() s.mu.Lock() defer s.mu.Unlock() s.bytes += bytes } // GetBytes returns the number of bytes transferred so far func (s *StatsInfo) GetBytes() int64 { s.mu.RLock() defer s.mu.RUnlock() return s.bytes } // GetBytesWithPending returns the number of bytes transferred and remaining transfers func (s *StatsInfo) GetBytesWithPending() int64 { s.mu.RLock() defer s.mu.RUnlock() pending := int64(0) for _, tr := range s.startedTransfers { if tr.acc != nil { bytes, size := tr.acc.progress() if bytes < size { pending += size - bytes } } } return s.bytes + pending } // Errors updates the stats for errors func (s *StatsInfo) Errors(errors int64) { s.mu.Lock() defer s.mu.Unlock() s.errors += errors } // GetErrors reads the number of errors func (s *StatsInfo) GetErrors() int64 { s.mu.RLock() defer s.mu.RUnlock() return s.errors } // GetLastError returns the lastError func (s *StatsInfo) GetLastError() error { s.mu.RLock() defer s.mu.RUnlock() return s.lastError } // GetChecks returns the number of checks func (s *StatsInfo) GetChecks() int64 { s.mu.RLock() defer s.mu.RUnlock() return s.checks } // FatalError sets the fatalError flag func (s *StatsInfo) FatalError() { s.mu.Lock() defer s.mu.Unlock() s.fatalError = true } // HadFatalError returns whether there has been at least one FatalError func (s *StatsInfo) HadFatalError() bool { s.mu.RLock() defer s.mu.RUnlock() return s.fatalError } // RetryError sets the retryError flag func (s *StatsInfo) RetryError() { s.mu.Lock() defer s.mu.Unlock() s.retryError = true } // HadRetryError returns whether there has been at least one non-NoRetryError func (s *StatsInfo) HadRetryError() bool { s.mu.RLock() defer s.mu.RUnlock() return s.retryError } // Deletes updates the stats for deletes func (s *StatsInfo) Deletes(deletes int64) int64 { s.mu.Lock() defer s.mu.Unlock() s.deletes += deletes return s.deletes } // DeletedDirs updates the stats for deletedDirs func (s *StatsInfo) DeletedDirs(deletedDirs int64) int64 { s.mu.Lock() defer s.mu.Unlock() s.deletedDirs += deletedDirs return s.deletedDirs } // Renames updates the stats for renames func (s *StatsInfo) Renames(renames int64) int64 { s.mu.Lock() defer s.mu.Unlock() s.renames += renames return s.renames } // ResetCounters sets the counters (bytes, checks, errors, transfers, deletes, renames) to 0 and resets lastError, fatalError and retryError func (s *StatsInfo) ResetCounters() { s.mu.Lock() defer s.mu.Unlock() s.bytes = 0 s.errors = 0 s.lastError = nil s.fatalError = false s.retryError = false s.retryAfter = time.Time{} s.checks = 0 s.transfers = 0 s.deletes = 0 s.deletedDirs = 0 s.renames = 0 s.startedTransfers = nil s.oldDuration = 0 s.stopAverageLoop() s.average = averageValues{stop: make(chan bool)} } // ResetErrors sets the errors count to 0 and resets lastError, fatalError and retryError func (s *StatsInfo) ResetErrors() { s.mu.Lock() defer s.mu.Unlock() s.errors = 0 s.lastError = nil s.fatalError = false s.retryError = false s.retryAfter = time.Time{} } // Errored returns whether there have been any errors func (s *StatsInfo) Errored() bool { s.mu.RLock() defer s.mu.RUnlock() return s.errors != 0 } // Error adds a single error into the stats, assigns lastError and eventually sets fatalError or retryError func (s *StatsInfo) Error(err error) error { if err == nil || fserrors.IsCounted(err) { return err } s.mu.Lock() defer s.mu.Unlock() s.errors++ s.lastError = err err = fserrors.FsError(err) fserrors.Count(err) switch { case fserrors.IsFatalError(err): s.fatalError = true case fserrors.IsRetryAfterError(err): retryAfter := fserrors.RetryAfterErrorTime(err) if s.retryAfter.IsZero() || retryAfter.Sub(s.retryAfter) > 0 { s.retryAfter = retryAfter } s.retryError = true case !fserrors.IsNoRetryError(err): s.retryError = true } return err } // RetryAfter returns the time to retry after if it is set. It will // be Zero if it isn't set. func (s *StatsInfo) RetryAfter() time.Time { s.mu.Lock() defer s.mu.Unlock() return s.retryAfter } // NewCheckingTransfer adds a checking transfer to the stats, from the object. func (s *StatsInfo) NewCheckingTransfer(obj fs.DirEntry, what string) *Transfer { tr := newCheckingTransfer(s, obj, what) s.checking.add(tr) return tr } // DoneChecking removes a check from the stats func (s *StatsInfo) DoneChecking(remote string) { s.checking.del(remote) s.mu.Lock() s.checks++ s.mu.Unlock() } // GetTransfers reads the number of transfers func (s *StatsInfo) GetTransfers() int64 { s.mu.RLock() defer s.mu.RUnlock() return s.transfers } // NewTransfer adds a transfer to the stats from the object. func (s *StatsInfo) NewTransfer(obj fs.DirEntry) *Transfer { tr := newTransfer(s, obj) s.transferring.add(tr) s.startAverageLoop() return tr } // NewTransferRemoteSize adds a transfer to the stats based on remote and size. func (s *StatsInfo) NewTransferRemoteSize(remote string, size int64) *Transfer { tr := newTransferRemoteSize(s, remote, size, false, "") s.transferring.add(tr) s.startAverageLoop() return tr } // DoneTransferring removes a transfer from the stats // // if ok is true and it was in the transfermap (to avoid incrementing in case of nested calls, #6213) then it increments the transfers count func (s *StatsInfo) DoneTransferring(remote string, ok bool) { existed := s.transferring.del(remote) if ok && existed { s.mu.Lock() s.transfers++ s.mu.Unlock() } if s.transferring.empty() { time.AfterFunc(averageStopAfter, s.stopAverageLoop) } } // SetCheckQueue sets the number of queued checks func (s *StatsInfo) SetCheckQueue(n int, size int64) { s.mu.Lock() s.checkQueue = n s.checkQueueSize = size s.mu.Unlock() } // SetTransferQueue sets the number of queued transfers func (s *StatsInfo) SetTransferQueue(n int, size int64) { s.mu.Lock() s.transferQueue = n s.transferQueueSize = size s.mu.Unlock() } // SetRenameQueue sets the number of queued transfers func (s *StatsInfo) SetRenameQueue(n int, size int64) { s.mu.Lock() s.renameQueue = n s.renameQueueSize = size s.mu.Unlock() } // AddTransfer adds reference to the started transfer. func (s *StatsInfo) AddTransfer(transfer *Transfer) { s.mu.Lock() s.startedTransfers = append(s.startedTransfers, transfer) s.mu.Unlock() } // removeTransfer removes a reference to the started transfer in // position i. // // Must be called with the lock held func (s *StatsInfo) removeTransfer(transfer *Transfer, i int) { now := time.Now() // add finished transfer onto old time ranges start, end := transfer.TimeRange() if end.IsZero() { end = now } s.oldTimeRanges = append(s.oldTimeRanges, timeRange{start, end}) s.oldTimeRanges.merge() // remove the found entry s.startedTransfers = append(s.startedTransfers[:i], s.startedTransfers[i+1:]...) // Find youngest active transfer oldestStart := now for i := range s.startedTransfers { start, _ := s.startedTransfers[i].TimeRange() if start.Before(oldestStart) { oldestStart = start } } // remove old entries older than that s.oldDuration += s.oldTimeRanges.cull(oldestStart) } // RemoveTransfer removes a reference to the started transfer. func (s *StatsInfo) RemoveTransfer(transfer *Transfer) { s.mu.Lock() for i, tr := range s.startedTransfers { if tr == transfer { s.removeTransfer(tr, i) break } } s.mu.Unlock() } // PruneTransfers makes sure there aren't too many old transfers by removing // single finished transfer. func (s *StatsInfo) PruneTransfers() { if MaxCompletedTransfers < 0 { return } s.mu.Lock() // remove a transfer from the start if we are over quota if len(s.startedTransfers) > MaxCompletedTransfers+s.ci.Transfers { for i, tr := range s.startedTransfers { if tr.IsDone() { s.removeTransfer(tr, i) break } } } s.mu.Unlock() }