restic/key.go
Alexander Neumann af57fb86d7 Reduce memory usage of decryptReader
benchmark                         old ns/op     new ns/op     delta
    BenchmarkChunkEncrypt             260007360     261144414     +0.44%
    BenchmarkChunkEncryptParallel     262839697     261201438     -0.62%
    BenchmarkArchiveDirectory         0.00          0.00          +0.00%
    BenchmarkEncryptWriter            86994839      88297245      +1.50%
    BenchmarkEncrypt                  87414849      87406446      -0.01%
    BenchmarkDecryptReader            90354651      89948630      -0.45%
    BenchmarkEncryptDecryptReader     184533845     178374144     -3.34%
    BenchmarkDecrypt                  88153894      88289705      +0.15%
    BenchmarkSaveJSON                 213906        213917        +0.01%
    BenchmarkSaveFrom                 75263853      74881361      -0.51%

    benchmark                         old MB/s     new MB/s     speedup
    BenchmarkChunkEncrypt             40.33        40.15        1.00x
    BenchmarkChunkEncryptParallel     39.89        40.14        1.01x
    BenchmarkEncryptWriter            96.43        95.00        0.99x
    BenchmarkEncrypt                  95.96        95.97        1.00x
    BenchmarkDecryptReader            92.84        93.26        1.00x
    BenchmarkEncryptDecryptReader     45.46        47.03        1.03x
    BenchmarkDecrypt                  95.16        95.01        1.00x
    BenchmarkSaveFrom                 55.73        56.01        1.01x

    benchmark                         old allocs     new allocs     delta
    BenchmarkChunkEncrypt             113            113            +0.00%
    BenchmarkChunkEncryptParallel     104            104            +0.00%
    BenchmarkArchiveDirectory         0              0              +0.00%
    BenchmarkEncryptWriter            20             20             +0.00%
    BenchmarkEncrypt                  14             14             +0.00%
    BenchmarkDecryptReader            18             18             +0.00%
    BenchmarkEncryptDecryptReader     55             40             -27.27%
    BenchmarkDecrypt                  17             17             +0.00%
    BenchmarkSaveJSON                 125            125            +0.00%
    BenchmarkSaveFrom                 119            116            -2.52%

    benchmark                         old bytes     new bytes     delta
    BenchmarkChunkEncrypt             8515750       8515750       +0.00%
    BenchmarkChunkEncryptParallel     8515766       8515766       +0.00%
    BenchmarkArchiveDirectory         0             0             +0.00%
    BenchmarkEncryptWriter            28927         28927         +0.00%
    BenchmarkEncrypt                  422313        422313        +0.00%
    BenchmarkDecryptReader            527827        527827        +0.00%
    BenchmarkEncryptDecryptReader     35814894      4100824       -88.55%
    BenchmarkDecrypt                  8391127       8391127       +0.00%
    BenchmarkSaveJSON                 9208          9208          +0.00%
    BenchmarkSaveFrom                 40541         39694         -2.09%
2015-02-17 18:14:56 +01:00

636 lines
15 KiB
Go

package restic
import (
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"encoding/json"
"errors"
"fmt"
"hash"
"io"
"io/ioutil"
"os"
"os/user"
"sync"
"time"
"github.com/restic/restic/backend"
"github.com/restic/restic/chunker"
"golang.org/x/crypto/scrypt"
)
// max size is 8MiB, defined in chunker
const ivSize = aes.BlockSize
const hmacSize = sha256.Size
const maxCiphertextSize = ivSize + chunker.MaxSize + hmacSize
const CiphertextExtension = ivSize + hmacSize
var (
// ErrUnauthenticated is returned when ciphertext verification has failed.
ErrUnauthenticated = errors.New("ciphertext verification failed")
// ErrNoKeyFound is returned when no key for the repository could be decrypted.
ErrNoKeyFound = errors.New("no key could be found")
// ErrBufferTooSmall is returned when the destination slice is too small
// for the ciphertext.
ErrBufferTooSmall = errors.New("destination buffer too small")
)
// TODO: figure out scrypt values on the fly depending on the current
// hardware.
const (
scryptN = 65536
scryptR = 8
scryptP = 1
scryptSaltsize = 64
aesKeysize = 32 // for AES256
hmacKeysize = 32 // for HMAC with SHA256
)
// Key represents an encrypted master key for a repository.
type Key struct {
Created time.Time `json:"created"`
Username string `json:"username"`
Hostname string `json:"hostname"`
Comment string `json:"comment,omitempty"`
KDF string `json:"kdf"`
N int `json:"N"`
R int `json:"r"`
P int `json:"p"`
Salt []byte `json:"salt"`
Data []byte `json:"data"`
user *keys
master *keys
id backend.ID
}
// keys is a JSON structure that holds signing and encryption keys.
type keys struct {
Sign []byte
Encrypt []byte
}
// CreateKey initializes a master key in the given backend and encrypts it with
// the password.
func CreateKey(s Server, password string) (*Key, error) {
return AddKey(s, password, nil)
}
// OpenKey tries do decrypt the key specified by id with the given password.
func OpenKey(s Server, id backend.ID, password string) (*Key, error) {
// extract data from repo
data, err := s.Get(backend.Key, id)
if err != nil {
return nil, err
}
// restore json
k := &Key{}
err = json.Unmarshal(data, k)
if err != nil {
return nil, err
}
// check KDF
if k.KDF != "scrypt" {
return nil, errors.New("only supported KDF is scrypt()")
}
// derive user key
k.user, err = k.scrypt(password)
if err != nil {
return nil, err
}
// decrypt master keys
buf, err := k.DecryptUser(k.Data)
if err != nil {
return nil, err
}
// restore json
k.master = &keys{}
err = json.Unmarshal(buf, k.master)
if err != nil {
return nil, err
}
k.id = id
return k, nil
}
// SearchKey tries to decrypt all keys in the backend with the given password.
// If none could be found, ErrNoKeyFound is returned.
func SearchKey(s Server, password string) (*Key, error) {
// list all keys
ids, err := s.List(backend.Key)
if err != nil {
panic(err)
}
// try all keys in repo
var key *Key
for _, id := range ids {
key, err = OpenKey(s, id, password)
if err != nil {
continue
}
return key, nil
}
return nil, ErrNoKeyFound
}
// AddKey adds a new key to an already existing repository.
func AddKey(s Server, password string, template *Key) (*Key, error) {
// fill meta data about key
newkey := &Key{
Created: time.Now(),
KDF: "scrypt",
N: scryptN,
R: scryptR,
P: scryptP,
}
hn, err := os.Hostname()
if err == nil {
newkey.Hostname = hn
}
usr, err := user.Current()
if err == nil {
newkey.Username = usr.Username
}
// generate random salt
newkey.Salt = make([]byte, scryptSaltsize)
n, err := rand.Read(newkey.Salt)
if n != scryptSaltsize || err != nil {
panic("unable to read enough random bytes for salt")
}
// call scrypt() to derive user key
newkey.user, err = newkey.scrypt(password)
if err != nil {
return nil, err
}
if template == nil {
// generate new random master keys
newkey.master, err = newkey.newKeys()
if err != nil {
return nil, err
}
} else {
// copy master keys from old key
newkey.master = template.master
}
// encrypt master keys (as json) with user key
buf, err := json.Marshal(newkey.master)
if err != nil {
return nil, err
}
newkey.Data = GetChunkBuf("key")
n, err = newkey.EncryptUser(newkey.Data, buf)
newkey.Data = newkey.Data[:n]
// dump as json
buf, err = json.Marshal(newkey)
if err != nil {
return nil, err
}
// store in repository and return
blob, err := s.Create(backend.Key)
if err != nil {
return nil, err
}
_, err = blob.Write(buf)
if err != nil {
return nil, err
}
err = blob.Close()
if err != nil {
return nil, err
}
id, err := blob.ID()
if err != nil {
return nil, err
}
newkey.id = id
FreeChunkBuf("key", newkey.Data)
return newkey, nil
}
func (k *Key) scrypt(password string) (*keys, error) {
if len(k.Salt) == 0 {
return nil, fmt.Errorf("scrypt() called with empty salt")
}
keybytes := hmacKeysize + aesKeysize
scryptKeys, err := scrypt.Key([]byte(password), k.Salt, k.N, k.R, k.P, keybytes)
if err != nil {
return nil, fmt.Errorf("error deriving keys from password: %v", err)
}
if len(scryptKeys) != keybytes {
return nil, fmt.Errorf("invalid numbers of bytes expanded from scrypt(): %d", len(scryptKeys))
}
ks := &keys{
Encrypt: scryptKeys[:aesKeysize],
Sign: scryptKeys[aesKeysize:],
}
return ks, nil
}
func (k *Key) newKeys() (*keys, error) {
ks := &keys{
Encrypt: make([]byte, aesKeysize),
Sign: make([]byte, hmacKeysize),
}
n, err := rand.Read(ks.Encrypt)
if n != aesKeysize || err != nil {
panic("unable to read enough random bytes for encryption key")
}
n, err = rand.Read(ks.Sign)
if n != hmacKeysize || err != nil {
panic("unable to read enough random bytes for signing key")
}
return ks, nil
}
func (k *Key) newIV(buf []byte) error {
_, err := io.ReadFull(rand.Reader, buf[:ivSize])
buf = buf[:ivSize]
if err != nil {
return err
}
return nil
}
// Encrypt encrypts and signs data. Stored in ciphertext is IV || Ciphertext ||
// HMAC. Encrypt returns the ciphertext's length. For the hash function, SHA256
// is used, so the overhead is 16+32=48 byte.
func (k *Key) encrypt(ks *keys, ciphertext, plaintext []byte) (int, error) {
if cap(ciphertext) < len(plaintext)+ivSize+hmacSize {
return 0, ErrBufferTooSmall
}
_, err := io.ReadFull(rand.Reader, ciphertext[:ivSize])
if err != nil {
panic(fmt.Sprintf("unable to generate new random iv: %v", err))
}
c, err := aes.NewCipher(ks.Encrypt)
if err != nil {
panic(fmt.Sprintf("unable to create cipher: %v", err))
}
e := cipher.NewCTR(c, ciphertext[:ivSize])
e.XORKeyStream(ciphertext[ivSize:cap(ciphertext)], plaintext)
ciphertext = ciphertext[:ivSize+len(plaintext)]
hm := hmac.New(sha256.New, ks.Sign)
n, err := hm.Write(ciphertext)
if err != nil || n != len(ciphertext) {
panic(fmt.Sprintf("unable to calculate hmac of ciphertext: %v", err))
}
ciphertext = hm.Sum(ciphertext)
return len(ciphertext), nil
}
// EncryptUser encrypts and signs data with the user key. Stored in ciphertext
// is IV || Ciphertext || HMAC. Returns the ciphertext length. For the hash
// function, SHA256 is used, so the overhead is 16+32=48 byte.
func (k *Key) EncryptUser(ciphertext, plaintext []byte) (int, error) {
return k.encrypt(k.user, ciphertext, plaintext)
}
// Encrypt encrypts and signs data with the master key. Stored in ciphertext is
// IV || Ciphertext || HMAC. Returns the ciphertext length. For the hash
// function, SHA256 is used, so the overhead is 16+32=48 byte.
func (k *Key) Encrypt(ciphertext, plaintext []byte) (int, error) {
return k.encrypt(k.master, ciphertext, plaintext)
}
type encryptWriter struct {
iv []byte
wroteIV bool
h hash.Hash
s cipher.Stream
w io.Writer
origWr io.Writer
err error // remember error writing iv
}
func (e *encryptWriter) Close() error {
// write hmac
_, err := e.origWr.Write(e.h.Sum(nil))
if err != nil {
return err
}
return nil
}
const encryptWriterChunkSize = 512 * 1024 // 512 KiB
var encryptWriterBufPool = sync.Pool{
New: func() interface{} {
return make([]byte, encryptWriterChunkSize)
},
}
func (e *encryptWriter) Write(p []byte) (int, error) {
// write iv first
if !e.wroteIV {
_, e.err = e.origWr.Write(e.iv)
e.wroteIV = true
}
if e.err != nil {
return 0, e.err
}
buf := encryptWriterBufPool.Get().([]byte)
defer encryptWriterBufPool.Put(buf)
written := 0
for len(p) > 0 {
max := len(p)
if max > encryptWriterChunkSize {
max = encryptWriterChunkSize
}
e.s.XORKeyStream(buf, p[:max])
n, err := e.w.Write(buf[:max])
if n != max {
if err == nil { // should never happen
err = io.ErrShortWrite
}
}
written += n
p = p[n:]
if err != nil {
e.err = err
return written, err
}
}
return written, nil
}
func (k *Key) encryptTo(ks *keys, wr io.Writer) io.WriteCloser {
ew := &encryptWriter{
iv: make([]byte, ivSize),
h: hmac.New(sha256.New, ks.Sign),
origWr: wr,
}
_, err := io.ReadFull(rand.Reader, ew.iv)
if err != nil {
panic(fmt.Sprintf("unable to generate new random iv: %v", err))
}
// write iv to hmac
_, err = ew.h.Write(ew.iv)
if err != nil {
panic(err)
}
c, err := aes.NewCipher(ks.Encrypt)
if err != nil {
panic(fmt.Sprintf("unable to create cipher: %v", err))
}
ew.s = cipher.NewCTR(c, ew.iv)
ew.w = io.MultiWriter(ew.h, wr)
return ew
}
// EncryptTo encrypts and signs data with the master key. The returned
// io.Writer writes IV || Ciphertext || HMAC. For the hash function, SHA256 is
// used.
func (k *Key) EncryptTo(wr io.Writer) io.WriteCloser {
return k.encryptTo(k.master, wr)
}
// EncryptUserTo encrypts and signs data with the user key. The returned
// io.Writer writes IV || Ciphertext || HMAC. For the hash function, SHA256 is
// used.
func (k *Key) EncryptUserTo(wr io.Writer) io.WriteCloser {
return k.encryptTo(k.user, wr)
}
// Decrypt verifes and decrypts the ciphertext. Ciphertext must be in the form
// IV || Ciphertext || HMAC.
func (k *Key) decrypt(ks *keys, ciphertext []byte) ([]byte, error) {
// check for plausible length
if len(ciphertext) < ivSize+hmacSize {
panic("trying to decryipt invalid data: ciphertext too small")
}
hm := hmac.New(sha256.New, ks.Sign)
// extract hmac
l := len(ciphertext) - hm.Size()
ciphertext, mac := ciphertext[:l], ciphertext[l:]
// calculate new hmac
n, err := hm.Write(ciphertext)
if err != nil || n != len(ciphertext) {
panic(fmt.Sprintf("unable to calculate hmac of ciphertext, err %v", err))
}
// verify hmac
mac2 := hm.Sum(nil)
if !hmac.Equal(mac, mac2) {
return nil, ErrUnauthenticated
}
// extract iv
iv, ciphertext := ciphertext[:aes.BlockSize], ciphertext[aes.BlockSize:]
// decrypt data
c, err := aes.NewCipher(ks.Encrypt)
if err != nil {
panic(fmt.Sprintf("unable to create cipher: %v", err))
}
// decrypt
e := cipher.NewCTR(c, iv)
plaintext := make([]byte, len(ciphertext))
e.XORKeyStream(plaintext, ciphertext)
return plaintext, nil
}
// Decrypt verifes and decrypts the ciphertext with the master key. Ciphertext
// must be in the form IV || Ciphertext || HMAC.
func (k *Key) Decrypt(ciphertext []byte) ([]byte, error) {
return k.decrypt(k.master, ciphertext)
}
// DecryptUser verifes and decrypts the ciphertext with the user key. Ciphertext
// must be in the form IV || Ciphertext || HMAC.
func (k *Key) DecryptUser(ciphertext []byte) ([]byte, error) {
return k.decrypt(k.user, ciphertext)
}
type decryptReader struct {
buf []byte
pos int
}
func (d *decryptReader) Read(dst []byte) (int, error) {
if d.buf == nil {
return 0, io.EOF
}
if len(dst) == 0 {
return 0, nil
}
remaining := len(d.buf) - d.pos
if len(dst) >= remaining {
n := copy(dst, d.buf[d.pos:])
FreeChunkBuf("decryptReader", d.buf)
d.buf = nil
return n, io.EOF
}
n := copy(dst, d.buf[d.pos:d.pos+len(dst)])
d.pos += n
return n, nil
}
func (d *decryptReader) Close() error {
if d.buf == nil {
return nil
}
FreeChunkBuf("decryptReader", d.buf)
d.buf = nil
return nil
}
// decryptFrom verifies and decrypts the ciphertext read from rd with ks and
// makes it available on the returned Reader. Ciphertext must be in the form IV
// || Ciphertext || HMAC. In order to correctly verify the ciphertext, rd is
// drained, locally buffered and made available on the returned Reader
// afterwards. If an HMAC verification failure is observed, it is returned
// immediately.
func (k *Key) decryptFrom(ks *keys, rd io.Reader) (io.ReadCloser, error) {
ciphertext := GetChunkBuf("decryptReader")
ciphertext = ciphertext[0:cap(ciphertext)]
n, err := io.ReadFull(rd, ciphertext)
if err != io.ErrUnexpectedEOF {
// read remaining data
buf, e := ioutil.ReadAll(rd)
ciphertext = append(ciphertext, buf...)
n += len(buf)
err = e
} else {
err = nil
}
if err != nil {
return nil, err
}
ciphertext = ciphertext[:n]
// check for plausible length
if len(ciphertext) < ivSize+hmacSize {
panic("trying to decrypt invalid data: ciphertext too small")
}
hm := hmac.New(sha256.New, ks.Sign)
// extract hmac
l := len(ciphertext) - hm.Size()
ciphertext, mac := ciphertext[:l], ciphertext[l:]
// calculate new hmac
n, err = hm.Write(ciphertext)
if err != nil || n != len(ciphertext) {
panic(fmt.Sprintf("unable to calculate hmac of ciphertext, err %v", err))
}
// verify hmac
mac2 := hm.Sum(nil)
if !hmac.Equal(mac, mac2) {
return nil, ErrUnauthenticated
}
// extract iv
iv, ciphertext := ciphertext[:aes.BlockSize], ciphertext[aes.BlockSize:]
// decrypt data
c, err := aes.NewCipher(ks.Encrypt)
if err != nil {
panic(fmt.Sprintf("unable to create cipher: %v", err))
}
stream := cipher.NewCTR(c, iv)
stream.XORKeyStream(ciphertext, ciphertext)
return &decryptReader{buf: ciphertext}, nil
}
// DecryptFrom verifies and decrypts the ciphertext read from rd and makes it
// available on the returned Reader. Ciphertext must be in the form IV ||
// Ciphertext || HMAC. In order to correctly verify the ciphertext, rd is
// drained, locally buffered and made available on the returned Reader
// afterwards. If an HMAC verification failure is observed, it is returned
// immediately.
func (k *Key) DecryptFrom(rd io.Reader) (io.ReadCloser, error) {
return k.decryptFrom(k.master, rd)
}
// DecryptFrom verifies and decrypts the ciphertext read from rd with the user
// key and makes it available on the returned Reader. Ciphertext must be in the
// form IV || Ciphertext || HMAC. In order to correctly verify the ciphertext,
// rd is drained, locally buffered and made available on the returned Reader
// afterwards. If an HMAC verification failure is observed, it is returned
// immediately.
func (k *Key) DecryptUserFrom(rd io.Reader) (io.ReadCloser, error) {
return k.decryptFrom(k.user, rd)
}
func (k *Key) String() string {
if k == nil {
return "<Key nil>"
}
return fmt.Sprintf("<Key of %s@%s, created on %s>", k.Username, k.Hostname, k.Created)
}
func (k Key) ID() backend.ID {
return k.id
}