mirror of
https://github.com/ceph/s3-tests.git
synced 2024-11-23 13:38:38 +00:00
rgw/s3select: json output format for csv, json & parquet
Signed-off-by: Albin Antony <albinantony20@gmail.com>
This commit is contained in:
parent
00b9a2a291
commit
2e53973095
2 changed files with 426 additions and 194 deletions
|
@ -13,3 +13,5 @@ httplib2
|
||||||
lxml
|
lxml
|
||||||
pytest
|
pytest
|
||||||
tox
|
tox
|
||||||
|
pandas
|
||||||
|
pyarrow
|
||||||
|
|
|
@ -5,6 +5,10 @@ import re
|
||||||
import json
|
import json
|
||||||
from botocore.exceptions import ClientError
|
from botocore.exceptions import ClientError
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import pyarrow as pa
|
||||||
|
import pyarrow.parquet as pq
|
||||||
|
|
||||||
import uuid
|
import uuid
|
||||||
|
|
||||||
from . import (
|
from . import (
|
||||||
|
@ -235,30 +239,45 @@ def create_random_json_object(rows,columns,col_delim=",",record_delim="\n",csv_s
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def csv_to_json(obj, field_split=",",row_split="\n",csv_schema=""):
|
def create_parquet_object(parquet_size):
|
||||||
result = "{\"root\" : ["
|
# Initialize lists with random integers
|
||||||
result += row_split
|
a = [random.randint(1, 10000) for _ in range(parquet_size)]
|
||||||
if len(csv_schema)>0 :
|
b = [random.randint(1, 10000) for _ in range(parquet_size)]
|
||||||
result = csv_schema + row_split
|
c = [random.randint(1, 10000) for _ in range(parquet_size)]
|
||||||
|
d = [random.randint(1, 10000) for _ in range(parquet_size)]
|
||||||
for rec in obj.split(row_split):
|
|
||||||
row = ""
|
|
||||||
num = 0
|
|
||||||
row += "{"
|
|
||||||
for col in rec.split(field_split):
|
|
||||||
if col == "":
|
|
||||||
break
|
|
||||||
num += 1
|
|
||||||
row = row + "\"c" + str(num) + "\"" + ": " "{}{}".format(col,field_split)
|
|
||||||
row = row[:-1]
|
|
||||||
row += "}"
|
|
||||||
row += ","
|
|
||||||
result += row + row_split
|
|
||||||
|
|
||||||
result = result[:-5]
|
|
||||||
result += row_split
|
|
||||||
result += "]" + "}"
|
|
||||||
|
|
||||||
|
# Create DataFrame
|
||||||
|
df3 = pd.DataFrame({'a': a, 'b': b, 'c': c, 'd': d})
|
||||||
|
|
||||||
|
# Create Parquet object
|
||||||
|
table = pa.Table.from_pandas(df3, preserve_index=False)
|
||||||
|
obj = pa.BufferOutputStream()
|
||||||
|
pq.write_table(table, obj)
|
||||||
|
|
||||||
|
return obj.getvalue().to_pybytes()
|
||||||
|
|
||||||
|
def csv_to_json(obj, field_split=",", row_split="\n", csv_schema=""):
|
||||||
|
result = "{\"root\" : ["
|
||||||
|
|
||||||
|
rows = obj.split(row_split)
|
||||||
|
for rec in rows:
|
||||||
|
if rec.strip() == "":
|
||||||
|
continue
|
||||||
|
|
||||||
|
row = "{"
|
||||||
|
columns = rec.split(field_split)
|
||||||
|
for i, col in enumerate(columns):
|
||||||
|
if col.strip() == "":
|
||||||
|
continue
|
||||||
|
if col.isdigit() or (col.replace('.', '', 1).isdigit() and col.count('.') < 2):
|
||||||
|
row += "\"c{}\": {}, ".format(i + 1, col)
|
||||||
|
else:
|
||||||
|
row += "\"c{}\": \"{}\", ".format(i + 1, col)
|
||||||
|
row = row.rstrip(', ') + "},"
|
||||||
|
result += row + row_split
|
||||||
|
|
||||||
|
result = result.rstrip(',\n')
|
||||||
|
result += "]}"
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def upload_object(bucket_name,new_key,obj):
|
def upload_object(bucket_name,new_key,obj):
|
||||||
|
@ -272,20 +291,44 @@ def upload_object(bucket_name,new_key,obj):
|
||||||
response = c2.get_object(Bucket=bucket_name, Key=new_key)
|
response = c2.get_object(Bucket=bucket_name, Key=new_key)
|
||||||
assert response['Body'].read().decode('utf-8') == obj, 's3select error[ downloaded object not equal to uploaded objecy'
|
assert response['Body'].read().decode('utf-8') == obj, 's3select error[ downloaded object not equal to uploaded objecy'
|
||||||
|
|
||||||
def run_s3select(bucket,key,query,column_delim=",",row_delim="\n",quot_char='"',esc_char='\\',csv_header_info="NONE", progress = False):
|
def upload_parquet_object(bucket_name,parquet_obj_name,obj):
|
||||||
|
|
||||||
|
client = get_client()
|
||||||
|
client.create_bucket(Bucket=bucket_name)
|
||||||
|
client.put_object(Bucket=bucket_name, Key=parquet_obj_name, Body=obj)
|
||||||
|
|
||||||
|
def run_s3select(bucket,key,query,input="CSV",output="CSV",quot_field="", op_column_delim = ",", op_row_delim = "\n",op_quot_char = '"', op_esc_char = '\\',output_fields = False,column_delim=",",row_delim="\n",quot_char='"',esc_char='\\',csv_header_info="NONE", progress = False):
|
||||||
|
|
||||||
s3 = get_client()
|
s3 = get_client()
|
||||||
result = ""
|
|
||||||
result_status = {}
|
result_status = {}
|
||||||
|
result = ""
|
||||||
|
output_serialization = {"CSV": {}}
|
||||||
|
if input == "JSON":
|
||||||
|
input_serialization = {"JSON": {"Type": "DOCUMENT"}}
|
||||||
|
if(output == "JSON"):
|
||||||
|
output_serialization = {"JSON": {}}
|
||||||
|
elif(input == "CSV"):
|
||||||
|
input_serialization = {"CSV": {"RecordDelimiter" : row_delim, "FieldDelimiter" : column_delim,"QuoteEscapeCharacter": esc_char, "QuoteCharacter": quot_char, "FileHeaderInfo": csv_header_info}, "CompressionType": "NONE"}
|
||||||
|
if(output == "JSON"):
|
||||||
|
output_serialization = {"JSON": {}}
|
||||||
|
if(output_fields == True):
|
||||||
|
output_serialization = {"CSV": {"RecordDelimiter" : op_row_delim, "FieldDelimiter" : op_column_delim, "QuoteCharacter" : op_quot_char, "QuoteEscapeCharacter" : op_esc_char, "QuoteFields" : quot_field}}
|
||||||
|
elif(input == "PARQUET"):
|
||||||
|
input_serialization = {'Parquet': {}}
|
||||||
|
if(output == "JSON"):
|
||||||
|
output_serialization = {"JSON": {}}
|
||||||
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
r = s3.select_object_content(
|
r = s3.select_object_content(
|
||||||
Bucket=bucket,
|
Bucket=bucket,
|
||||||
Key=key,
|
Key=key,
|
||||||
ExpressionType='SQL',
|
ExpressionType='SQL',
|
||||||
InputSerialization = {"CSV": {"RecordDelimiter" : row_delim, "FieldDelimiter" : column_delim,"QuoteEscapeCharacter": esc_char, "QuoteCharacter": quot_char, "FileHeaderInfo": csv_header_info}, "CompressionType": "NONE"},
|
InputSerialization = input_serialization,
|
||||||
OutputSerialization = {"CSV": {}},
|
OutputSerialization = output_serialization,
|
||||||
Expression=query,
|
Expression=query,
|
||||||
RequestProgress = {"Enabled": progress})
|
RequestProgress = {"Enabled": progress})
|
||||||
|
#Record delimiter optional in output serialization
|
||||||
|
|
||||||
except ClientError as c:
|
except ClientError as c:
|
||||||
result += str(c)
|
result += str(c)
|
||||||
|
@ -318,47 +361,6 @@ def run_s3select(bucket,key,query,column_delim=",",row_delim="\n",quot_char='"',
|
||||||
else:
|
else:
|
||||||
return result,result_status
|
return result,result_status
|
||||||
|
|
||||||
def run_s3select_output(bucket,key,query, quot_field, op_column_delim = ",", op_row_delim = "\n", column_delim=",", op_quot_char = '"', op_esc_char = '\\', row_delim="\n",quot_char='"',esc_char='\\',csv_header_info="NONE"):
|
|
||||||
|
|
||||||
s3 = get_client()
|
|
||||||
|
|
||||||
r = s3.select_object_content(
|
|
||||||
Bucket=bucket,
|
|
||||||
Key=key,
|
|
||||||
ExpressionType='SQL',
|
|
||||||
InputSerialization = {"CSV": {"RecordDelimiter" : row_delim, "FieldDelimiter" : column_delim,"QuoteEscapeCharacter": esc_char, "QuoteCharacter": quot_char, "FileHeaderInfo": csv_header_info}, "CompressionType": "NONE"},
|
|
||||||
OutputSerialization = {"CSV": {"RecordDelimiter" : op_row_delim, "FieldDelimiter" : op_column_delim, "QuoteCharacter" : op_quot_char, "QuoteEscapeCharacter" : op_esc_char, "QuoteFields" : quot_field}},
|
|
||||||
Expression=query,)
|
|
||||||
|
|
||||||
result = ""
|
|
||||||
for event in r['Payload']:
|
|
||||||
if 'Records' in event:
|
|
||||||
records = event['Records']['Payload'].decode('utf-8')
|
|
||||||
result += records
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
def run_s3select_json(bucket,key,query, op_row_delim = "\n"):
|
|
||||||
|
|
||||||
s3 = get_client()
|
|
||||||
|
|
||||||
r = s3.select_object_content(
|
|
||||||
Bucket=bucket,
|
|
||||||
Key=key,
|
|
||||||
ExpressionType='SQL',
|
|
||||||
InputSerialization = {"JSON": {"Type": "DOCUMENT"}},
|
|
||||||
OutputSerialization = {"JSON": {}},
|
|
||||||
Expression=query,)
|
|
||||||
#Record delimiter optional in output serialization
|
|
||||||
|
|
||||||
result = ""
|
|
||||||
for event in r['Payload']:
|
|
||||||
if 'Records' in event:
|
|
||||||
records = event['Records']['Payload'].decode('utf-8')
|
|
||||||
result += records
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
def remove_xml_tags_from_result(obj):
|
def remove_xml_tags_from_result(obj):
|
||||||
result = ""
|
result = ""
|
||||||
for rec in obj.split("\n"):
|
for rec in obj.split("\n"):
|
||||||
|
@ -388,6 +390,13 @@ def create_list_of_int(column_pos,obj,field_split=",",row_split="\n"):
|
||||||
|
|
||||||
return list_of_int
|
return list_of_int
|
||||||
|
|
||||||
|
def get_max_from_parquet_column(parquet_obj, column_name):
|
||||||
|
table = pq.read_table(pa.BufferReader(parquet_obj))
|
||||||
|
|
||||||
|
df = table.to_pandas()
|
||||||
|
|
||||||
|
return df[column_name].max()
|
||||||
|
|
||||||
@pytest.mark.s3select
|
@pytest.mark.s3select
|
||||||
def test_count_operation():
|
def test_count_operation():
|
||||||
csv_obj_name = get_random_string()
|
csv_obj_name = get_random_string()
|
||||||
|
@ -396,7 +405,7 @@ def test_count_operation():
|
||||||
obj_to_load = create_random_csv_object(num_of_rows,10)
|
obj_to_load = create_random_csv_object(num_of_rows,10)
|
||||||
upload_object(bucket_name,csv_obj_name,obj_to_load)
|
upload_object(bucket_name,csv_obj_name,obj_to_load)
|
||||||
res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object;") ).replace(",","")
|
res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object;") ).replace(",","")
|
||||||
|
|
||||||
s3select_assert_result( num_of_rows, int( res ))
|
s3select_assert_result( num_of_rows, int( res ))
|
||||||
|
|
||||||
@pytest.mark.s3select
|
@pytest.mark.s3select
|
||||||
|
@ -407,125 +416,17 @@ def test_count_json_operation():
|
||||||
num_of_rows = 1
|
num_of_rows = 1
|
||||||
obj_to_load = create_random_json_object(num_of_rows,10)
|
obj_to_load = create_random_json_object(num_of_rows,10)
|
||||||
upload_object(bucket_name,json_obj_name,obj_to_load)
|
upload_object(bucket_name,json_obj_name,obj_to_load)
|
||||||
res = remove_xml_tags_from_result(run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*];"))
|
res = run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*];","JSON","JSON")
|
||||||
s3select_assert_result( 1, int(res))
|
s3select_assert_result( '{"_1":1}\n', res)
|
||||||
|
|
||||||
res = remove_xml_tags_from_result(run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root;"))
|
res = run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*].root;","JSON","JSON")
|
||||||
s3select_assert_result( 1, int(res))
|
s3select_assert_result( '{"_1":1}\n', res)
|
||||||
|
|
||||||
|
json_obj_name = get_random_string()
|
||||||
obj_to_load = create_random_json_object(3,10)
|
obj_to_load = create_random_json_object(3,10)
|
||||||
upload_object(bucket_name,json_obj_name,obj_to_load)
|
upload_object(bucket_name,json_obj_name,obj_to_load)
|
||||||
res = remove_xml_tags_from_result(run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root;"))
|
res = run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*].root;","JSON","JSON")
|
||||||
s3select_assert_result( 3, int(res))
|
s3select_assert_result( '{"_1":3}\n', res)
|
||||||
|
|
||||||
@pytest.mark.s3select
|
|
||||||
def test_json_column_sum_min_max():
|
|
||||||
csv_obj = create_random_csv_object(10000,10)
|
|
||||||
|
|
||||||
json_obj = csv_to_json(csv_obj);
|
|
||||||
|
|
||||||
json_obj_name = get_random_string()
|
|
||||||
bucket_name = get_new_bucket_name()
|
|
||||||
|
|
||||||
upload_object(bucket_name,json_obj_name,json_obj)
|
|
||||||
|
|
||||||
json_obj_name_2 = get_random_string()
|
|
||||||
bucket_name_2 = "testbuck2"
|
|
||||||
upload_object(bucket_name_2,json_obj_name_2,json_obj)
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select min(_1.c1) from s3object[*].root;") ).replace(",","")
|
|
||||||
list_int = create_list_of_int( 1 , csv_obj )
|
|
||||||
res_target = min( list_int )
|
|
||||||
|
|
||||||
s3select_assert_result( int(res_s3select), int(res_target))
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select min(_1.c4) from s3object[*].root;") ).replace(",","")
|
|
||||||
list_int = create_list_of_int( 4 , csv_obj )
|
|
||||||
res_target = min( list_int )
|
|
||||||
|
|
||||||
s3select_assert_result( int(res_s3select), int(res_target))
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select avg(_1.c6) from s3object[*].root;") ).replace(",","")
|
|
||||||
list_int = create_list_of_int( 6 , csv_obj )
|
|
||||||
res_target = float(sum(list_int ))/10000
|
|
||||||
|
|
||||||
s3select_assert_result( float(res_s3select), float(res_target))
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select max(_1.c4) from s3object[*].root;") ).replace(",","")
|
|
||||||
list_int = create_list_of_int( 4 , csv_obj )
|
|
||||||
res_target = max( list_int )
|
|
||||||
|
|
||||||
s3select_assert_result( int(res_s3select), int(res_target))
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select max(_1.c7) from s3object[*].root;") ).replace(",","")
|
|
||||||
list_int = create_list_of_int( 7 , csv_obj )
|
|
||||||
res_target = max( list_int )
|
|
||||||
|
|
||||||
s3select_assert_result( int(res_s3select), int(res_target))
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select sum(_1.c4) from s3object[*].root;") ).replace(",","")
|
|
||||||
list_int = create_list_of_int( 4 , csv_obj )
|
|
||||||
res_target = sum( list_int )
|
|
||||||
|
|
||||||
s3select_assert_result( int(res_s3select), int(res_target))
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select sum(_1.c7) from s3object[*].root;") ).replace(",","")
|
|
||||||
list_int = create_list_of_int( 7 , csv_obj )
|
|
||||||
res_target = sum( list_int )
|
|
||||||
|
|
||||||
s3select_assert_result( int(res_s3select) , int(res_target) )
|
|
||||||
|
|
||||||
# the following queries, validates on *random* input an *accurate* relation between condition result,sum operation and count operation.
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name_2,json_obj_name_2,"select count(0),sum(_1.c1),sum(_1.c2) from s3object[*].root where (_1.c1-_1.c2) = 2;" ) )
|
|
||||||
count,sum1,sum2 = res_s3select.split(",")
|
|
||||||
|
|
||||||
s3select_assert_result( int(count)*2 , int(sum1)-int(sum2 ) )
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0),sum(_1.c1),sum(_1.c2) from s3object[*].root where (_1.c1-_1.c2) = 4;" ) )
|
|
||||||
count,sum1,sum2 = res_s3select.split(",")
|
|
||||||
|
|
||||||
s3select_assert_result( int(count)*4 , int(sum1)-int(sum2) )
|
|
||||||
|
|
||||||
@pytest.mark.s3select
|
|
||||||
def test_json_nullif_expressions():
|
|
||||||
|
|
||||||
json_obj = create_random_json_object(10000,10)
|
|
||||||
|
|
||||||
json_obj_name = get_random_string()
|
|
||||||
bucket_name = get_new_bucket_name()
|
|
||||||
|
|
||||||
upload_object(bucket_name,json_obj_name,json_obj)
|
|
||||||
|
|
||||||
res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where nullif(_1.c1,_1.c2) is null ;") ).replace("\n","")
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 = _1.c2 ;") ).replace("\n","")
|
|
||||||
|
|
||||||
s3select_assert_result( res_s3select_nullif, res_s3select)
|
|
||||||
|
|
||||||
res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select (nullif(_1.c1,_1.c2) is null) from s3object[*].root ;") ).replace("\n","")
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select (_1.c1 = _1.c2) from s3object[*].root ;") ).replace("\n","")
|
|
||||||
|
|
||||||
s3select_assert_result( res_s3select_nullif, res_s3select)
|
|
||||||
|
|
||||||
res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where not nullif(_1.c1,_1.c2) is null ;") ).replace("\n","")
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 != _1.c2 ;") ).replace("\n","")
|
|
||||||
|
|
||||||
s3select_assert_result( res_s3select_nullif, res_s3select)
|
|
||||||
|
|
||||||
res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select (nullif(_1.c1,_1.c2) is not null) from s3object[*].root ;") ).replace("\n","")
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select (_1.c1 != _1.c2) from s3object[*].root ;") ).replace("\n","")
|
|
||||||
|
|
||||||
s3select_assert_result( res_s3select_nullif, res_s3select)
|
|
||||||
|
|
||||||
res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where nullif(_1.c1,_1.c2) = _1.c1 ;") ).replace("\n","")
|
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 != _1.c2 ;") ).replace("\n","")
|
|
||||||
|
|
||||||
s3select_assert_result( res_s3select_nullif, res_s3select)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.s3select
|
@pytest.mark.s3select
|
||||||
def test_column_sum_min_max():
|
def test_column_sum_min_max():
|
||||||
|
@ -593,6 +494,96 @@ def test_column_sum_min_max():
|
||||||
|
|
||||||
s3select_assert_result( int(count)*4 , int(sum1)-int(sum2) )
|
s3select_assert_result( int(count)*4 , int(sum1)-int(sum2) )
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_csv_json_format_column_sum_min_max():
|
||||||
|
csv_obj = create_random_csv_object(10000,10)
|
||||||
|
|
||||||
|
csv_obj_name = get_random_string()
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_object(bucket_name,csv_obj_name,csv_obj)
|
||||||
|
|
||||||
|
csv_obj_name_2 = get_random_string()
|
||||||
|
bucket_name_2 = "testbuck2"
|
||||||
|
upload_object(bucket_name_2,csv_obj_name_2,csv_obj)
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,csv_obj_name,"select max(int(_1)) from s3object;","CSV","JSON")
|
||||||
|
list_int = create_list_of_int( 1 , csv_obj )
|
||||||
|
res_target = max( list_int )
|
||||||
|
|
||||||
|
s3select_assert_result(res_s3select, '{{"_1":{}}}\n'.format(res_target))
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_parquet_json_format_column_sum_min_max():
|
||||||
|
|
||||||
|
a = [random.randint(1, 10000) for _ in range(100)]
|
||||||
|
|
||||||
|
df3 = pd.DataFrame({'a': a})
|
||||||
|
|
||||||
|
table = pa.Table.from_pandas(df3, preserve_index=False)
|
||||||
|
obj = pa.BufferOutputStream()
|
||||||
|
pq.write_table(table, obj)
|
||||||
|
|
||||||
|
parquet_obj = obj.getvalue().to_pybytes()
|
||||||
|
|
||||||
|
parquet_obj_name = "4col.parquet"
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_parquet_object(bucket_name,parquet_obj_name,parquet_obj)
|
||||||
|
max_value = get_max_from_parquet_column(parquet_obj, 'a')
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,parquet_obj_name,'select max(a) from s3object ;',"PARQUET","JSON")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{{"_1":{}}}\n'.format(max_value))
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_json_column_sum_min_max():
|
||||||
|
csv_obj = create_random_csv_object(10,10)
|
||||||
|
|
||||||
|
json_obj = csv_to_json(csv_obj)
|
||||||
|
|
||||||
|
json_obj_name = get_random_string()
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_object(bucket_name,json_obj_name,json_obj)
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,json_obj_name,"select min(_1.c1) from s3object[*].root;","JSON","JSON")
|
||||||
|
list_int = create_list_of_int( 1 , csv_obj )
|
||||||
|
res_target = min( list_int )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{{"_1":{}}}\n'.format(res_target))
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,json_obj_name,"select min(_1.c4) from s3object[*].root;","JSON","JSON")
|
||||||
|
list_int = create_list_of_int( 4 , csv_obj )
|
||||||
|
res_target = min( list_int )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{{"_1":{}}}\n'.format(res_target))
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,json_obj_name,"select max(_1.c4) from s3object[*].root;","JSON","JSON")
|
||||||
|
list_int = create_list_of_int( 4 , csv_obj )
|
||||||
|
res_target = max( list_int )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{{"_1":{}}}\n'.format(res_target))
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,json_obj_name,"select max(_1.c7) from s3object[*].root;","JSON","JSON")
|
||||||
|
list_int = create_list_of_int( 7 , csv_obj )
|
||||||
|
res_target = max( list_int )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{{"_1":{}}}\n'.format(res_target))
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,json_obj_name,"select sum(_1.c4) from s3object[*].root;","JSON","JSON")
|
||||||
|
list_int = create_list_of_int( 4 , csv_obj )
|
||||||
|
res_target = sum( list_int )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{{"_1":{}}}\n'.format(res_target))
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,json_obj_name,"select sum(_1.c7) from s3object[*].root;","JSON","JSON")
|
||||||
|
list_int = create_list_of_int( 7 , csv_obj )
|
||||||
|
res_target = sum( list_int )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{{"_1":{}}}\n'.format(res_target))
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.s3select
|
@pytest.mark.s3select
|
||||||
def test_nullif_expressions():
|
def test_nullif_expressions():
|
||||||
|
|
||||||
|
@ -649,6 +640,90 @@ def test_nullif_expressions():
|
||||||
|
|
||||||
s3select_assert_result( res_s3select_nullif, res_s3select)
|
s3select_assert_result( res_s3select_nullif, res_s3select)
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_json_nullif_expressions():
|
||||||
|
|
||||||
|
json_obj = create_random_json_object(10000,10)
|
||||||
|
|
||||||
|
json_obj_name = get_random_string()
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_object(bucket_name,json_obj_name,json_obj)
|
||||||
|
|
||||||
|
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*].root where nullif(_1.c1,_1.c2) is null ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 = _1.c2 ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_nullif, res_s3select)
|
||||||
|
|
||||||
|
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select (nullif(_1.c1,_1.c2) is null) from s3object[*].root ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select (_1.c1 = _1.c2) from s3object[*].root ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_nullif, res_s3select)
|
||||||
|
|
||||||
|
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*].root where not nullif(_1.c1,_1.c2) is null ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 != _1.c2 ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_nullif, res_s3select)
|
||||||
|
|
||||||
|
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select (nullif(_1.c1,_1.c2) is not null) from s3object[*].root ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select (_1.c1 != _1.c2) from s3object[*].root ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_nullif, res_s3select)
|
||||||
|
|
||||||
|
res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*].root where nullif(_1.c1,_1.c2) = _1.c1 ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 != _1.c2 ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_nullif, res_s3select)
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_parquet_nullif_expressions():
|
||||||
|
|
||||||
|
a = [random.randint(1, 10000) for _ in range(100)]
|
||||||
|
b = [random.randint(1, 10000) for _ in range(100)]
|
||||||
|
|
||||||
|
df3 = pd.DataFrame({'a': a,'b':b})
|
||||||
|
|
||||||
|
table = pa.Table.from_pandas(df3, preserve_index=False)
|
||||||
|
obj = pa.BufferOutputStream()
|
||||||
|
pq.write_table(table, obj)
|
||||||
|
|
||||||
|
parquet_obj = obj.getvalue().to_pybytes()
|
||||||
|
|
||||||
|
parquet_obj_name = "2col.parquet"
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_parquet_object(bucket_name,parquet_obj_name,parquet_obj)
|
||||||
|
|
||||||
|
res_s3select_nullif = run_s3select(bucket_name,parquet_obj_name,"select count(0) from s3object where nullif(a, b) is null ;","PARQUET")
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,parquet_obj_name,"select count(0) from s3object where a=b ;","PARQUET")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_nullif, res_s3select)
|
||||||
|
|
||||||
|
a = [random.uniform(1.0, 10000.0) for _ in range(100)]
|
||||||
|
b = [random.uniform(1.0, 10000.0) for _ in range(100)]
|
||||||
|
|
||||||
|
df3 = pd.DataFrame({'a': a, 'b': b})
|
||||||
|
|
||||||
|
table = pa.Table.from_pandas(df3, preserve_index=False)
|
||||||
|
obj = pa.BufferOutputStream()
|
||||||
|
pq.write_table(table, obj)
|
||||||
|
|
||||||
|
parquet_obj = obj.getvalue().to_pybytes()
|
||||||
|
|
||||||
|
upload_parquet_object(bucket_name,parquet_obj_name,parquet_obj)
|
||||||
|
|
||||||
|
res_s3select_nullif = run_s3select(bucket_name,parquet_obj_name,"select count(0) from s3object where nullif(a, b) is null ;","PARQUET")
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,parquet_obj_name,"select count(0) from s3object where a=b ;","PARQUET")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_nullif, res_s3select)
|
||||||
|
|
||||||
@pytest.mark.s3select
|
@pytest.mark.s3select
|
||||||
def test_nulliftrue_expressions():
|
def test_nulliftrue_expressions():
|
||||||
|
|
||||||
|
@ -699,6 +774,28 @@ def test_is_not_null_expressions():
|
||||||
|
|
||||||
s3select_assert_result( res_s3select_null, res_s3select)
|
s3select_assert_result( res_s3select_null, res_s3select)
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_json_is_not_null_expressions():
|
||||||
|
|
||||||
|
json_obj = create_random_json_object(10000,10)
|
||||||
|
|
||||||
|
json_obj_name = get_random_string()
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_object(bucket_name,json_obj_name,json_obj)
|
||||||
|
|
||||||
|
res_s3select_null = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(*) from s3object[*].root where nullif(_1.c1,_1.c2) is not null ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(*) from s3object[*].root where _1.c1 != _1.c2 ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_null, res_s3select)
|
||||||
|
|
||||||
|
res_s3select_null = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(*) from s3object[*].root where (nullif(_1.c1,_1.c1) and _1.c1 = _1.c2) is not null ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,"select count(*) from s3object[*].root where _1.c1 != _1.c2 ;","JSON","JSON") ).replace("\n","")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_null, res_s3select)
|
||||||
|
|
||||||
@pytest.mark.s3select
|
@pytest.mark.s3select
|
||||||
def test_lowerupper_expressions():
|
def test_lowerupper_expressions():
|
||||||
|
|
||||||
|
@ -717,6 +814,43 @@ def test_lowerupper_expressions():
|
||||||
|
|
||||||
s3select_assert_result( res_s3select, "AB12CD$$")
|
s3select_assert_result( res_s3select, "AB12CD$$")
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_json_lowerupper_expressions():
|
||||||
|
|
||||||
|
json_obj = create_random_json_object(1,10)
|
||||||
|
|
||||||
|
json_obj_name = get_random_string()
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_object(bucket_name,json_obj_name,json_obj)
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,json_obj_name,'select lower("AB12cd$$") from s3object[*] ;',"JSON","JSON")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{"_1":ab12cd$$}\n')
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,json_obj_name,'select upper("ab12CD$$") from s3object[*] ;',"JSON","JSON")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{"_1":AB12CD$$}\n')
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_parquet_lowerupper_expressions():
|
||||||
|
|
||||||
|
parquet_obj = create_parquet_object(1)
|
||||||
|
|
||||||
|
parquet_obj_name = "4col.parquet"
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_parquet_object(bucket_name,parquet_obj_name,parquet_obj)
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,parquet_obj_name,'select lower("AB12cd$$") from s3object ;',"PARQUET","JSON")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{"_1":ab12cd$$}\n')
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,parquet_obj_name,'select upper("ab12CD$$") from s3object ;',"PARQUET","JSON")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select, '{"_1":AB12CD$$}\n')
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.s3select
|
@pytest.mark.s3select
|
||||||
def test_in_expressions():
|
def test_in_expressions():
|
||||||
|
|
||||||
|
@ -922,6 +1056,70 @@ def test_like_expressions():
|
||||||
|
|
||||||
s3select_assert_result( res_s3select_like, res_s3select )
|
s3select_assert_result( res_s3select_like, res_s3select )
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_json_like_expressions():
|
||||||
|
|
||||||
|
csv_obj = create_random_csv_object_string(1000,10)
|
||||||
|
json_obj = csv_to_json(csv_obj)
|
||||||
|
|
||||||
|
json_obj_name = get_random_string()
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_object(bucket_name,json_obj_name,json_obj)
|
||||||
|
|
||||||
|
res_s3select_like = remove_xml_tags_from_result(run_s3select(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 like \"%aeio%\";","JSON","JSON")).replace("\n","")
|
||||||
|
|
||||||
|
res_s3select = remove_xml_tags_from_result(run_s3select(bucket_name,json_obj_name, "select count(0) from s3object[*].root where substring(_1.c1,11,4) = \"aeio\" ;","JSON","JSON")).replace("\n","")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_like, res_s3select )
|
||||||
|
|
||||||
|
res_s3select_like = run_s3select(bucket_name,json_obj_name,'select (_1.c1 like "%aeio%") from s3object[*].root ;',"JSON","JSON")
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,json_obj_name, 'select (substring(_1.c1,11,4) = "aeio") from s3object[*].root ;',"JSON","JSON")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_like, res_s3select )
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_parquet_like_expressions():
|
||||||
|
|
||||||
|
rows = 1000
|
||||||
|
columns = 3
|
||||||
|
|
||||||
|
data = {f'col_{i+1}': [] for i in range(columns)}
|
||||||
|
|
||||||
|
for _ in range(rows):
|
||||||
|
for col in data:
|
||||||
|
if random.randint(0, 9) == 5:
|
||||||
|
data[col].append(''.join(random.choice(string.ascii_letters) for _ in range(10)) + "aeiou")
|
||||||
|
else:
|
||||||
|
data[col].append(''.join("cbcd" + random.choice(string.ascii_letters) for _ in range(10)) + "vwxyzzvwxyz")
|
||||||
|
|
||||||
|
df = pd.DataFrame(data)
|
||||||
|
|
||||||
|
table = pa.Table.from_pandas(df, preserve_index=False)
|
||||||
|
|
||||||
|
obj = pa.BufferOutputStream()
|
||||||
|
pq.write_table(table, obj)
|
||||||
|
|
||||||
|
parquet_obj = obj.getvalue().to_pybytes()
|
||||||
|
|
||||||
|
parquet_obj_name = parquet_obj_name = "3col.parquet"
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_parquet_object(bucket_name,parquet_obj_name,parquet_obj)
|
||||||
|
|
||||||
|
res_s3select_like = run_s3select(bucket_name,parquet_obj_name,"select count(0) from s3object where col_1 like \"%aeio%\";","PARQUET")
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,parquet_obj_name, "select count(0) from s3object where substring(col_1,11,4) = \"aeio\" ;","PARQUET")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_like, res_s3select )
|
||||||
|
|
||||||
|
res_s3select_like = run_s3select(bucket_name,parquet_obj_name,'select (col_1 like "%aeio%") from s3object ;',"PARQUET")
|
||||||
|
|
||||||
|
res_s3select = run_s3select(bucket_name,parquet_obj_name, 'select (substring(col_1,11,4) = "aeio") from s3object ;',"PARQUET")
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_like, res_s3select )
|
||||||
|
|
||||||
@pytest.mark.s3select
|
@pytest.mark.s3select
|
||||||
def test_truefalselike_expressions():
|
def test_truefalselike_expressions():
|
||||||
|
|
||||||
|
@ -1241,6 +1439,38 @@ def test_true_false_datetime():
|
||||||
|
|
||||||
s3select_assert_result( res_s3select_date_time_utcnow, res_s3select_count)
|
s3select_assert_result( res_s3select_date_time_utcnow, res_s3select_count)
|
||||||
|
|
||||||
|
@pytest.mark.s3select
|
||||||
|
def test_json_true_false_datetime():
|
||||||
|
|
||||||
|
csv_obj = create_csv_object_for_datetime(10000,1)
|
||||||
|
json_obj = csv_to_json(csv_obj)
|
||||||
|
|
||||||
|
json_obj_name = get_random_string()
|
||||||
|
bucket_name = get_new_bucket_name()
|
||||||
|
|
||||||
|
upload_object(bucket_name,json_obj_name,json_obj)
|
||||||
|
|
||||||
|
res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,'select count(0) from s3object[*].root where (extract(year from to_timestamp(_1.c1)) > 1950) = true and (extract(year from to_timestamp(_1.c1)) < 1960) = true;',"JSON","JSON") )
|
||||||
|
|
||||||
|
res_s3select_substring = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,'select count(0) from s3object[*].root where int(substring(_1.c1,1,4))>1950 and int(substring(_1.c1,1,4))<1960;',"JSON","JSON") )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_date_time, res_s3select_substring)
|
||||||
|
|
||||||
|
res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,'select count(0) from s3object[*].root where (date_diff(month,to_timestamp(_1.c1),date_add(month,2,to_timestamp(_1.c1)) ) = 2) = true;',"JSON","JSON") )
|
||||||
|
|
||||||
|
res_s3select_count = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,'select count(0) from s3object[*].root;',"JSON","JSON") )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_date_time, res_s3select_count)
|
||||||
|
|
||||||
|
res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,'select count(0) from s3object[*].root where (date_diff(year,to_timestamp(_1.c1),date_add(day, 366 ,to_timestamp(_1.c1))) = 1) = true ;',"JSON","JSON") )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_date_time, res_s3select_count)
|
||||||
|
|
||||||
|
# validate that utcnow is integrate correctly with other date-time functions
|
||||||
|
res_s3select_date_time_utcnow = remove_xml_tags_from_result( run_s3select(bucket_name,json_obj_name,'select count(0) from s3object[*].root where (date_diff(hour,utcnow(),date_add(day,1,utcnow())) = 24) = true ;',"JSON","JSON") )
|
||||||
|
|
||||||
|
s3select_assert_result( res_s3select_date_time_utcnow, res_s3select_count)
|
||||||
|
|
||||||
@pytest.mark.s3select
|
@pytest.mark.s3select
|
||||||
def test_csv_parser():
|
def test_csv_parser():
|
||||||
|
|
||||||
|
@ -1295,13 +1525,13 @@ def test_csv_definition():
|
||||||
upload_object(bucket_name,csv_obj_name,csv_obj)
|
upload_object(bucket_name,csv_obj_name,csv_obj)
|
||||||
|
|
||||||
# purpose of tests is to parse correctly input with different csv defintions
|
# purpose of tests is to parse correctly input with different csv defintions
|
||||||
res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object;","|","\t") ).replace(",","")
|
res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object;",column_delim="|",row_delim="\t") ).replace(",","")
|
||||||
|
|
||||||
s3select_assert_result( number_of_rows, int(res))
|
s3select_assert_result( number_of_rows, int(res))
|
||||||
|
|
||||||
# assert is according to radom-csv function
|
# assert is according to radom-csv function
|
||||||
# purpose of test is validate that tokens are processed correctly
|
# purpose of test is validate that tokens are processed correctly
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)),max(int(_2)),min(int(_3))+1 from s3object;","|","\t") ).replace("\n","")
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)),max(int(_2)),min(int(_3))+1 from s3object;",column_delim="|",row_delim="\t") ).replace("\n","")
|
||||||
|
|
||||||
min_1 = min ( create_list_of_int( 1 , csv_obj , "|","\t") )
|
min_1 = min ( create_list_of_int( 1 , csv_obj , "|","\t") )
|
||||||
max_2 = max ( create_list_of_int( 2 , csv_obj , "|","\t") )
|
max_2 = max ( create_list_of_int( 2 , csv_obj , "|","\t") )
|
||||||
|
@ -1617,7 +1847,7 @@ def test_output_serial_expressions():
|
||||||
|
|
||||||
upload_object(bucket_name,csv_obj_name,csv_obj)
|
upload_object(bucket_name,csv_obj_name,csv_obj)
|
||||||
|
|
||||||
res_s3select_1 = remove_xml_tags_from_result( run_s3select_output(bucket_name,csv_obj_name,"select _1, _2 from s3object where nullif(_1,_2) is null ;", "ALWAYS") ).replace("\n",",").replace(",","")
|
res_s3select_1 = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1, _2 from s3object where nullif(_1,_2) is null ;", quot_field="ALWAYS") ).replace("\n",",").replace(",","")
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1, _2 from s3object where _1 = _2 ;") ).replace("\n",",")
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1, _2 from s3object where _1 = _2 ;") ).replace("\n",",")
|
||||||
|
|
||||||
|
@ -1630,7 +1860,7 @@ def test_output_serial_expressions():
|
||||||
s3select_assert_result( '""'+res_s3select_1+'""', res_s3select_final)
|
s3select_assert_result( '""'+res_s3select_1+'""', res_s3select_final)
|
||||||
|
|
||||||
|
|
||||||
res_s3select_in = remove_xml_tags_from_result( run_s3select_output(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(int(_2)));', "ASNEEDED", '$', '#')).replace("\n","#") ## TODO why \n appears in output?
|
res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(int(_2)));', quot_field="ASNEEDED", op_column_delim='$', op_row_delim='#')).replace("\n","#") ## TODO why \n appears in output?
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = int(_2);')).replace("\n","#")
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = int(_2);')).replace("\n","#")
|
||||||
|
|
||||||
|
@ -1644,7 +1874,7 @@ def test_output_serial_expressions():
|
||||||
s3select_assert_result(res_s3select_in , res_s3select_final )
|
s3select_assert_result(res_s3select_in , res_s3select_final )
|
||||||
|
|
||||||
|
|
||||||
res_s3select_quot = remove_xml_tags_from_result( run_s3select_output(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(int(_2)));', "ALWAYS", '$', '#')).replace("\n","")
|
res_s3select_quot = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(int(_2)));', quot_field="ALWAYS", op_column_delim='$', op_row_delim='#')).replace("\n","")
|
||||||
|
|
||||||
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = int(_2);')).replace("\n","#")
|
res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = int(_2);')).replace("\n","#")
|
||||||
res_s3select_list = res_s3select.split('#')
|
res_s3select_list = res_s3select.split('#')
|
||||||
|
|
Loading…
Reference in a new issue