s3-tests/s3tests_boto3/functional/test_s3select.py

1458 lines
70 KiB
Python
Raw Normal View History

import nose
import pytest
import random
import string
import re
from nose.plugins.attrib import attr
from botocore.exceptions import ClientError
import uuid
from nose.tools import eq_ as eq
from . import (
configfile,
setup_teardown,
get_client
)
import logging
logging.basicConfig(level=logging.INFO)
import collections
collections.Callable = collections.abc.Callable
region_name = ''
# recurssion function for generating arithmetical expression
def random_expr(depth):
# depth is the complexity of expression
if depth==1 :
return str(int(random.random() * 100) + 1)+".0"
return '(' + random_expr(depth-1) + random.choice(['+','-','*','/']) + random_expr(depth-1) + ')'
def generate_s3select_where_clause(bucket_name,obj_name):
a=random_expr(4)
b=random_expr(4)
s=random.choice([ '<','>','=','<=','>=','!=' ])
try:
eval( a )
eval( b )
except ZeroDivisionError:
return
# generate s3select statement using generated randome expression
# upon count(0)>0 it means true for the where clause expression
# the python-engine {eval( conditional expression )} should return same boolean result.
s3select_stmt = "select count(0) from s3object where " + a + s + b + ";"
res = remove_xml_tags_from_result( run_s3select(bucket_name,obj_name,s3select_stmt) ).replace(",","")
if s == '=':
s = '=='
s3select_assert_result(int(res)>0 , eval( a + s + b ))
def generate_s3select_expression_projection(bucket_name,obj_name):
# generate s3select statement using generated randome expression
# statement return an arithmetical result for the generated expression.
# the same expression is evaluated by python-engine, result should be close enough(Epsilon)
e = random_expr( 4 )
try:
eval( e )
except ZeroDivisionError:
return
if eval( e ) == 0:
return
res = remove_xml_tags_from_result( run_s3select(bucket_name,obj_name,"select " + e + " from s3object;",) ).replace(",","")
# accuracy level
epsilon = float(0.00001)
# both results should be close (epsilon)
assert( abs(float(res.split("\n")[1]) - eval(e)) < epsilon )
@attr('s3select')
@pytest.mark.s3select
def get_random_string():
return uuid.uuid4().hex[:6].upper()
@attr('s3select')
@pytest.mark.s3select
def test_generate_where_clause():
# create small csv file for testing the random expressions
single_line_csv = create_random_csv_object(1,1)
bucket_name = "test"
obj_name = get_random_string() #"single_line_csv.csv"
upload_csv_object(bucket_name,obj_name,single_line_csv)
for _ in range(100):
generate_s3select_where_clause(bucket_name,obj_name)
@attr('s3select')
@pytest.mark.s3select
def test_generate_projection():
# create small csv file for testing the random expressions
single_line_csv = create_random_csv_object(1,1)
bucket_name = "test"
obj_name = get_random_string() #"single_line_csv.csv"
upload_csv_object(bucket_name,obj_name,single_line_csv)
for _ in range(100):
generate_s3select_expression_projection(bucket_name,obj_name)
def s3select_assert_result(a,b):
if type(a) == str:
a_strip = a.strip()
b_strip = b.strip()
assert a_strip != ""
assert b_strip != ""
else:
assert a != ""
assert b != ""
nose.tools.assert_equal(a,b)
def create_csv_object_for_datetime(rows,columns):
result = ""
for _ in range(rows):
row = ""
for _ in range(columns):
row = row + "{}{:02d}{:02d}T{:02d}{:02d}{:02d}Z,".format(random.randint(0,100)+1900,random.randint(1,12),random.randint(1,28),random.randint(0,23),random.randint(0,59),random.randint(0,59),)
result += row + "\n"
return result
def create_random_csv_object(rows,columns,col_delim=",",record_delim="\n",csv_schema=""):
result = ""
if len(csv_schema)>0 :
result = csv_schema + record_delim
for _ in range(rows):
row = ""
for _ in range(columns):
row = row + "{}{}".format(random.randint(0,1000),col_delim)
result += row + record_delim
return result
def create_random_csv_object_string(rows,columns,col_delim=",",record_delim="\n",csv_schema=""):
result = ""
if len(csv_schema)>0 :
result = csv_schema + record_delim
for _ in range(rows):
row = ""
for _ in range(columns):
if random.randint(0,9) == 5:
row = row + "{}{}".format(''.join(random.choice(string.ascii_letters) for m in range(10)) + "aeiou",col_delim)
else:
row = row + "{}{}".format(''.join("cbcd" + random.choice(string.ascii_letters) for m in range(10)) + "vwxyzzvwxyz" ,col_delim)
result += row + record_delim
return result
def create_random_csv_object_trim(rows,columns,col_delim=",",record_delim="\n",csv_schema=""):
result = ""
if len(csv_schema)>0 :
result = csv_schema + record_delim
for _ in range(rows):
row = ""
for _ in range(columns):
if random.randint(0,5) == 2:
row = row + "{}{}".format(''.join(" aeiou ") ,col_delim)
else:
row = row + "{}{}".format(''.join("abcd") ,col_delim)
result += row + record_delim
return result
def create_random_csv_object_escape(rows,columns,col_delim=",",record_delim="\n",csv_schema=""):
result = ""
if len(csv_schema)>0 :
result = csv_schema + record_delim
for _ in range(rows):
row = ""
for _ in range(columns):
if random.randint(0,9) == 5:
row = row + "{}{}".format(''.join("_ar") ,col_delim)
else:
row = row + "{}{}".format(''.join("aeio_") ,col_delim)
result += row + record_delim
return result
def create_random_csv_object_null(rows,columns,col_delim=",",record_delim="\n",csv_schema=""):
result = ""
if len(csv_schema)>0 :
result = csv_schema + record_delim
for _ in range(rows):
row = ""
for _ in range(columns):
if random.randint(0,5) == 2:
row = row + "{}{}".format(''.join("") ,col_delim)
else:
row = row + "{}{}".format(''.join("abc") ,col_delim)
result += row + record_delim
return result
def upload_csv_object(bucket_name,new_key,obj):
client = get_client()
client.create_bucket(Bucket=bucket_name)
client.put_object(Bucket=bucket_name, Key=new_key, Body=obj)
# validate uploaded object
c2 = get_client()
response = c2.get_object(Bucket=bucket_name, Key=new_key)
eq(response['Body'].read().decode('utf-8'), obj, 's3select error[ downloaded object not equal to uploaded objecy')
def run_s3select(bucket,key,query,column_delim=",",row_delim="\n",quot_char='"',esc_char='\\',csv_header_info="NONE", progress = False):
s3 = get_client()
result = ""
try:
r = s3.select_object_content(
Bucket=bucket,
Key=key,
ExpressionType='SQL',
InputSerialization = {"CSV": {"RecordDelimiter" : row_delim, "FieldDelimiter" : column_delim,"QuoteEscapeCharacter": esc_char, "QuoteCharacter": quot_char, "FileHeaderInfo": csv_header_info}, "CompressionType": "NONE"},
OutputSerialization = {"CSV": {}},
Expression=query,
RequestProgress = {"Enabled": progress})
except ClientError as c:
result += str(c)
return result
if progress == False:
for event in r['Payload']:
if 'Records' in event:
records = event['Records']['Payload'].decode('utf-8')
result += records
else:
result = []
for event in r['Payload']:
if 'Records' in event:
records = event['Records']
result.append(records.copy())
if 'Progress' in event:
progress = event['Progress']
result.append(progress.copy())
if 'Stats' in event:
stats = event['Stats']
result.append(stats.copy())
if 'End' in event:
end = event['End']
result.append(end.copy())
return result
def run_s3select_output(bucket,key,query, quot_field, op_column_delim = ",", op_row_delim = "\n", column_delim=",", op_quot_char = '"', op_esc_char = '\\', row_delim="\n",quot_char='"',esc_char='\\',csv_header_info="NONE"):
s3 = get_client()
r = s3.select_object_content(
Bucket=bucket,
Key=key,
ExpressionType='SQL',
InputSerialization = {"CSV": {"RecordDelimiter" : row_delim, "FieldDelimiter" : column_delim,"QuoteEscapeCharacter": esc_char, "QuoteCharacter": quot_char, "FileHeaderInfo": csv_header_info}, "CompressionType": "NONE"},
OutputSerialization = {"CSV": {"RecordDelimiter" : op_row_delim, "FieldDelimiter" : op_column_delim, "QuoteCharacter" : op_quot_char, "QuoteEscapeCharacter" : op_esc_char, "QuoteFields" : quot_field}},
Expression=query,)
result = ""
for event in r['Payload']:
if 'Records' in event:
records = event['Records']['Payload'].decode('utf-8')
result += records
return result
def remove_xml_tags_from_result(obj):
result = ""
for rec in obj.split("\n"):
if(rec.find("Payload")>0 or rec.find("Records")>0):
continue
result += rec + "\n" # remove by split
result_strip= result.strip()
x = bool(re.search("^failure.*$", result_strip))
if x:
logging.info(result)
nose.tools.assert_equal(x, False)
return result
def create_list_of_int(column_pos,obj,field_split=",",row_split="\n"):
list_of_int = []
for rec in obj.split(row_split):
col_num = 1
if ( len(rec) == 0):
continue
for col in rec.split(field_split):
if (col_num == column_pos):
list_of_int.append(int(col))
col_num+=1
return list_of_int
@attr('s3select')
@pytest.mark.s3select
def test_count_operation():
csv_obj_name = get_random_string()
bucket_name = "test"
num_of_rows = 1234
obj_to_load = create_random_csv_object(num_of_rows,10)
upload_csv_object(bucket_name,csv_obj_name,obj_to_load)
res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object;") ).replace(",","")
s3select_assert_result( num_of_rows, int( res ))
@attr('s3select')
@pytest.mark.s3select
def test_column_sum_min_max():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
csv_obj_name_2 = get_random_string()
bucket_name_2 = "testbuck2"
upload_csv_object(bucket_name_2,csv_obj_name_2,csv_obj)
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)) from s3object;") ).replace(",","")
list_int = create_list_of_int( 1 , csv_obj )
res_target = min( list_int )
s3select_assert_result( int(res_s3select), int(res_target))
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_4)) from s3object;") ).replace(",","")
list_int = create_list_of_int( 4 , csv_obj )
res_target = min( list_int )
s3select_assert_result( int(res_s3select), int(res_target))
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select avg(int(_6)) from s3object;") ).replace(",","")
list_int = create_list_of_int( 6 , csv_obj )
res_target = float(sum(list_int ))/10000
s3select_assert_result( float(res_s3select), float(res_target))
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select max(int(_4)) from s3object;") ).replace(",","")
list_int = create_list_of_int( 4 , csv_obj )
res_target = max( list_int )
s3select_assert_result( int(res_s3select), int(res_target))
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select max(int(_7)) from s3object;") ).replace(",","")
list_int = create_list_of_int( 7 , csv_obj )
res_target = max( list_int )
s3select_assert_result( int(res_s3select), int(res_target))
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select sum(int(_4)) from s3object;") ).replace(",","")
list_int = create_list_of_int( 4 , csv_obj )
res_target = sum( list_int )
s3select_assert_result( int(res_s3select), int(res_target))
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select sum(int(_7)) from s3object;") ).replace(",","")
list_int = create_list_of_int( 7 , csv_obj )
res_target = sum( list_int )
s3select_assert_result( int(res_s3select) , int(res_target) )
# the following queries, validates on *random* input an *accurate* relation between condition result,sum operation and count operation.
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name_2,csv_obj_name_2,"select count(0),sum(int(_1)),sum(int(_2)) from s3object where (int(_1)-int(_2)) = 2;" ) )
count,sum1,sum2 = res_s3select.split(",")
s3select_assert_result( int(count)*2 , int(sum1)-int(sum2 ) )
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0),sum(int(_1)),sum(int(_2)) from s3object where (int(_1)-int(_2)) = 4;" ) )
count,sum1,sum2 = res_s3select.split(",")
s3select_assert_result( int(count)*4 , int(sum1)-int(sum2) )
@attr('s3select')
@pytest.mark.s3select
def test_nullif_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where nullif(_1,_2) is null ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 = _2 ;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (nullif(_1,_2) is null) from s3object ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (_1 = _2) from s3object ;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where not nullif(_1,_2) is null ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 != _2 ;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (nullif(_1,_2) is not null) from s3object ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (_1 != _2) from s3object ;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where nullif(_1,_2) = _1 ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 != _2 ;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
csv_obj = create_random_csv_object_null(10000,10)
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where nullif(_1,null) is null;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where _1 is null;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (nullif(_1,null) is null) from s3object;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (_1 is null) from s3object;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
@attr('s3select')
@pytest.mark.s3select
def test_nulliftrue_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where (nullif(_1,_2) is null) = true ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 = _2 ;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where not (nullif(_1,_2) is null) = true ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 != _2 ;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where (nullif(_1,_2) = _1 = true) ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 != _2 ;") ).replace("\n","")
s3select_assert_result( res_s3select_nullif, res_s3select)
@attr('s3select')
@pytest.mark.s3select
def test_is_not_null_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_null = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where nullif(_1,_2) is not null ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where _1 != _2 ;") ).replace("\n","")
s3select_assert_result( res_s3select_null, res_s3select)
res_s3select_null = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where (nullif(_1,_1) and _1 = _2) is not null ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where _1 != _2 ;") ).replace("\n","")
s3select_assert_result( res_s3select_null, res_s3select)
@attr('s3select')
@pytest.mark.s3select
def test_lowerupper_expressions():
csv_obj = create_random_csv_object(1,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select lower("AB12cd$$") from s3object ;') ).replace("\n","")
s3select_assert_result( res_s3select, "ab12cd$$")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select upper("ab12CD$$") from s3object ;') ).replace("\n","")
s3select_assert_result( res_s3select, "AB12CD$$")
@attr('s3select')
@pytest.mark.s3select
def test_in_expressions():
# purpose of test: engine is process correctly several projections containing aggregation-functions
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) in(1);')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = 1;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) in(1)) from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) = 1) from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) in(1,0);')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = 1 or int(_1) = 0;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) in(1,0)) from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) = 1 or int(_1) = 0) from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2) in(1,0,2);')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2) = 1 or int(_2) = 0 or int(_2) = 2;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_2) in(1,0,2)) from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_2) = 1 or int(_2) = 0 or int(_2) = 2) from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2)*2 in(int(_3)*2,int(_4)*3,int(_5)*5);')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2)*2 = int(_3)*2 or int(_2)*2 = int(_4)*3 or int(_2)*2 = int(_5)*5;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_2)*2 in(int(_3)*2,int(_4)*3,int(_5)*5)) from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_2)*2 = int(_3)*2 or int(_2)*2 = int(_4)*3 or int(_2)*2 = int(_5)*5) from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where character_length(_1) = 2 and substring(_1,2,1) in ("3");')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where _1 like "_3";')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (character_length(_1) = 2 and substring(_1,2,1) in ("3")) from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_1 like "_3") from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_true_false_in_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(1)) = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = 1;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(1,0)) = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = 1 or int(_1) = 0;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where (int(_2) in(1,0,2)) = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2) = 1 or int(_2) = 0 or int(_2) = 2;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where (int(_2)*2 in(int(_3)*2,int(_4)*3,int(_5)*5)) = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2)*2 = int(_3)*2 or int(_2)*2 = int(_4)*3 or int(_2)*2 = int(_5)*5;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where (character_length(_1) = 2) = true and (substring(_1,2,1) in ("3")) = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where _1 like "_3";')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) in (1,2,0)) as a1 from s3object where a1 = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select \"true\"from s3object where (int(_1) in (1,0,2)) ;')).replace("\n","")
s3select_assert_result( res_s3select_in, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_like_expressions():
csv_obj = create_random_csv_object_string(1000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _1 like "%aeio%";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,11,4) = "aeio" ;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_1 like "%aeio%") from s3object ;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_1,11,4) = "aeio") from s3object ;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _1 like "cbcd%";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,1,4) = "cbcd";')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _1 like "%aeio%" like;')).replace("\n","")
find_like = res_s3select_like.find("s3select-Syntax-Error")
assert int(find_like) >= 0
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_1 like "cbcd%") from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_1,1,4) = "cbcd") from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _3 like "%y[y-z]";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_3,char_length(_3),1) between "y" and "z" and substring(_3,char_length(_3)-1,1) = "y";')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_3 like "%y[y-z]") from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_3,char_length(_3),1) between "y" and "z" and substring(_3,char_length(_3)-1,1) = "y") from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _2 like "%yz";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_2,char_length(_2),1) = "z" and substring(_2,char_length(_2)-1,1) = "y";')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_2 like "%yz") from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_2,char_length(_2),1) = "z" and substring(_2,char_length(_2)-1,1) = "y") from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _3 like "c%z";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_3,char_length(_3),1) = "z" and substring(_3,1,1) = "c";')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_3 like "c%z") from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_3,char_length(_3),1) = "z" and substring(_3,1,1) = "c") from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _2 like "%xy_";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_2,char_length(_2)-1,1) = "y" and substring(_2,char_length(_2)-2,1) = "x";')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_2 like "%xy_") from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_2,char_length(_2)-1,1) = "y" and substring(_2,char_length(_2)-2,1) = "x") from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_truefalselike_expressions():
csv_obj = create_random_csv_object_string(1000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_1 like "%aeio%") = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,11,4) = "aeio" ;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_1 like "cbcd%") = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,1,4) = "cbcd";')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_3 like "%y[y-z]") = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where (substring(_3,char_length(_3),1) between "y" and "z") = true and (substring(_3,char_length(_3)-1,1) = "y") = true;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_2 like "%yz") = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where (substring(_2,char_length(_2),1) = "z") = true and (substring(_2,char_length(_2)-1,1) = "y") = true;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_3 like "c%z") = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where (substring(_3,char_length(_3),1) = "z") = true and (substring(_3,1,1) = "c") = true;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_2 like "%xy_") = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where (substring(_2,char_length(_2)-1,1) = "y") = true and (substring(_2,char_length(_2)-2,1) = "x") = true;')).replace("\n","")
s3select_assert_result( res_s3select_like, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_nullif_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where nullif(_1,_2) is null ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where _1 = _2 ;") ).replace("\n","")
nose.tools.assert_equal( res_s3select_nullif, res_s3select)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where not nullif(_1,_2) is null ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where _1 != _2 ;") ).replace("\n","")
nose.tools.assert_equal( res_s3select_nullif, res_s3select)
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where nullif(_1,_2) = _1 ;") ).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where _1 != _2 ;") ).replace("\n","")
nose.tools.assert_equal( res_s3select_nullif, res_s3select)
@attr('s3select')
@pytest.mark.s3select
def test_lowerupper_expressions():
csv_obj = create_random_csv_object(1,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select lower("AB12cd$$") from stdin ;') ).replace("\n","")
nose.tools.assert_equal( res_s3select, "ab12cd$$")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select upper("ab12CD$$") from stdin ;') ).replace("\n","")
nose.tools.assert_equal( res_s3select, "AB12CD$$")
@attr('s3select')
@pytest.mark.s3select
def test_in_expressions():
# purpose of test: engine is process correctly several projections containing aggregation-functions
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where int(_1) in(1);')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where int(_1) = 1;')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where int(_1) in(1,0);')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where int(_1) = 1 or int(_1) = 0;')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from stdin where int(_2) in(1,0,2);')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from stdin where int(_2) = 1 or int(_2) = 0 or int(_2) = 2;')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from stdin where int(_2)*2 in(int(_3)*2,int(_4)*3,int(_5)*5);')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from stdin where int(_2)*2 = int(_3)*2 or int(_2)*2 = int(_4)*3 or int(_2)*2 = int(_5)*5;')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where character_length(_1) = 2 and substring(_1,2,1) in ("3");')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where _1 like "_3";')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_like_expressions():
csv_obj = create_random_csv_object_string(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _1 like "%aeio%";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_1,11,4) = "aeio" ;')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _1 like "cbcd%";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_1,1,4) = "cbcd";')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _3 like "%y[y-z]";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_3,character_length(_3),1) between "y" and "z" and substring(_3,character_length(_3)-1,1) = "y";')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _2 like "%yz";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_2,character_length(_2),1) = "z" and substring(_2,character_length(_2)-1,1) = "y";')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _3 like "c%z";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_3,character_length(_3),1) = "z" and substring(_3,1,1) = "c";')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _2 like "%xy_";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_2,character_length(_2)-1,1) = "y" and substring(_2,character_length(_2)-2,1) = "x";')).replace("\n","")
nose.tools.assert_equal( res_s3select_in, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_complex_expressions():
# purpose of test: engine is process correctly several projections containing aggregation-functions
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)),max(int(_2)),min(int(_3))+1 from s3object;")).replace("\n","")
min_1 = min ( create_list_of_int( 1 , csv_obj ) )
max_2 = max ( create_list_of_int( 2 , csv_obj ) )
min_3 = min ( create_list_of_int( 3 , csv_obj ) ) + 1
__res = "{},{},{}".format(min_1,max_2,min_3)
# assert is according to radom-csv function
s3select_assert_result( res_s3select, __res )
# purpose of test that all where conditions create the same group of values, thus same result
res_s3select_substring = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select min(int(_2)),max(int(_2)) from s3object where substring(_2,1,1) = "1" and char_length(_2) = 3;')).replace("\n","")
res_s3select_between_numbers = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select min(int(_2)),max(int(_2)) from s3object where int(_2)>=100 and int(_2)<200;')).replace("\n","")
res_s3select_eq_modolu = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select min(int(_2)),max(int(_2)) from s3object where int(_2)/100 = 1 and character_length(_2) = 3;')).replace("\n","")
s3select_assert_result( res_s3select_substring, res_s3select_between_numbers)
s3select_assert_result( res_s3select_between_numbers, res_s3select_eq_modolu)
@attr('s3select')
@pytest.mark.s3select
def test_alias():
# purpose: test is comparing result of exactly the same queries , one with alias the other without.
# this test is setting alias on 3 projections, the third projection is using other projection alias, also the where clause is using aliases
# the test validate that where-clause and projections are executing aliases correctly, bare in mind that each alias has its own cache,
# and that cache need to be invalidate per new row.
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(_1) as a1, int(_2) as a2 , (a1+a2) as a3 from s3object where a3>100 and a3<300;") ).replace(",","")
res_s3select_no_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(_1),int(_2),int(_1)+int(_2) from s3object where (int(_1)+int(_2))>100 and (int(_1)+int(_2))<300;") ).replace(",","")
s3select_assert_result( res_s3select_alias, res_s3select_no_alias)
@attr('s3select')
@pytest.mark.s3select
def test_alias_cyclic_refernce():
number_of_rows = 10000
# purpose of test is to validate the s3select-engine is able to detect a cyclic reference to alias.
csv_obj = create_random_csv_object(number_of_rows,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(_1) as a1,int(_2) as a2, a1+a4 as a3, a5+a1 as a4, int(_3)+a3 as a5 from s3object;") )
find_res = res_s3select_alias.find("number of calls exceed maximum size, probably a cyclic reference to alias")
assert int(find_res) >= 0
@attr('s3select')
@pytest.mark.s3select
def test_datetime():
# purpose of test is to validate date-time functionality is correct,
# by creating same groups with different functions (nested-calls) ,which later produce the same result
csv_obj = create_csv_object_for_datetime(10000,1)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where extract(year from to_timestamp(_1)) > 1950 and extract(year from to_timestamp(_1)) < 1960;') )
res_s3select_substring = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where int(substring(_1,1,4))>1950 and int(substring(_1,1,4))<1960;') )
s3select_assert_result( res_s3select_date_time, res_s3select_substring)
res_s3select_date_time_to_string = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select cast(to_string(to_timestamp(_1), \'x\') as int) from s3object;') )
res_s3select_date_time_extract = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select extract(timezone_hour from to_timestamp(_1)) from s3object;') )
s3select_assert_result( res_s3select_date_time_to_string, res_s3select_date_time_extract )
res_s3select_date_time_to_timestamp = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select extract(month from to_timestamp(_1)) from s3object where extract(month from to_timestamp(_1)) = 5;') )
res_s3select_substring = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select cast(substring(_1, 5, 2) as int) from s3object where _1 like \'____05%\';') )
s3select_assert_result( res_s3select_date_time_to_timestamp, res_s3select_substring)
@attr('s3select')
@pytest.mark.s3select
def test_true_false_datetime():
# purpose of test is to validate date-time functionality is correct,
# by creating same groups with different functions (nested-calls) ,which later produce the same result
csv_obj = create_csv_object_for_datetime(10000,1)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where (extract(year from to_timestamp(_1)) > 1950) = true and (extract(year from to_timestamp(_1)) < 1960) = true;') )
res_s3select_substring = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where int(substring(_1,1,4))>1950 and int(substring(_1,1,4))<1960;') )
s3select_assert_result( res_s3select_date_time, res_s3select_substring)
res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where (date_diff(month,to_timestamp(_1),date_add(month,2,to_timestamp(_1)) ) = 2) = true;') )
res_s3select_count = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object;') )
s3select_assert_result( res_s3select_date_time, res_s3select_count)
res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where (date_diff(year,to_timestamp(_1),date_add(day, 366 ,to_timestamp(_1))) = 1) = true ;') )
s3select_assert_result( res_s3select_date_time, res_s3select_count)
# validate that utcnow is integrate correctly with other date-time functions
res_s3select_date_time_utcnow = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where (date_diff(hour,utcnow(),date_add(day,1,utcnow())) = 24) = true ;') )
s3select_assert_result( res_s3select_date_time_utcnow, res_s3select_count)
@attr('s3select')
@pytest.mark.s3select
def test_csv_parser():
# purpuse: test default csv values(, \n " \ ), return value may contain meta-char
# NOTE: should note that default meta-char for s3select are also for python, thus for one example double \ is mandatory
csv_obj = r',first,,,second,third="c31,c32,c33",forth="1,2,3,4",fifth=my_string=\"any_value\" \, my_other_string=\"aaaa\,bbb\" ,' + "\n"
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
# return value contain comma{,}
res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _6 from s3object;") ).replace("\n","")
s3select_assert_result( res_s3select_alias, 'third=c31,c32,c33')
# return value contain comma{,}
res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _7 from s3object;") ).replace("\n","")
s3select_assert_result( res_s3select_alias, 'forth=1,2,3,4')
# return value contain comma{,}{"}, escape-rule{\} by-pass quote{"} , the escape{\} is removed.
res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _8 from s3object;") ).replace("\n","")
s3select_assert_result( res_s3select_alias, 'fifth=my_string="any_value" , my_other_string="aaaa,bbb" ')
# return NULL as first token
res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1 from s3object;") ).replace("\n","")
s3select_assert_result( res_s3select_alias, 'null')
# return NULL in the middle of line
res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _3 from s3object;") ).replace("\n","")
s3select_assert_result( res_s3select_alias, 'null')
# return NULL in the middle of line (successive)
res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _4 from s3object;") ).replace("\n","")
s3select_assert_result( res_s3select_alias, 'null')
# return NULL at the end line
res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _9 from s3object;") ).replace("\n","")
s3select_assert_result( res_s3select_alias, 'null')
@attr('s3select')
@pytest.mark.s3select
def test_csv_definition():
number_of_rows = 10000
#create object with pipe-sign as field separator and tab as row delimiter.
csv_obj = create_random_csv_object(number_of_rows,10,"|","\t")
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
# purpose of tests is to parse correctly input with different csv defintions
res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object;","|","\t") ).replace(",","")
s3select_assert_result( number_of_rows, int(res))
# assert is according to radom-csv function
# purpose of test is validate that tokens are processed correctly
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)),max(int(_2)),min(int(_3))+1 from s3object;","|","\t") ).replace("\n","")
min_1 = min ( create_list_of_int( 1 , csv_obj , "|","\t") )
max_2 = max ( create_list_of_int( 2 , csv_obj , "|","\t") )
min_3 = min ( create_list_of_int( 3 , csv_obj , "|","\t") ) + 1
__res = "{},{},{}".format(min_1,max_2,min_3)
s3select_assert_result( res_s3select, __res )
@attr('s3select')
@pytest.mark.s3select
def test_schema_definition():
number_of_rows = 10000
# purpose of test is to validate functionality using csv header info
csv_obj = create_random_csv_object(number_of_rows,10,csv_schema="c1,c2,c3,c4,c5,c6,c7,c8,c9,c10")
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
# ignoring the schema on first line and retrieve using generic column number
res_ignore = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1,_3 from s3object;",csv_header_info="IGNORE") ).replace("\n","")
# using the scheme on first line, query is using the attach schema
res_use = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select c1,c3 from s3object;",csv_header_info="USE") ).replace("\n","")
# result of both queries should be the same
s3select_assert_result( res_ignore, res_use)
# using column-name not exist in schema
res_multiple_defintion = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select c1,c10,int(c11) from s3object;",csv_header_info="USE") ).replace("\n","")
assert ((res_multiple_defintion.find("alias {c11} or column not exist in schema")) >= 0)
#find_processing_error = res_multiple_defintion.find("s3select-ProcessingTime-Error")
assert ((res_multiple_defintion.find("s3select-ProcessingTime-Error")) >= 0)
# alias-name is identical to column-name
res_multiple_defintion = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(c1)+int(c2) as c4,c4 from s3object;",csv_header_info="USE") ).replace("\n","")
assert ((res_multiple_defintion.find("multiple definition of column {c4} as schema-column and alias")) >= 0)
@attr('s3select')
@pytest.mark.s3select
def test_when_then_else_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select case when cast(_1 as int)>100 and cast(_1 as int)<200 then "(100-200)" when cast(_1 as int)>200 and cast(_1 as int)<300 then "(200-300)" else "NONE" end from s3object;') ).replace("\n","")
count1 = res_s3select.count("(100-200)")
count2 = res_s3select.count("(200-300)")
count3 = res_s3select.count("NONE")
res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_1 as int)>100 and cast(_1 as int)<200 ;') ).replace("\n","")
res1 = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_1 as int)>200 and cast(_1 as int)<300 ;') ).replace("\n","")
res2 = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_1 as int)<=100 or cast(_1 as int)>=300 or cast(_1 as int)=200 ;') ).replace("\n","")
s3select_assert_result( str(count1) , res)
s3select_assert_result( str(count2) , res1)
s3select_assert_result( str(count3) , res2)
@attr('s3select')
@pytest.mark.s3select
def test_coalesce_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where char_length(_3)>2 and char_length(_4)>2 and cast(substring(_3,1,2) as int) = cast(substring(_4,1,2) as int);') ).replace("\n","")
res_null = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_3 as int)>99 and cast(_4 as int)>99 and coalesce(nullif(cast(substring(_3,1,2) as int),cast(substring(_4,1,2) as int)),7) = 7;' ) ).replace("\n","")
s3select_assert_result( res_s3select, res_null)
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select coalesce(nullif(_5,_5),nullif(_1,_1),_2) from s3object;') ).replace("\n","")
res_coalesce = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select coalesce(_2) from s3object;') ).replace("\n","")
s3select_assert_result( res_s3select, res_coalesce)
@attr('s3select')
@pytest.mark.s3select
def test_cast_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_3 as int)>999;') ).replace("\n","")
res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where char_length(_3)>3;') ).replace("\n","")
s3select_assert_result( res_s3select, res)
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_3 as int)>99 and cast(_3 as int)<1000;') ).replace("\n","")
res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where char_length(_3)=3;') ).replace("\n","")
s3select_assert_result( res_s3select, res)
@attr('s3select')
@pytest.mark.s3select
def test_version():
return
number_of_rows = 1
# purpose of test is to validate functionality using csv header info
csv_obj = create_random_csv_object(number_of_rows,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_version = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select version() from s3object;") ).replace("\n","")
s3select_assert_result( res_version, "41.a," )
@attr('s3select')
@pytest.mark.s3select
def test_trim_expressions():
csv_obj = create_random_csv_object_trim(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(_1) = "aeiou";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1 from 4 for 5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(both from _1) = "aeiou";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(trailing from _1) = " aeiou";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(leading from _1) = "aeiou ";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(trim(leading from _1)) = "aeiou";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_truefalse_trim_expressions():
csv_obj = create_random_csv_object_trim(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(_1) = "aeiou" = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1 from 4 for 5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(both from _1) = "aeiou" = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(trailing from _1) = " aeiou" = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(leading from _1) = "aeiou " = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(trim(leading from _1)) = "aeiou" = true;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","")
s3select_assert_result( res_s3select_trim, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_escape_expressions():
csv_obj = create_random_csv_object_escape(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_escape = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _1 like "%_ar" escape "%";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,char_length(_1),1) = "r" and substring(_1,char_length(_1)-1,1) = "a" and substring(_1,char_length(_1)-2,1) = "_";')).replace("\n","")
s3select_assert_result( res_s3select_escape, res_s3select )
res_s3select_escape = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _1 like "%aeio$_" escape "$";')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,1,5) = "aeio_";')).replace("\n","")
s3select_assert_result( res_s3select_escape, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_case_value_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_case = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select case cast(_1 as int) when cast(_2 as int) then "case_1_1" else "case_2_2" end from s3object;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select case when cast(_1 as int) = cast(_2 as int) then "case_1_1" else "case_2_2" end from s3object;')).replace("\n","")
s3select_assert_result( res_s3select_case, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_bool_cast_expressions():
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_cast = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(int(_1) as bool) = true ;')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where cast(_1 as int) != 0 ;')).replace("\n","")
s3select_assert_result( res_s3select_cast, res_s3select )
@attr('s3select')
@pytest.mark.s3select
def test_progress_expressions():
csv_obj = create_random_csv_object(1000000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
obj_size = len(csv_obj.encode('utf-8'))
res_s3select_response = run_s3select(bucket_name,csv_obj_name,"select sum(int(_1)) from s3object;",progress = True)
records_payload_size = len(remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select sum(int(_1)) from s3object;')).replace("\n",""))
total_response = len(res_s3select_response)
# To do: Validate bytes processed after supporting compressed data
s3select_assert_result(obj_size, res_s3select_response[total_response-3]['Details']['BytesScanned'])
s3select_assert_result(records_payload_size, res_s3select_response[total_response-3]['Details']['BytesReturned'])
# stats response payload validation
s3select_assert_result(obj_size, res_s3select_response[total_response-2]['Details']['BytesScanned'])
s3select_assert_result(records_payload_size, res_s3select_response[total_response-2]['Details']['BytesReturned'])
# end response
s3select_assert_result({}, res_s3select_response[total_response-1])
@attr('s3select')
@pytest.mark.s3select
def test_output_serial_expressions():
return # TODO fix test
csv_obj = create_random_csv_object(10000,10)
csv_obj_name = get_random_string()
bucket_name = "test"
upload_csv_object(bucket_name,csv_obj_name,csv_obj)
res_s3select_1 = remove_xml_tags_from_result( run_s3select_output(bucket_name,csv_obj_name,"select _1, _2 from s3object where nullif(_1,_2) is null ;", "ALWAYS") ).replace("\n",",").replace(",","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1, _2 from s3object where _1 = _2 ;") ).replace("\n",",")
res_s3select_list = res_s3select.split(',')
res_s3select_list.pop()
res_s3select_final = (''.join('"' + item + '"' for item in res_s3select_list))
s3select_assert_result( '""'+res_s3select_1+'""', res_s3select_final)
res_s3select_in = remove_xml_tags_from_result( run_s3select_output(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(int(_2)));', "ASNEEDED", '$', '#')).replace("\n","#") ## TODO why \n appears in output?
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = int(_2);')).replace("\n","#")
res_s3select_list = res_s3select.split('#')
res_s3select_list.pop()
res_s3select_final = (''.join(item + '#' for item in res_s3select_list))
s3select_assert_result(res_s3select_in , res_s3select_final )
res_s3select_quot = remove_xml_tags_from_result( run_s3select_output(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(int(_2)));', "ALWAYS", '$', '#')).replace("\n","")
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = int(_2);')).replace("\n","#")
res_s3select_list = res_s3select.split('#')
res_s3select_list.pop()
res_s3select_final = (''.join('"' + item + '"' + '#' for item in res_s3select_list))
s3select_assert_result( '""#'+res_s3select_quot+'""#', res_s3select_final )