chunker: Require a random irreducible polynomial
This also implements the necessary polynomial arithmetics in F_2[X].
This commit is contained in:
parent
094ca7e635
commit
3cdf3a25b9
6 changed files with 749 additions and 10 deletions
|
@ -10,10 +10,6 @@ const (
|
|||
KiB = 1024
|
||||
MiB = 1024 * KiB
|
||||
|
||||
// Polynomial is a randomly generated irreducible polynomial of degree 53
|
||||
// in Z_2[X]. All rabin fingerprints are calculated with this polynomial.
|
||||
Polynomial = 0x3DA3358B4DC173
|
||||
|
||||
// WindowSize is the size of the sliding window.
|
||||
WindowSize = 64
|
||||
|
||||
|
@ -28,10 +24,17 @@ const (
|
|||
)
|
||||
|
||||
var (
|
||||
pol_shift = deg(Polynomial) - 8
|
||||
// pol is a randomly generated irreducible polynomial of degree 53
|
||||
// in Z_2[X]. All rabin fingerprints are calculated with this polynomial.
|
||||
pol = uint64(0x3DA3358B4DC173)
|
||||
|
||||
pol_shift = deg(pol) - 8
|
||||
once sync.Once
|
||||
mod_table [256]uint64
|
||||
out_table [256]uint64
|
||||
|
||||
// tables have been filled, do not allow changing the polynom afterwards
|
||||
filled bool
|
||||
)
|
||||
|
||||
// A chunk is one content-dependent chunk of bytes whose end was cut when the
|
||||
|
@ -69,6 +72,16 @@ type Chunker struct {
|
|||
h hash.Hash
|
||||
}
|
||||
|
||||
// Polynomial sets the polynomial that is to be used for calculating the rabin
|
||||
// fingerprints. This function must be called before the first chunker is
|
||||
// created, otherwise the results are undefined.
|
||||
func SetPolynomial(f uint64) {
|
||||
if filled {
|
||||
panic("polynomial changed after chunker has already been used")
|
||||
}
|
||||
pol = f
|
||||
}
|
||||
|
||||
// New returns a new Chunker that reads from data from rd with bufsize and pass
|
||||
// all data to hash along the way.
|
||||
func New(rd io.Reader, bufsize int, hash hash.Hash) *Chunker {
|
||||
|
@ -109,6 +122,8 @@ func (c *Chunker) Reset(rd io.Reader) {
|
|||
|
||||
// Calculate out_table and mod_table for optimization. Must be called only once.
|
||||
func fill_tables() {
|
||||
filled = true
|
||||
|
||||
// calculate table for sliding out bytes. The byte to slide out is used as
|
||||
// the index for the table, the value contains the following:
|
||||
// out_table[b] = Hash(b || 0 || ... || 0)
|
||||
|
@ -123,15 +138,15 @@ func fill_tables() {
|
|||
for b := 0; b < 256; b++ {
|
||||
var hash uint64
|
||||
|
||||
hash = append_byte(hash, byte(b), Polynomial)
|
||||
hash = append_byte(hash, byte(b), pol)
|
||||
for i := 0; i < WindowSize-1; i++ {
|
||||
hash = append_byte(hash, 0, Polynomial)
|
||||
hash = append_byte(hash, 0, pol)
|
||||
}
|
||||
out_table[b] = hash
|
||||
}
|
||||
|
||||
// calculate table for reduction mod Polynomial
|
||||
k := deg(Polynomial)
|
||||
k := deg(pol)
|
||||
for b := 0; b < 256; b++ {
|
||||
// mod_table[b] = A | B, where A = (b(x) * x^k mod pol) and B = b(x) * x^k
|
||||
//
|
||||
|
@ -140,7 +155,7 @@ func fill_tables() {
|
|||
// two parts: Part A contains the result of the modulus operation, part
|
||||
// B is used to cancel out the 8 top bits so that one XOR operation is
|
||||
// enough to reduce modulo Polynomial
|
||||
mod_table[b] = mod(uint64(b)<<uint(k), Polynomial) | (uint64(b) << uint(k))
|
||||
mod_table[b] = mod(uint64(b)<<uint(k), pol) | (uint64(b) << uint(k))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -308,7 +323,7 @@ func append_byte(hash uint64, b byte, pol uint64) uint64 {
|
|||
return mod(hash, pol)
|
||||
}
|
||||
|
||||
// Mod calculates the remainder of x divided by p.
|
||||
// Mod calculates the remainder of x divided by p in F_2[X].
|
||||
func mod(x, p uint64) uint64 {
|
||||
for deg(x) >= deg(p) {
|
||||
shift := uint(deg(x) - deg(p))
|
||||
|
|
|
@ -6,6 +6,59 @@
|
|||
Package chunker implements Content Defined Chunking (CDC) based on a rolling
|
||||
Rabin Checksum.
|
||||
|
||||
Choosing a Random Irreducible Polynomial
|
||||
|
||||
The function RandomPolynomial() returns a new random polynomial of degree 53
|
||||
for use with the chunker. The degree 53 is chosen because it is the largest
|
||||
prime below 64-8 = 56, so that the top 8 bits of an uint64 can be used for
|
||||
optimising calculations in the chunker.
|
||||
|
||||
A random polynomial is chosen selecting 64 random bits, masking away bits
|
||||
64..54 and setting bit 53 to one (otherwise the polynomial is not of the
|
||||
desired degree) and bit 0 to one (otherwise the polynomial is trivially
|
||||
reducible), so that 51 bits are chosen at random.
|
||||
|
||||
This process is repeated until Irreducible() returns true, then this
|
||||
polynomials is returned. If this doesn't happen after 1 million tries, the
|
||||
function returns an error. The probability for selecting an irreducible
|
||||
polynomial at random is about 7.5% ( (2^53-2)/53 / 2^51), so the probability
|
||||
that no irreducible polynomial has been found after 100 tries is lower than
|
||||
0.04%.
|
||||
|
||||
Verifying Irreducible Polynomials
|
||||
|
||||
During development the results have been verified using the computational
|
||||
discrete algebra system GAP, which can be obtained from the website at
|
||||
http://www.gap-system.org/.
|
||||
|
||||
For filtering a given list of polynomials in hexadecimal coefficient notation,
|
||||
the following script can be used:
|
||||
|
||||
# create x over F_2 = GF(2)
|
||||
x := Indeterminate(GF(2), "x");
|
||||
|
||||
# test if polynomial is irreducible, i.e. the number of factors is one
|
||||
IrredPoly := function (poly)
|
||||
return (Length(Factors(poly)) = 1);
|
||||
end;;
|
||||
|
||||
# create a polynomial in x from the hexadecimal representation of the
|
||||
# coefficients
|
||||
Hex2Poly := function (s)
|
||||
return ValuePol(CoefficientsQadic(IntHexString(s), 2), x);
|
||||
end;;
|
||||
|
||||
# list of candidates, in hex
|
||||
candidates := [ "3DA3358B4DC173" ];
|
||||
|
||||
# create real polynomials
|
||||
L := List(candidates, Hex2Poly);
|
||||
|
||||
# filter and display the list of irreducible polynomials contained in L
|
||||
Display(Filtered(L, x -> (IrredPoly(x))));
|
||||
|
||||
All irreducible polynomials from the list are written to the output.
|
||||
|
||||
Background Literature
|
||||
|
||||
An introduction to Rabin Fingerprints/Checksums can be found in the following articles:
|
||||
|
@ -19,6 +72,9 @@ http://www.zlib.net/crc_v3.txt
|
|||
Andrei Z. Broder (1993): "Some Applications of Rabin's Fingerprinting Method"
|
||||
http://www.xmailserver.org/rabin_apps.pdf
|
||||
|
||||
Shuhong Gao and Daniel Panario (1997): "Tests and Constructions of Irreducible Polynomials over Finite Fields"
|
||||
http://www.math.clemson.edu/~sgao/papers/GP97a.pdf
|
||||
|
||||
Andrew Kadatch, Bob Jenkins (2007): "Everything we know about CRC but afraid to forget"
|
||||
http://crcutil.googlecode.com/files/crc-doc.1.0.pdf
|
||||
|
||||
|
|
36
chunker/generic_test.go
Normal file
36
chunker/generic_test.go
Normal file
|
@ -0,0 +1,36 @@
|
|||
package chunker_test
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"path/filepath"
|
||||
"reflect"
|
||||
"runtime"
|
||||
"testing"
|
||||
)
|
||||
|
||||
// assert fails the test if the condition is false.
|
||||
func assert(tb testing.TB, condition bool, msg string, v ...interface{}) {
|
||||
if !condition {
|
||||
_, file, line, _ := runtime.Caller(1)
|
||||
fmt.Printf("\033[31m%s:%d: "+msg+"\033[39m\n\n", append([]interface{}{filepath.Base(file), line}, v...)...)
|
||||
tb.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
// ok fails the test if an err is not nil.
|
||||
func ok(tb testing.TB, err error) {
|
||||
if err != nil {
|
||||
_, file, line, _ := runtime.Caller(1)
|
||||
fmt.Printf("\033[31m%s:%d: unexpected error: %s\033[39m\n\n", filepath.Base(file), line, err.Error())
|
||||
tb.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
// equals fails the test if exp is not equal to act.
|
||||
func equals(tb testing.TB, exp, act interface{}) {
|
||||
if !reflect.DeepEqual(exp, act) {
|
||||
_, file, line, _ := runtime.Caller(1)
|
||||
fmt.Printf("\033[31m%s:%d:\n\n\texp: %#v\n\n\tgot: %#v\033[39m\n\n", filepath.Base(file), line, exp, act)
|
||||
tb.FailNow()
|
||||
}
|
||||
}
|
257
chunker/polynomials.go
Normal file
257
chunker/polynomials.go
Normal file
|
@ -0,0 +1,257 @@
|
|||
package chunker
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
// Pol is a polynomial from F_2[X].
|
||||
type Pol uint64
|
||||
|
||||
// Add returns x+y.
|
||||
func (x Pol) Add(y Pol) Pol {
|
||||
r := Pol(uint64(x) ^ uint64(y))
|
||||
return r
|
||||
}
|
||||
|
||||
// mulOverflows returns true if the multiplication would overflow uint64.
|
||||
// Code by Rob Pike, see
|
||||
// https://groups.google.com/d/msg/golang-nuts/h5oSN5t3Au4/KaNQREhZh0QJ
|
||||
func mulOverflows(a, b Pol) bool {
|
||||
if a <= 1 || b <= 1 {
|
||||
return false
|
||||
}
|
||||
c := a.mul(b)
|
||||
d := c.Div(b)
|
||||
if d != a {
|
||||
return true
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
func (x Pol) mul(y Pol) Pol {
|
||||
if x == 0 || y == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
var res Pol
|
||||
for i := 0; i <= y.Deg(); i++ {
|
||||
if (y & (1 << uint(i))) > 0 {
|
||||
res = res.Add(x << uint(i))
|
||||
}
|
||||
}
|
||||
|
||||
return res
|
||||
}
|
||||
|
||||
// Mul returns x*y. When an overflow occurs, Mul panics.
|
||||
func (x Pol) Mul(y Pol) Pol {
|
||||
if mulOverflows(x, y) {
|
||||
panic("multiplication would overflow uint64")
|
||||
}
|
||||
|
||||
return x.mul(y)
|
||||
}
|
||||
|
||||
// Deg returns the degree of the polynomial x. If x is zero, -1 is returned.
|
||||
func (x Pol) Deg() int {
|
||||
// the degree of 0 is -1
|
||||
if x == 0 {
|
||||
return -1
|
||||
}
|
||||
|
||||
for i := 63; i >= 0; i-- {
|
||||
// test if bit i is set
|
||||
if x&(1<<uint(i)) > 0 {
|
||||
// this is the degree of x
|
||||
return i
|
||||
}
|
||||
}
|
||||
|
||||
// fall-through, return -1
|
||||
return -1
|
||||
}
|
||||
|
||||
// String returns the coefficients in hex.
|
||||
func (x Pol) String() string {
|
||||
return "0x" + strconv.FormatUint(uint64(x), 16)
|
||||
}
|
||||
|
||||
// Expand returns the string representation of the polynomial x.
|
||||
func (x Pol) Expand() string {
|
||||
if x == 0 {
|
||||
return "0"
|
||||
}
|
||||
|
||||
s := ""
|
||||
for i := x.Deg(); i > 1; i-- {
|
||||
if x&(1<<uint(i)) > 0 {
|
||||
s += fmt.Sprintf("+x^%d", i)
|
||||
}
|
||||
}
|
||||
|
||||
if x&2 > 0 {
|
||||
s += "+x"
|
||||
}
|
||||
|
||||
if x&1 > 0 {
|
||||
s += "+1"
|
||||
}
|
||||
|
||||
return s[1:]
|
||||
}
|
||||
|
||||
// DivMod returns x / d = q, and remainder r,
|
||||
// see https://en.wikipedia.org/wiki/Division_algorithm
|
||||
func (x Pol) DivMod(d Pol) (Pol, Pol) {
|
||||
if x == 0 {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
if d == 0 {
|
||||
panic("division by zero")
|
||||
}
|
||||
|
||||
D := d.Deg()
|
||||
diff := x.Deg() - D
|
||||
if diff < 0 {
|
||||
return 0, x
|
||||
}
|
||||
|
||||
var q Pol
|
||||
for diff >= 0 {
|
||||
m := d << uint(diff)
|
||||
q |= (1 << uint(diff))
|
||||
x = x.Add(m)
|
||||
|
||||
diff = x.Deg() - D
|
||||
}
|
||||
|
||||
return q, x
|
||||
}
|
||||
|
||||
// Div returns the integer division result x / d.
|
||||
func (x Pol) Div(d Pol) Pol {
|
||||
q, _ := x.DivMod(d)
|
||||
return q
|
||||
}
|
||||
|
||||
// Mod returns the remainder of x / d
|
||||
func (x Pol) Mod(d Pol) Pol {
|
||||
_, r := x.DivMod(d)
|
||||
return r
|
||||
}
|
||||
|
||||
// I really dislike having a function that does not terminate, so specify a
|
||||
// really large upper bound for finding a new irreducible polynomial, and
|
||||
// return an error when no irreducible polynomial has been found within
|
||||
// randPolMaxTries.
|
||||
const randPolMaxTries = 1e6
|
||||
|
||||
// RandomPolynomial returns a new random irreducible polynomial of degree 53
|
||||
// (largest prime number below 64-8). There are (2^53-2/53) irreducible
|
||||
// polynomials of degree 53 in F_2[X], c.f. Michael O. Rabin (1981):
|
||||
// "Fingerprinting by Random Polynomials", page 4. If no polynomial could be
|
||||
// found in one million tries, an error is returned.
|
||||
func RandomPolynomial() (Pol, error) {
|
||||
for i := 0; i < randPolMaxTries; i++ {
|
||||
var f Pol
|
||||
|
||||
// choose polynomial at random
|
||||
err := binary.Read(rand.Reader, binary.LittleEndian, &f)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// mask away bits above bit 53
|
||||
f &= Pol((1 << 54) - 1)
|
||||
|
||||
// set highest and lowest bit so that the degree is 53 and the
|
||||
// polynomial is not trivially reducible
|
||||
f |= (1 << 53) | 1
|
||||
|
||||
// test if f is irreducible
|
||||
if f.Irreducible() {
|
||||
return f, nil
|
||||
}
|
||||
}
|
||||
|
||||
// If this is reached, we haven't found an irreducible polynomial in
|
||||
// randPolMaxTries. This error is very unlikely to occur.
|
||||
return 0, errors.New("unable to find new random irreducible polynomial")
|
||||
}
|
||||
|
||||
// GCD computes the Greatest Common Divisor x and f.
|
||||
func (x Pol) GCD(f Pol) Pol {
|
||||
if f == 0 {
|
||||
return x
|
||||
}
|
||||
|
||||
if x == 0 {
|
||||
return f
|
||||
}
|
||||
|
||||
if x.Deg() < f.Deg() {
|
||||
x, f = f, x
|
||||
}
|
||||
|
||||
return f.GCD(x.Mod(f))
|
||||
}
|
||||
|
||||
// Irreducible returns true iff x is irreducible over F_2. This function
|
||||
// uses Ben Or's reducibility test.
|
||||
//
|
||||
// For details see "Tests and Constructions of Irreducible Polynomials over
|
||||
// Finite Fields".
|
||||
func (x Pol) Irreducible() bool {
|
||||
for i := 1; i <= x.Deg()/2; i++ {
|
||||
if x.GCD(qp(uint(i), x)) != 1 {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
// MulMod computes x*f mod g
|
||||
func (x Pol) MulMod(f, g Pol) Pol {
|
||||
if x == 0 || f == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
var res Pol
|
||||
for i := 0; i <= f.Deg(); i++ {
|
||||
if (f & (1 << uint(i))) > 0 {
|
||||
a := x
|
||||
for j := 0; j < i; j++ {
|
||||
a = a.Mul(2).Mod(g)
|
||||
}
|
||||
res = res.Add(a).Mod(g)
|
||||
}
|
||||
}
|
||||
|
||||
return res
|
||||
}
|
||||
|
||||
// qp computes the polynomial (x^(2^p)-x) mod g. This is needed for the
|
||||
// reducibility test.
|
||||
func qp(p uint, g Pol) Pol {
|
||||
num := (1 << p)
|
||||
i := 1
|
||||
|
||||
// start with x
|
||||
res := Pol(2)
|
||||
|
||||
for i < num {
|
||||
// repeatedly square res
|
||||
res = res.MulMod(res, g)
|
||||
i *= 2
|
||||
}
|
||||
|
||||
// add x
|
||||
return res.Add(2).Mod(g)
|
||||
}
|
350
chunker/polynomials_test.go
Normal file
350
chunker/polynomials_test.go
Normal file
|
@ -0,0 +1,350 @@
|
|||
package chunker_test
|
||||
|
||||
import (
|
||||
"strconv"
|
||||
"testing"
|
||||
|
||||
"github.com/restic/restic/chunker"
|
||||
)
|
||||
|
||||
var polAddTests = []struct {
|
||||
x, y chunker.Pol
|
||||
sum chunker.Pol
|
||||
}{
|
||||
{23, 16, 23 ^ 16},
|
||||
{0x9a7e30d1e855e0a0, 0x670102a1f4bcd414, 0xfd7f32701ce934b4},
|
||||
{0x9a7e30d1e855e0a0, 0x9a7e30d1e855e0a0, 0},
|
||||
}
|
||||
|
||||
func TestPolAdd(t *testing.T) {
|
||||
for _, test := range polAddTests {
|
||||
equals(t, test.sum, test.x.Add(test.y))
|
||||
equals(t, test.sum, test.y.Add(test.x))
|
||||
}
|
||||
}
|
||||
|
||||
func parseBin(s string) chunker.Pol {
|
||||
i, err := strconv.ParseUint(s, 2, 64)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return chunker.Pol(i)
|
||||
}
|
||||
|
||||
var polMulTests = []struct {
|
||||
x, y chunker.Pol
|
||||
res chunker.Pol
|
||||
}{
|
||||
{1, 2, 2},
|
||||
{
|
||||
parseBin("1101"),
|
||||
parseBin("10"),
|
||||
parseBin("11010"),
|
||||
},
|
||||
{
|
||||
parseBin("1101"),
|
||||
parseBin("11"),
|
||||
parseBin("10111"),
|
||||
},
|
||||
{
|
||||
0x40000000,
|
||||
0x40000000,
|
||||
0x1000000000000000,
|
||||
},
|
||||
{
|
||||
parseBin("1010"),
|
||||
parseBin("100100"),
|
||||
parseBin("101101000"),
|
||||
},
|
||||
{
|
||||
parseBin("100"),
|
||||
parseBin("11"),
|
||||
parseBin("1100"),
|
||||
},
|
||||
{
|
||||
parseBin("11"),
|
||||
parseBin("110101"),
|
||||
parseBin("1011111"),
|
||||
},
|
||||
{
|
||||
parseBin("10011"),
|
||||
parseBin("110101"),
|
||||
parseBin("1100001111"),
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolMul(t *testing.T) {
|
||||
for i, test := range polMulTests {
|
||||
m := test.x.Mul(test.y)
|
||||
assert(t, test.res == m,
|
||||
"TestPolMul failed for test %d: %v * %v: want %v, got %v",
|
||||
i, test.x, test.y, test.res, m)
|
||||
m = test.y.Mul(test.x)
|
||||
assert(t, test.res == test.y.Mul(test.x),
|
||||
"TestPolMul failed for %d: %v * %v: want %v, got %v",
|
||||
i, test.x, test.y, test.res, m)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPolMulOverflow(t *testing.T) {
|
||||
defer func() {
|
||||
// try to recover overflow error
|
||||
err := recover()
|
||||
|
||||
if e, ok := err.(string); ok && e == "multiplication would overflow uint64" {
|
||||
return
|
||||
} else {
|
||||
t.Logf("invalid error raised: %v", err)
|
||||
// re-raise error if not overflow
|
||||
panic(err)
|
||||
}
|
||||
}()
|
||||
|
||||
x := chunker.Pol(1 << 63)
|
||||
x.Mul(2)
|
||||
t.Fatal("overflow test did not panic")
|
||||
}
|
||||
|
||||
var polDivTests = []struct {
|
||||
x, y chunker.Pol
|
||||
res chunker.Pol
|
||||
}{
|
||||
{10, 50, 0},
|
||||
{0, 1, 0},
|
||||
{
|
||||
parseBin("101101000"), // 0x168
|
||||
parseBin("1010"), // 0xa
|
||||
parseBin("100100"), // 0x24
|
||||
},
|
||||
{2, 2, 1},
|
||||
{
|
||||
0x8000000000000000,
|
||||
0x8000000000000000,
|
||||
1,
|
||||
},
|
||||
{
|
||||
parseBin("1100"),
|
||||
parseBin("100"),
|
||||
parseBin("11"),
|
||||
},
|
||||
{
|
||||
parseBin("1100001111"),
|
||||
parseBin("10011"),
|
||||
parseBin("110101"),
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolDiv(t *testing.T) {
|
||||
for i, test := range polDivTests {
|
||||
m := test.x.Div(test.y)
|
||||
assert(t, test.res == m,
|
||||
"TestPolDiv failed for test %d: %v * %v: want %v, got %v",
|
||||
i, test.x, test.y, test.res, m)
|
||||
}
|
||||
}
|
||||
|
||||
var polModTests = []struct {
|
||||
x, y chunker.Pol
|
||||
res chunker.Pol
|
||||
}{
|
||||
{10, 50, 10},
|
||||
{0, 1, 0},
|
||||
{
|
||||
parseBin("101101001"),
|
||||
parseBin("1010"),
|
||||
parseBin("1"),
|
||||
},
|
||||
{2, 2, 0},
|
||||
{
|
||||
0x8000000000000000,
|
||||
0x8000000000000000,
|
||||
0,
|
||||
},
|
||||
{
|
||||
parseBin("1100"),
|
||||
parseBin("100"),
|
||||
parseBin("0"),
|
||||
},
|
||||
{
|
||||
parseBin("1100001111"),
|
||||
parseBin("10011"),
|
||||
parseBin("0"),
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolModt(t *testing.T) {
|
||||
for _, test := range polModTests {
|
||||
equals(t, test.res, test.x.Mod(test.y))
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPolDivMod(t *testing.B) {
|
||||
f := chunker.Pol(0x2482734cacca49)
|
||||
g := chunker.Pol(0x3af4b284899)
|
||||
|
||||
for i := 0; i < t.N; i++ {
|
||||
g.DivMod(f)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPolDeg(t *testing.B) {
|
||||
f := chunker.Pol(0x3af4b284899)
|
||||
d := f.Deg()
|
||||
if d != 41 {
|
||||
t.Fatalf("BenchmalPolDeg: Wrong degree %d returned, expected %d",
|
||||
d, 41)
|
||||
}
|
||||
|
||||
for i := 0; i < t.N; i++ {
|
||||
f.Deg()
|
||||
}
|
||||
}
|
||||
|
||||
func TestRandomPolynomial(t *testing.T) {
|
||||
_, err := chunker.RandomPolynomial()
|
||||
ok(t, err)
|
||||
}
|
||||
|
||||
func BenchmarkRandomPolynomial(t *testing.B) {
|
||||
for i := 0; i < t.N; i++ {
|
||||
_, err := chunker.RandomPolynomial()
|
||||
ok(t, err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestExpandPolynomial(t *testing.T) {
|
||||
pol := chunker.Pol(0x3DA3358B4DC173)
|
||||
s := pol.Expand()
|
||||
equals(t, "x^53+x^52+x^51+x^50+x^48+x^47+x^45+x^41+x^40+x^37+x^36+x^34+x^32+x^31+x^27+x^25+x^24+x^22+x^19+x^18+x^16+x^15+x^14+x^8+x^6+x^5+x^4+x+1", s)
|
||||
}
|
||||
|
||||
var polIrredTests = []struct {
|
||||
f chunker.Pol
|
||||
irred bool
|
||||
}{
|
||||
{0x38f1e565e288df, false},
|
||||
{0x3DA3358B4DC173, true},
|
||||
{0x30a8295b9d5c91, false},
|
||||
{0x255f4350b962cb, false},
|
||||
{0x267f776110a235, false},
|
||||
{0x2f4dae10d41227, false},
|
||||
{0x2482734cacca49, true},
|
||||
{0x312daf4b284899, false},
|
||||
{0x29dfb6553d01d1, false},
|
||||
{0x3548245eb26257, false},
|
||||
{0x3199e7ef4211b3, false},
|
||||
{0x362f39017dae8b, false},
|
||||
{0x200d57aa6fdacb, false},
|
||||
{0x35e0a4efa1d275, false},
|
||||
{0x2ced55b026577f, false},
|
||||
{0x260b012010893d, false},
|
||||
{0x2df29cbcd59e9d, false},
|
||||
{0x3f2ac7488bd429, false},
|
||||
{0x3e5cb1711669fb, false},
|
||||
{0x226d8de57a9959, false},
|
||||
{0x3c8de80aaf5835, false},
|
||||
{0x2026a59efb219b, false},
|
||||
{0x39dfa4d13fb231, false},
|
||||
{0x3143d0464b3299, false},
|
||||
}
|
||||
|
||||
func TestPolIrreducible(t *testing.T) {
|
||||
for _, test := range polIrredTests {
|
||||
assert(t, test.f.Irreducible() == test.irred,
|
||||
"Irreducibility test for Polynomial %v failed: got %v, wanted %v",
|
||||
test.f, test.f.Irreducible(), test.irred)
|
||||
}
|
||||
}
|
||||
|
||||
var polGCDTests = []struct {
|
||||
f1 chunker.Pol
|
||||
f2 chunker.Pol
|
||||
gcd chunker.Pol
|
||||
}{
|
||||
{10, 50, 2},
|
||||
{0, 1, 1},
|
||||
{
|
||||
parseBin("101101001"),
|
||||
parseBin("1010"),
|
||||
parseBin("1"),
|
||||
},
|
||||
{2, 2, 2},
|
||||
{
|
||||
parseBin("1010"),
|
||||
parseBin("11"),
|
||||
parseBin("11"),
|
||||
},
|
||||
{
|
||||
0x8000000000000000,
|
||||
0x8000000000000000,
|
||||
0x8000000000000000,
|
||||
},
|
||||
{
|
||||
parseBin("1100"),
|
||||
parseBin("101"),
|
||||
parseBin("11"),
|
||||
},
|
||||
{
|
||||
parseBin("1100001111"),
|
||||
parseBin("10011"),
|
||||
parseBin("10011"),
|
||||
},
|
||||
{
|
||||
0x3DA3358B4DC173,
|
||||
0x3DA3358B4DC173,
|
||||
0x3DA3358B4DC173,
|
||||
},
|
||||
{
|
||||
0x3DA3358B4DC173,
|
||||
0x230d2259defd,
|
||||
1,
|
||||
},
|
||||
{
|
||||
0x230d2259defd,
|
||||
0x51b492b3eff2,
|
||||
parseBin("10011"),
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolGCD(t *testing.T) {
|
||||
for i, test := range polGCDTests {
|
||||
gcd := test.f1.GCD(test.f2)
|
||||
assert(t, test.gcd == gcd,
|
||||
"GCD test %d (%+v) failed: got %v, wanted %v",
|
||||
i, test, gcd, test.gcd)
|
||||
gcd = test.f2.GCD(test.f1)
|
||||
assert(t, test.gcd == gcd,
|
||||
"GCD test %d (%+v) failed: got %v, wanted %v",
|
||||
i, test, gcd, test.gcd)
|
||||
}
|
||||
}
|
||||
|
||||
var polMulModTests = []struct {
|
||||
f1 chunker.Pol
|
||||
f2 chunker.Pol
|
||||
g chunker.Pol
|
||||
mod chunker.Pol
|
||||
}{
|
||||
{
|
||||
0x1230,
|
||||
0x230,
|
||||
0x55,
|
||||
0x22,
|
||||
},
|
||||
{
|
||||
0x0eae8c07dbbb3026,
|
||||
0xd5d6db9de04771de,
|
||||
0xdd2bda3b77c9,
|
||||
0x425ae8595b7a,
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolMulMod(t *testing.T) {
|
||||
for i, test := range polMulModTests {
|
||||
mod := test.f1.MulMod(test.f2, test.g)
|
||||
assert(t, mod == test.mod,
|
||||
"MulMod test %d (%+v) failed: got %v, wanted %v",
|
||||
i, test, mod, test.mod)
|
||||
}
|
||||
}
|
25
doc/test_irreducibility.gap
Normal file
25
doc/test_irreducibility.gap
Normal file
|
@ -0,0 +1,25 @@
|
|||
# This file is a script for GAP and tests a list of polynomials in hexadecimal
|
||||
# for irreducibility over F_2
|
||||
|
||||
# create x over F_2 = GF(2)
|
||||
x := Indeterminate(GF(2), "x");
|
||||
|
||||
# test if polynomial is irreducible, i.e. the number of factors is one
|
||||
IrredPoly := function (poly)
|
||||
return (Length(Factors(poly)) = 1);
|
||||
end;;
|
||||
|
||||
# create a polynomial in x from the hexadecimal representation of the
|
||||
# coefficients
|
||||
Hex2Poly := function (s)
|
||||
return ValuePol(CoefficientsQadic(IntHexString(s), 2), x);
|
||||
end;;
|
||||
|
||||
# list of candidates, in hex
|
||||
candidates := [ "3DA3358B4DC173" ];
|
||||
|
||||
# create real polynomials
|
||||
L := List(candidates, Hex2Poly);
|
||||
|
||||
# filter and display the list of irreducible polynomials contained in L
|
||||
Display(Filtered(L, x -> (IrredPoly(x))));
|
Loading…
Reference in a new issue