diff --git a/s3tests_boto3/functional/test_s3select.py b/s3tests_boto3/functional/test_s3select.py new file mode 100644 index 0000000..7570238 --- /dev/null +++ b/s3tests_boto3/functional/test_s3select.py @@ -0,0 +1,438 @@ +import nose +import random +from nose.plugins.attrib import attr + + +from . import ( + get_client + ) + +region_name = '' + +# recurssion function for generating arithmetical expression +def random_expr(depth): + # depth is the complexity of expression + if depth==1 : + return str(int(random.random() * 100) + 1)+".0" + return '(' + random_expr(depth-1) + random.choice(['+','-','*','/']) + random_expr(depth-1) + ')' + + +def generate_s3select_where_clause(bucket_name,obj_name): + + a=random_expr(4) + b=random_expr(4) + s=random.choice([ '<','>','==','<=','>=','!=' ]) + + try: + eval( a ) + eval( b ) + except ZeroDivisionError: + return + + # generate s3select statement using generated randome expression + # upon count(0)>0 it means true for the where clause expression + # the python-engine {eval( conditional expression )} should return same boolean result. + s3select_stmt = "select count(0) from stdin where " + a + s + b + ";" + + res = remove_xml_tags_from_result( run_s3select(bucket_name,obj_name,s3select_stmt) ).replace(",","") + + nose.tools.assert_equal(int(res)>0 , eval( a + s + b )) + +def generate_s3select_expression_projection(bucket_name,obj_name): + + # generate s3select statement using generated randome expression + # statement return an arithmetical result for the generated expression. + # the same expression is evaluated by python-engine, result should be close enough(Epsilon) + + e = random_expr( 4 ) + + try: + eval( e ) + except ZeroDivisionError: + return + + if eval( e ) == 0: + return + + res = remove_xml_tags_from_result( run_s3select(bucket_name,obj_name,"select " + e + " from stdin;",) ).replace(",","") + + # accuracy level + epsilon = float(0.000001) + + # both results should be close (epsilon) + assert (1 - (float(res.split("\n")[1]) / eval( e )) ) < epsilon + +@attr('s3select') +def test_generate_where_clause(): + + # create small csv file for testing the random expressions + single_line_csv = create_random_csv_object(1,1) + bucket_name = "test" + obj_name = "single_line_csv.csv" + upload_csv_object(bucket_name,obj_name,single_line_csv) + + for _ in range(100): + generate_s3select_where_clause(bucket_name,obj_name) + +@attr('s3select') +def test_generate_projection(): + + # create small csv file for testing the random expressions + single_line_csv = create_random_csv_object(1,1) + bucket_name = "test" + obj_name = "single_line_csv.csv" + upload_csv_object(bucket_name,obj_name,single_line_csv) + + for _ in range(100): + generate_s3select_expression_projection(bucket_name,obj_name) + + +def create_csv_object_for_datetime(rows,columns): + result = "" + for _ in range(rows): + row = "" + for _ in range(columns): + row = row + "{}{:02d}{:02d}-{:02d}{:02d}{:02d},".format(random.randint(0,100)+1900,random.randint(1,12),random.randint(1,28),random.randint(0,23),random.randint(0,59),random.randint(0,59),) + result += row + "\n" + + return result + +def create_random_csv_object(rows,columns,col_delim=",",record_delim="\n",csv_schema=""): + result = "" + if len(csv_schema)>0 : + result = csv_schema + record_delim + + for _ in range(rows): + row = "" + for _ in range(columns): + row = row + "{}{}".format(random.randint(0,1000),col_delim) + result += row + record_delim + + return result + + +def upload_csv_object(bucket_name,new_key,obj): + + client = get_client() + client.create_bucket(Bucket=bucket_name) + client.put_object(Bucket=bucket_name, Key=new_key, Body=obj) + +def run_s3select(bucket,key,query,column_delim=",",row_delim="\n",quot_char='"',esc_char='\\',csv_header_info="NONE"): + + s3 = get_client() + + r = s3.select_object_content( + Bucket=bucket, + Key=key, + ExpressionType='SQL', + InputSerialization = {"CSV": {"RecordDelimiter" : row_delim, "FieldDelimiter" : column_delim,"QuoteEscapeCharacter": esc_char, "QuoteCharacter": quot_char, "FileHeaderInfo": csv_header_info}, "CompressionType": "NONE"}, + OutputSerialization = {"CSV": {}}, + Expression=query,) + + result = "" + for event in r['Payload']: + if 'Records' in event: + records = event['Records']['Payload'].decode('utf-8') + result += records + + return result + +def remove_xml_tags_from_result(obj): + result = "" + for rec in obj.split("\n"): + if(rec.find("Payload")>0 or rec.find("Records")>0): + continue + result += rec + "\n" # remove by split + + return result + +def create_list_of_int(column_pos,obj,field_split=",",row_split="\n"): + + list_of_int = [] + for rec in obj.split(row_split): + col_num = 1 + if ( len(rec) == 0): + continue + for col in rec.split(field_split): + if (col_num == column_pos): + list_of_int.append(int(col)) + col_num+=1 + + return list_of_int + +@attr('s3select') +def test_count_operation(): + csv_obj_name = "csv_star_oper" + bucket_name = "test" + num_of_rows = 10 + obj_to_load = create_random_csv_object(num_of_rows,10) + upload_csv_object(bucket_name,csv_obj_name,obj_to_load) + res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin;") ).replace(",","") + + nose.tools.assert_equal( num_of_rows, int( res )) + +@attr('s3select') +def test_column_sum_min_max(): + csv_obj = create_random_csv_object(10000,10) + + csv_obj_name = "csv_10000x10" + bucket_name = "test" + upload_csv_object(bucket_name,csv_obj_name,csv_obj) + + csv_obj_name = "csv_10000x10" + bucket_name_2 = "testbuck2" + upload_csv_object(bucket_name_2,csv_obj_name,csv_obj) + + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)) from stdin;") ).replace(",","") + list_int = create_list_of_int( 1 , csv_obj ) + res_target = min( list_int ) + + nose.tools.assert_equal( int(res_s3select), int(res_target)) + + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_4)) from stdin;") ).replace(",","") + list_int = create_list_of_int( 4 , csv_obj ) + res_target = min( list_int ) + + nose.tools.assert_equal( int(res_s3select), int(res_target)) + + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select max(int(_4)) from stdin;") ).replace(",","") + list_int = create_list_of_int( 4 , csv_obj ) + res_target = max( list_int ) + + nose.tools.assert_equal( int(res_s3select), int(res_target)) + + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select max(int(_7)) from stdin;") ).replace(",","") + list_int = create_list_of_int( 7 , csv_obj ) + res_target = max( list_int ) + + nose.tools.assert_equal( int(res_s3select), int(res_target)) + + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select sum(int(_4)) from stdin;") ).replace(",","") + list_int = create_list_of_int( 4 , csv_obj ) + res_target = sum( list_int ) + + nose.tools.assert_equal( int(res_s3select), int(res_target)) + + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select sum(int(_7)) from stdin;") ).replace(",","") + list_int = create_list_of_int( 7 , csv_obj ) + res_target = sum( list_int ) + + nose.tools.assert_equal( int(res_s3select) , int(res_target) ) + + # the following queries, validates on *random* input an *accurate* relation between condition result,sum operation and count operation. + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name_2,csv_obj_name,"select count(0),sum(int(_1)),sum(int(_2)) from stdin where (int(_1)-int(_2)) == 2;" ) ) + count,sum1,sum2,d = res_s3select.split(",") + + nose.tools.assert_equal( int(count)*2 , int(sum1)-int(sum2 ) ) + + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0),sum(int(_1)),sum(int(_2)) from stdin where (int(_1)-int(_2)) == 4;" ) ) + count,sum1,sum2,d = res_s3select.split(",") + + nose.tools.assert_equal( int(count)*4 , int(sum1)-int(sum2) ) + +@attr('s3select') +def test_complex_expressions(): + + # purpose of test: engine is process correctly several projections containing aggregation-functions + csv_obj = create_random_csv_object(10000,10) + + csv_obj_name = "csv_100000x10" + bucket_name = "test" + upload_csv_object(bucket_name,csv_obj_name,csv_obj) + + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)),max(int(_2)),min(int(_3))+1 from stdin;")).replace("\n","") + + min_1 = min ( create_list_of_int( 1 , csv_obj ) ) + max_2 = max ( create_list_of_int( 2 , csv_obj ) ) + min_3 = min ( create_list_of_int( 3 , csv_obj ) ) + 1 + + __res = "{},{},{},".format(min_1,max_2,min_3) + + # assert is according to radom-csv function + nose.tools.assert_equal( res_s3select, __res ) + + # purpose of test that all where conditions create the same group of values, thus same result + res_s3select_substr = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select min(int(_2)),max(int(_2)) from stdin where substr(_2,1,1) == "1"')).replace("\n","") + + res_s3select_between_numbers = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select min(int(_2)),max(int(_2)) from stdin where int(_2)>=100 and int(_2)<200')).replace("\n","") + + res_s3select_eq_modolu = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select min(int(_2)),max(int(_2)) from stdin where int(_2)/100 == 1 or int(_2)/10 == 1 or int(_2) == 1')).replace("\n","") + + nose.tools.assert_equal( res_s3select_substr, res_s3select_between_numbers) + + nose.tools.assert_equal( res_s3select_between_numbers, res_s3select_eq_modolu) + +@attr('s3select') +def test_alias(): + + # purpose: test is comparing result of exactly the same queries , one with alias the other without. + # this test is setting alias on 3 projections, the third projection is using other projection alias, also the where clause is using aliases + # the test validate that where-clause and projections are executing aliases correctly, bare in mind that each alias has its own cache, + # and that cache need to be invalidate per new row. + + csv_obj = create_random_csv_object(10000,10) + + csv_obj_name = "csv_10000x10" + bucket_name = "test" + upload_csv_object(bucket_name,csv_obj_name,csv_obj) + + res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(_1) as a1, int(_2) as a2 , (a1+a2) as a3 from stdin where a3>100 and a3<300;") ).replace(",","") + + res_s3select_no_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(_1),int(_2),int(_1)+int(_2) from stdin where (int(_1)+int(_2))>100 and (int(_1)+int(_2))<300;") ).replace(",","") + + nose.tools.assert_equal( res_s3select_alias, res_s3select_no_alias) + + +@attr('s3select') +def test_alias_cyclic_refernce(): + + number_of_rows = 10000 + + # purpose of test is to validate the s3select-engine is able to detect a cyclic reference to alias. + csv_obj = create_random_csv_object(number_of_rows,10) + + csv_obj_name = "csv_10000x10" + bucket_name = "test" + upload_csv_object(bucket_name,csv_obj_name,csv_obj) + + res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(_1) as a1,int(_2) as a2, a1+a4 as a3, a5+a1 as a4, int(_3)+a3 as a5 from stdin;") ) + + find_res = res_s3select_alias.find("number of calls exceed maximum size, probably a cyclic reference to alias") + + assert int(find_res) >= 0 + +@attr('s3select') +def test_datetime(): + + # purpose of test is to validate date-time functionality is correct, + # by creating same groups with different functions (nested-calls) ,which later produce the same result + + csv_obj = create_csv_object_for_datetime(10000,1) + + csv_obj_name = "csv_datetime_10000x10" + bucket_name = "test" + + upload_csv_object(bucket_name,csv_obj_name,csv_obj) + + res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from stdin where extract("year",timestamp(_1)) > 1950 and extract("year",timestamp(_1)) < 1960;') ) + + res_s3select_substr = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from stdin where int(substr(_1,1,4))>1950 and int(substr(_1,1,4))<1960;') ) + + nose.tools.assert_equal( res_s3select_date_time, res_s3select_substr) + + res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from stdin where datediff("month",timestamp(_1),dateadd("month",2,timestamp(_1)) ) == 2;') ) + + res_s3select_count = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from stdin;') ) + + nose.tools.assert_equal( res_s3select_date_time, res_s3select_count) + + res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from stdin where datediff("year",timestamp(_1),dateadd("day", 366 ,timestamp(_1))) == 1 ;') ) + + nose.tools.assert_equal( res_s3select_date_time, res_s3select_count) + + # validate that utcnow is integrate correctly with other date-time functions + res_s3select_date_time_utcnow = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from stdin where datediff("hours",utcnow(),dateadd("day",1,utcnow())) == 24 ;') ) + + nose.tools.assert_equal( res_s3select_date_time_utcnow, res_s3select_count) + +@attr('s3select') +def test_csv_parser(): + + # purpuse: test default csv values(, \n " \ ), return value may contain meta-char + # NOTE: should note that default meta-char for s3select are also for python, thus for one example double \ is mandatory + + csv_obj = ',first,,,second,third="c31,c32,c33",forth="1,2,3,4",fifth="my_string=\\"any_value\\" , my_other_string=\\"aaaa,bbb\\" ",' + "\n" + csv_obj_name = "csv_one_line" + bucket_name = "test" + + upload_csv_object(bucket_name,csv_obj_name,csv_obj) + + # return value contain comma{,} + res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _6 from stdin;") ).replace("\n","") + nose.tools.assert_equal( res_s3select_alias, 'third="c31,c32,c33",') + + # return value contain comma{,} + res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _7 from stdin;") ).replace("\n","") + nose.tools.assert_equal( res_s3select_alias, 'forth="1,2,3,4",') + + # return value contain comma{,}{"}, escape-rule{\} by-pass quote{"} , the escape{\} is removed. + res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _8 from stdin;") ).replace("\n","") + nose.tools.assert_equal( res_s3select_alias, 'fifth="my_string="any_value" , my_other_string="aaaa,bbb" ",') + + # return NULL as first token + res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1 from stdin;") ).replace("\n","") + nose.tools.assert_equal( res_s3select_alias, ',') + + # return NULL in the middle of line + res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _3 from stdin;") ).replace("\n","") + nose.tools.assert_equal( res_s3select_alias, ',') + + # return NULL in the middle of line (successive) + res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _4 from stdin;") ).replace("\n","") + nose.tools.assert_equal( res_s3select_alias, ',') + + # return NULL at the end line + res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _9 from stdin;") ).replace("\n","") + nose.tools.assert_equal( res_s3select_alias, ',') + +@attr('s3select') +def test_csv_definition(): + + number_of_rows = 10000 + + #create object with pipe-sign as field separator and tab as row delimiter. + csv_obj = create_random_csv_object(number_of_rows,10,"|","\t") + + csv_obj_name = "csv_pipeSign_tab_eol" + bucket_name = "test" + + upload_csv_object(bucket_name,csv_obj_name,csv_obj) + + # purpose of tests is to parse correctly input with different csv defintions + res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin;","|","\t") ).replace(",","") + + nose.tools.assert_equal( number_of_rows, int(res)) + + # assert is according to radom-csv function + # purpose of test is validate that tokens are processed correctly + res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)),max(int(_2)),min(int(_3))+1 from stdin;","|","\t") ).replace("\n","") + + min_1 = min ( create_list_of_int( 1 , csv_obj , "|","\t") ) + max_2 = max ( create_list_of_int( 2 , csv_obj , "|","\t") ) + min_3 = min ( create_list_of_int( 3 , csv_obj , "|","\t") ) + 1 + + __res = "{},{},{},".format(min_1,max_2,min_3) + nose.tools.assert_equal( res_s3select, __res ) + + +@attr('s3select') +def test_schema_definition(): + + number_of_rows = 10000 + + # purpose of test is to validate functionality using csv header info + csv_obj = create_random_csv_object(number_of_rows,10,csv_schema="c1,c2,c3,c4,c5,c6,c7,c8,c9,c10") + + csv_obj_name = "csv_with_header_info" + bucket_name = "test" + + upload_csv_object(bucket_name,csv_obj_name,csv_obj) + + # ignoring the schema on first line and retrieve using generic column number + res_ignore = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1,_3 from stdin;",csv_header_info="IGNORE") ).replace("\n","") + + # using the scheme on first line, query is using the attach schema + res_use = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select c1,c3 from stdin;",csv_header_info="USE") ).replace("\n","") + + # result of both queries should be the same + nose.tools.assert_equal( res_ignore, res_use) + + # using column-name not exist in schema + res_multiple_defintion = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select c1,c10,int(c11) from stdin;",csv_header_info="USE") ).replace("\n","") + + assert res_multiple_defintion.find("alias {c11} or column not exist in schema") > 0 + + # alias-name is identical to column-name + res_multiple_defintion = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(c1)+int(c2) as c4,c4 from stdin;",csv_header_info="USE") ).replace("\n","") + + assert res_multiple_defintion.find("multiple definition of column {c4} as schema-column and alias") > 0