// Copyright 2018 (c) NSPCC // // Package tz implements general Tillich-Zemo package tz import ( "errors" "hash" "math" "github.com/nspcc-dev/tzhash/gf127" ) const ( hashSize = 64 hashBlockSize = 128 ) type digest struct { x [4]gf127.GF127 } // type assertion var _ hash.Hash = new(digest) var ( minmax = [2]gf127.GF127{{0, 0}, {math.MaxUint64, math.MaxUint64}} x127x63 = gf127.GF127{1 << 63, 1 << 63} ) // New returns a new hash.Hash computing the Tillich-Zémor checksum. func New() hash.Hash { d := new(digest) d.Reset() return d } func (d *digest) Sum(in []byte) []byte { // Make a copy of d so that caller can keep writing and summing. d0 := *d h := d0.checkSum() return append(in, h[:]...) } func (d *digest) checkSum() [hashSize]byte { return d.byteArray() } func (d *digest) byteArray() (b [hashSize]byte) { var t []byte for i := 0; i < 4; i++ { t = d.x[i].ByteArray() copy(b[i*16:], t) } return } func (d *digest) Reset() { d.x[0] = gf127.GF127{1, 0} d.x[1] = gf127.GF127{0, 0} d.x[2] = gf127.GF127{0, 0} d.x[3] = gf127.GF127{1, 0} } func (d *digest) Write(data []byte) (n int, err error) { n = len(data) for _, b := range data { mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>7)&1]) mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>6)&1]) mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>5)&1]) mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>4)&1]) mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>3)&1]) mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>2)&1]) mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>1)&1]) mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>0)&1]) } return } func (d *digest) Size() int { return hashSize } func (d *digest) BlockSize() int { return hashBlockSize } // Sum returnz Tillich-Zémor checksum of data func Sum(data []byte) [hashSize]byte { d := new(digest) d.Reset() d.Write(data) return d.checkSum() } // Concat performs combining of hashes based on homomorphic property. func Concat(hs [][]byte) ([]byte, error) { var b, c sl2 b = id for i := range hs { if err := c.UnmarshalBinary(hs[i]); err != nil { return nil, err } b.Mul(&b, &c) } return b.MarshalBinary() } // Validate checks if hashes in hs combined are equal to h. func Validate(h []byte, hs [][]byte) (bool, error) { var ( b []byte got, expected [hashSize]byte err error ) if len(h) != hashSize { return false, errors.New("invalid hash") } else if len(hs) == 0 { return false, errors.New("empty slice") } copy(expected[:], h) b, err = Concat(hs) if err != nil { return false, errors.New("cant concatenate hashes") } copy(got[:], b) return expected == got, nil } // SubtractR returns hash a, such that Concat(a, b) == c // This is possible, because Tillich-Zemor hash is actually a matrix // which can be inversed. func SubtractR(c, b []byte) (a []byte, err error) { var p1, p2, r sl2 if err = r.UnmarshalBinary(c); err != nil { return nil, err } if err = p2.UnmarshalBinary(b); err != nil { return nil, err } p1 = *Inv(&p2) p1.Mul(&r, &p1) return p1.MarshalBinary() } // SubtractL returns hash b, such that Concat(a, b) == c // This is possible, because Tillich-Zemor hash is actually a matrix // which can be inversed. func SubtractL(c, a []byte) (b []byte, err error) { var p1, p2, r sl2 if err = r.UnmarshalBinary(c); err != nil { return nil, err } if err = p1.UnmarshalBinary(a); err != nil { return nil, err } p2 = *Inv(&p1) p2.Mul(&p2, &r) return p2.MarshalBinary() } func mulBitRight(c00, c01, c10, c11, e *gf127.GF127)