// Copyright 2018 (c) NSPCC // // Package gf127 implements the GF(2^127) arithmetic // modulo reduction polynomial x^127 + x^63 + 1 . // This is rather straight-forward re-implementation of C library // available here https://github.com/srijs/hwsl2-core . // Interfaces are highly influenced by math/big . package gf127 import ( "encoding/binary" "encoding/hex" "errors" "math/bits" ) // GF127 represents element of GF(2^127) type GF127 [2]uint64 const ( msb64 = 0x8000000000000000 byteSize = 16 ) var ( // x127x63 represents x^127 + x^63. Used in assembly file. x127x63 = GF127{msb64, msb64} // x126x631 is reduction polynomial x^127+x^63+1 x127x631 = GF127{msb64 + 1, msb64} ) // New constructs new element of GF(2^127) as hi*x^64 + lo. // It is assumed that hi has zero MSB. func New(lo, hi uint64) *GF127 { return &GF127{lo, hi} } // String returns hex-encoded representation, starting with MSB. func (c *GF127) String() string { return hex.EncodeToString(c.ByteArray()) } // Equals checks if two reduced (zero MSB) elements of GF(2^127) are equal func (c *GF127) Equals(b *GF127) bool { return c[0] == b[0] && c[1] == b[1] } // ByteArray represents element of GF(2^127) as byte array of length 16. func (c *GF127) ByteArray() (buf []byte) { buf = make([]byte, 16) binary.BigEndian.PutUint64(buf[:8], c[1]) binary.BigEndian.PutUint64(buf[8:], c[0]) return } // MarshalBinary implements encoding.BinaryMarshaler. func (c *GF127) MarshalBinary() (data []byte, err error) { return c.ByteArray(), nil } // UnmarshalBinary implements encoding.BinaryUnmarshaler. func (c *GF127) UnmarshalBinary(data []byte) error { if len(data) != byteSize { return errors.New("data must be 16-bytes long") } c[0] = binary.BigEndian.Uint64(data[8:]) c[1] = binary.BigEndian.Uint64(data[:8]) if c[1]&msb64 != 0 { return errors.New("MSB must be zero") } return nil } // Inv sets b to a^-1 // Algorithm is based on Extended Euclidean Algorithm // and is described by Hankerson, Hernandez, Menezes in // https://link.springer.com/content/pdf/10.1007/3-540-44499-8_1.pdf func Inv(a, b *GF127) { var ( v = x127x631 u = *a c, d = &GF127{1, 0}, &GF127{0, 0} t = new(GF127) x *GF127 ) // degree of polynomial is a position of most significant bit for du, dv := msb(&u), msb(&v); du != 0; du, dv = msb(&u), msb(&v) { if du < dv { v, u = u, v dv, du = du, dv d, c = c, d } x = xN(du - dv) Mul(x, &v, t) Add(&u, t, &u) // becasuse mul performs reduction on t, we need // manually reduce u at first step if msb(&u) == 127 { Add(&u, &x127x63, &u) Add(&u, &GF127{1, 0}, &u) } Mul(x, d, t) Add(c, t, c) } *b = *c } func xN(n int) *GF127 { if n < 64 { return &GF127{1 << uint(n), 0} } return &GF127{0, 1 << (uint(n) >> 8)} } func msb(a *GF127) (x int) { x = bits.LeadingZeros64(a[1]) if x == 64 { x = bits.LeadingZeros64(a[0]) + 64 } return 127 - x } // Mul sets c to the product a*b and returns c. func (c *GF127) Mul(a, b *GF127) *GF127 { Mul(a, b, c) return c } // Add sets c to the sum a+b and returns c. func (c *GF127) Add(a, b *GF127) *GF127 { Add(a, b, c) return c } // Mul1 copies a to b. func Mul1(a, b *GF127) { b[0] = a[0] b[1] = a[1] } // And sets c to a & b (bitwise-and). func And(a, b, c *GF127) { c[0] = a[0] & b[0] c[1] = a[1] & b[1] } // Add sets c to a+b. func Add(a, b, c *GF127) // Mul sets c to a*b. func Mul(a, b, c *GF127) // Mul10 sets y to a*x. func Mul10(a, b *GF127) // Mul11 sets y to a*(x+1). func Mul11(a, b *GF127)