store/store.go

249 lines
5.1 KiB
Go

package store
import (
"github.com/nspcc-dev/neo-go/pkg/interop/native/std"
"github.com/nspcc-dev/neo-go/pkg/interop/storage"
)
type User struct {
balance int
titanic int
diabetes int
punk_rock []string
}
const storeURLKey = "storeURL"
func _deploy(data interface{}, isUpdate bool) {
if isUpdate {
return
}
ctx := storage.GetContext()
storeURL := "https://git.frostfs.info/Web3N3/store/src/branch/master/data.json"
storage.Put(ctx, storeURLKey, storeURL)
}
func NewUser(name string) {
ctx := storage.GetContext()
existingUser := storage.Get(ctx, name)
if existingUser != nil {
panic("user already exists")
}
punk_rock := make([]string, 0)
user := User{
balance: 1000,
titanic: -1,
diabetes: -1,
punk_rock: punk_rock,
}
storage.Put(ctx, name, std.Serialize(user))
}
func getUser(name string) User {
ctx := storage.GetReadOnlyContext()
data := storage.Get(ctx, name)
if data == nil {
panic("user not found")
}
return std.Deserialize(data.([]byte)).(User)
}
func Balance(name string) int {
u := getUser(name)
return u.balance
}
func Titanic(name string) int {
u := getUser(name)
return u.titanic
}
func Diabetes(name string) int {
u := getUser(name)
return u.diabetes
}
func Punk_rock(name string) []string {
u := getUser(name)
return u.punk_rock
}
func DiabetesModel(name string, age int, sex int, w int, h int) {
h = h / 100
var bmi int = w / (h * h)
user := getUser(name)
//Predicted = 152.1335 + age*138.9039 + sex*-36.1353 + bmi*926.9120
var predicted = (1521335 + age*1389039 + sex*-361353 + bmi*9269120) / 100
user.diabetes = predicted
user.balance -= 400
ctx := storage.GetContext()
storage.Put(ctx, name, std.Serialize(user))
/*
f, err := os.Open("diabetes.csv")
if err != nil {
log.Fatal(err)
}
defer f.Close()
reader := csv.NewReader(f)
reader.FieldsPerRecord = -1
trainingData, err := reader.ReadAll()
if err != nil {
log.Fatal(err)
}
var r regression.Regression
r.SetObserved("y")
r.SetVar(0, "age")
r.SetVar(1, "sex")
r.SetVar(2, "bmi")
for i, record := range trainingData {
if i == 0 {
continue
}
yVal, err := strconv.ParseFloat(record[10], 64)
if err != nil {
log.Fatal(err)
}
ageVal, err := strconv.ParseFloat(record[0], 64)
if err != nil {
log.Fatal(err)
}
sexVal, err := strconv.ParseFloat(record[1], 64)
if err != nil {
log.Fatal(err)
}
bmiVal, err := strconv.ParseFloat(record[2], 64)
if err != nil {
log.Fatal(err)
}
r.Train(regression.DataPoint(yVal, []float64{ageVal, sexVal, bmiVal}))
}
r.Run()
Predicted, err := r.Predict([]float64{age, sex, bmi})
if err != nil {
log.Fatal(err)
}*/
}
func TitanicModel(name string, age int, sibSp int, parch int, embarked int, sex int, pclass int) {
user := getUser(name)
//Predicted = 0.9438 + Age*-0.0065 + SibSp*-0.0507 + Parch*-0.0081 + Embarked*-0.0320 + Sex*0.4848 + Pclass*-0.1973
var predicted = (9438 + age*-65 + sibSp*-507 + parch*-81 + embarked*-320 + sex*4848 + pclass*-1973) / 100
user.titanic = predicted
user.balance -= 400
ctx := storage.GetContext()
storage.Put(ctx, name, std.Serialize(user))
/*
f, err := os.Open("titanic_numeric.csv")
if err != nil {
log.Fatal(err)
}
defer f.Close()
reader := csv.NewReader(f)
reader.FieldsPerRecord = 7
trainingData, err := reader.ReadAll()
if err != nil {
log.Fatal(err)
}
var r regression.Regression
r.SetObserved("Survived")
r.SetVar(0, "Age")
r.SetVar(1, "SibSp")
r.SetVar(2, "Parch")
r.SetVar(3, "Embarked")
r.SetVar(4, "Sex")
r.SetVar(5, "Pclass")
for i, record := range trainingData {
if i == 0 {
continue
}
survivedVal, err := strconv.ParseFloat(record[6], 64)
if err != nil {
log.Fatal(err)
}
ageVal, err := strconv.ParseFloat(record[0], 64)
if err != nil {
log.Fatal(err)
}
sibSpVal, err := strconv.ParseFloat(record[1], 64)
if err != nil {
log.Fatal(err)
}
parchVal, err := strconv.ParseFloat(record[2], 64)
if err != nil {
log.Fatal(err)
}
embarkedVal, err := strconv.ParseFloat(record[3], 64)
if err != nil {
log.Fatal(err)
}
sexVal, err := strconv.ParseFloat(record[4], 64)
if err != nil {
log.Fatal(err)
}
pclassVal, err := strconv.ParseFloat(record[5], 64)
if err != nil {
log.Fatal(err)
}
r.Train(regression.DataPoint(survivedVal, []float64{ageVal, sibSpVal, parchVal, embarkedVal, sexVal, pclassVal}))
}
r.Run()
predicted, err := r.Predict([]float64{age, sibSp, parch, embarked, sex, pclass})
if err != nil {
log.Fatal(err)
}
*/
}
func Punk_Rock(name string, group string) {
user := getUser(name)
punkRockGroups := []string{"Йорш", "Элизиум", "Бригадный подряд", "Порнофильмы"}
for _, g := range punkRockGroups {
if group == g {
user.punk_rock = append(user.punk_rock, "good")
} else {
user.punk_rock = append(user.punk_rock, "hmm")
}
}
user.balance -= 700
ctx := storage.GetContext()
storage.Put(ctx, name, std.Serialize(user))
}