Merge pull request #318 from nspcc-dev/drop-redundant-dev-code-part-2

Drop redundant dev code part 2, refs. #307.
This commit is contained in:
Roman Khimov 2019-08-27 17:50:16 +03:00 committed by GitHub
commit 2cb9a4a251
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
45 changed files with 299 additions and 1486 deletions

View file

@ -1,18 +0,0 @@
## Package - Elliptic
### Why
The curve and arithmetic functions have been modularised, so that curves can be swapped in and out, without effecting the functionality.
The modular arithmetic used is not specialised for a specific curve.
In order to use this package, you must declare an ellipticcurve struct and then set the curve.
Example:
`
curve = NewEllipticCurve(Secp256k1)
`
If no curve is set, the default curve is the r1 curve used for NEO. The tests are done using the k1 curve, so in the elliptic_test.go file, the curve is changed accordingly.

View file

@ -1,64 +0,0 @@
package elliptic
/*
This file was originally made by vsergeev.
Modifications have been made under the MIT license.
License: MIT
*/
import (
"math/big"
)
var curve Curve
type curveType string
const (
// Secp256r1 curve type
Secp256r1 curveType = "Secp256r1"
// Secp256k1 curve type
Secp256k1 curveType = "Secp256k1"
)
// SetCurveSecp256r1 Will set the curve parameters to match Secp256r1
func (ChosenCurve *Curve) SetCurveSecp256r1() {
ChosenCurve.P, _ = new(big.Int).SetString("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF", 16) //Q
ChosenCurve.A, _ = new(big.Int).SetString("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC", 16)
ChosenCurve.B, _ = new(big.Int).SetString("5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B", 16)
ChosenCurve.G.X, _ = new(big.Int).SetString("6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296", 16)
ChosenCurve.G.Y, _ = new(big.Int).SetString("4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5", 16)
ChosenCurve.N, _ = new(big.Int).SetString("FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", 16)
ChosenCurve.H, _ = new(big.Int).SetString("01", 16)
ChosenCurve.Name = "Secp256r1"
}
// SetCurveSecp256k1 Will set the curve parameters to match Secp256k1
func (ChosenCurve *Curve) SetCurveSecp256k1() {
ChosenCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
ChosenCurve.A, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000000", 16)
ChosenCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
ChosenCurve.G.X, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
ChosenCurve.G.Y, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
ChosenCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
ChosenCurve.H, _ = new(big.Int).SetString("01", 16)
ChosenCurve.Name = "Secp256k1"
}
//NewEllipticCurve will instantiate a new EllipticCurve
//Defaults to secp256r1
func NewEllipticCurve(ct curveType) Curve {
var curve Curve
switch ct {
case Secp256k1:
curve.SetCurveSecp256k1()
case Secp256r1:
curve.SetCurveSecp256r1()
default:
curve.SetCurveSecp256r1()
}
return curve
}

View file

@ -1,319 +0,0 @@
/*
This file has been modified under the MIT license.
Original: https://github.com/vsergeev/btckeygenie
*/
package elliptic
import (
nativeelliptic "crypto/elliptic"
"encoding/hex"
"errors"
"fmt"
"math/big"
)
// Point represents a point on an EllipticCurve.
type Point struct {
X *big.Int
Y *big.Int
}
// Curve represents the parameters of a short Weierstrass equation elliptic curve.
/* y**2 = x**3 + a*x + b % p */
type Curve struct {
A *big.Int
B *big.Int
P *big.Int
G Point
N *big.Int
H *big.Int
Name string
}
// dump dumps the bytes of a point for debugging.
func (p *Point) dump() {
fmt.Print(p.format())
}
// format formats the bytes of a point for debugging.
func (p *Point) format() string {
if p.X == nil && p.Y == nil {
return "(inf,inf)"
}
return fmt.Sprintf("(%s,%s)", hex.EncodeToString(p.X.Bytes()), hex.EncodeToString(p.Y.Bytes()))
}
// Params represent the paramters for the Elliptic Curve
func (ec Curve) Params() *nativeelliptic.CurveParams {
return &nativeelliptic.CurveParams{
P: ec.P,
N: ec.N,
B: ec.B,
Gx: ec.G.X,
Gy: ec.G.Y,
BitSize: 256,
Name: ec.Name,
}
}
/*** Modular Arithmetic ***/
/* NOTE: Returning a new z each time below is very space inefficient, but the
* alternate accumulator based design makes the point arithmetic functions look
* absolutely hideous. I may still change this in the future. */
// addMod computes z = (x + y) % p.
func addMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
z = new(big.Int).Add(x, y)
z.Mod(z, p)
return z
}
// subMod computes z = (x - y) % p.
func subMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
z = new(big.Int).Sub(x, y)
z.Mod(z, p)
return z
}
// mulMod computes z = (x * y) % p.
func mulMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
n := new(big.Int).Set(x)
z = big.NewInt(0)
for i := 0; i < y.BitLen(); i++ {
if y.Bit(i) == 1 {
z = addMod(z, n, p)
}
n = addMod(n, n, p)
}
return z
}
// invMod computes z = (1/x) % p.
func invMod(x *big.Int, p *big.Int) (z *big.Int) {
z = new(big.Int).ModInverse(x, p)
return z
}
// expMod computes z = (x^e) % p.
func expMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
z = new(big.Int).Exp(x, y, p)
return z
}
// sqrtMod computes z = sqrt(x) % p.
func sqrtMod(x *big.Int, p *big.Int) (z *big.Int) {
/* assert that p % 4 == 3 */
if new(big.Int).Mod(p, big.NewInt(4)).Cmp(big.NewInt(3)) != 0 {
panic("p is not equal to 3 mod 4!")
}
/* z = sqrt(x) % p = x^((p+1)/4) % p */
/* e = (p+1)/4 */
e := new(big.Int).Add(p, big.NewInt(1))
e = e.Rsh(e, 2)
z = expMod(x, e, p)
return z
}
/*** Point Arithmetic on Curve ***/
// IsInfinity checks if point P is infinity on EllipticCurve ec.
func (ec *Curve) IsInfinity(P Point) bool {
/* We use (nil,nil) to represent O, the point at infinity. */
if P.X == nil && P.Y == nil {
return true
}
return false
}
// IsOnCurve checks if point P is on EllipticCurve ec.
func (ec Curve) IsOnCurve(P1, P2 *big.Int) bool {
P := Point{P1, P2}
if ec.IsInfinity(P) {
return false
}
/* y**2 = x**3 + a*x + b % p */
lhs := mulMod(P.Y, P.Y, ec.P)
rhs := addMod(
addMod(
expMod(P.X, big.NewInt(3), ec.P),
mulMod(ec.A, P.X, ec.P), ec.P),
ec.B, ec.P)
if lhs.Cmp(rhs) == 0 {
return true
}
return false
}
// Add computes R = P + Q on EllipticCurve ec.
func (ec Curve) Add(P1, P2, Q1, Q2 *big.Int) (R1 *big.Int, R2 *big.Int) {
/* See rules 1-5 on SEC1 pg.7 http://www.secg.org/collateral/sec1_final.pdf */
P := Point{P1, P2}
Q := Point{Q1, Q2}
R := Point{}
if ec.IsInfinity(P) && ec.IsInfinity(Q) {
/* Rule #1 Identity */
/* R = O + O = O */
R.X = nil
R.Y = nil
} else if ec.IsInfinity(P) {
/* Rule #2 Identity */
/* R = O + Q = Q */
R.X = new(big.Int).Set(Q.X)
R.Y = new(big.Int).Set(Q.Y)
} else if ec.IsInfinity(Q) {
/* Rule #2 Identity */
/* R = P + O = P */
R.X = new(big.Int).Set(P.X)
R.Y = new(big.Int).Set(P.Y)
} else if P.X.Cmp(Q.X) == 0 && addMod(P.Y, Q.Y, ec.P).Sign() == 0 {
/* Rule #3 Identity */
/* R = (x,y) + (x,-y) = O */
R.X = nil
R.Y = nil
} else if P.X.Cmp(Q.X) == 0 && P.Y.Cmp(Q.Y) == 0 && P.Y.Sign() != 0 {
/* Rule #5 Point doubling */
/* R = P + P */
/* Lambda = (3*P.X*P.X + a) / (2*P.Y) */
num := addMod(
mulMod(big.NewInt(3),
mulMod(P.X, P.X, ec.P), ec.P),
ec.A, ec.P)
den := invMod(mulMod(big.NewInt(2), P.Y, ec.P), ec.P)
lambda := mulMod(num, den, ec.P)
/* R.X = lambda*lambda - 2*P.X */
R.X = subMod(
mulMod(lambda, lambda, ec.P),
mulMod(big.NewInt(2), P.X, ec.P),
ec.P)
/* R.Y = lambda*(P.X - R.X) - P.Y */
R.Y = subMod(
mulMod(lambda, subMod(P.X, R.X, ec.P), ec.P),
P.Y, ec.P)
} else if P.X.Cmp(Q.X) != 0 {
/* Rule #4 Point addition */
/* R = P + Q */
/* Lambda = (Q.Y - P.Y) / (Q.X - P.X) */
num := subMod(Q.Y, P.Y, ec.P)
den := invMod(subMod(Q.X, P.X, ec.P), ec.P)
lambda := mulMod(num, den, ec.P)
/* R.X = lambda*lambda - P.X - Q.X */
R.X = subMod(
subMod(
mulMod(lambda, lambda, ec.P),
P.X, ec.P),
Q.X, ec.P)
/* R.Y = lambda*(P.X - R.X) - P.Y */
R.Y = subMod(
mulMod(lambda,
subMod(P.X, R.X, ec.P), ec.P),
P.Y, ec.P)
} else {
panic(fmt.Sprintf("Unsupported point addition: %v + %v", P.format(), Q.format()))
}
return R.X, R.Y
}
// ScalarMult computes Q = k * P on EllipticCurve ec.
func (ec Curve) ScalarMult(P1, P2 *big.Int, l []byte) (Q1, Q2 *big.Int) {
/* Note: this function is not constant time, due to the branching nature of
* the underlying point Add() function. */
/* Montgomery Ladder Point Multiplication
*
* Implementation based on pseudocode here:
* See https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder */
P := Point{P1, P2}
k := big.Int{}
k.SetBytes(l)
var R0 Point
var R1 Point
R0.X = nil
R0.Y = nil
R1.X = new(big.Int).Set(P.X)
R1.Y = new(big.Int).Set(P.Y)
for i := ec.N.BitLen() - 1; i >= 0; i-- {
if k.Bit(i) == 0 {
R1.X, R1.Y = ec.Add(R0.X, R0.Y, R1.X, R1.Y)
R0.X, R0.Y = ec.Add(R0.X, R0.Y, R0.X, R0.Y)
} else {
R0.X, R0.Y = ec.Add(R0.X, R0.Y, R1.X, R1.Y)
R1.X, R1.Y = ec.Add(R1.X, R1.Y, R1.X, R1.Y)
}
}
return R0.X, R0.Y
}
// ScalarBaseMult computes Q = k * G on EllipticCurve ec.
func (ec Curve) ScalarBaseMult(k []byte) (Q1, Q2 *big.Int) {
return ec.ScalarMult(ec.G.X, ec.G.Y, k)
}
// Decompress decompresses coordinate x and ylsb (y's least significant bit) into a Point P on EllipticCurve ec.
func (ec *Curve) Decompress(x *big.Int, ylsb uint) (P Point, err error) {
/* y**2 = x**3 + a*x + b % p */
rhs := addMod(
addMod(
expMod(x, big.NewInt(3), ec.P),
mulMod(ec.A, x, ec.P),
ec.P),
ec.B, ec.P)
/* y = sqrt(rhs) % p */
y := sqrtMod(rhs, ec.P)
/* Use -y if opposite lsb is required */
if y.Bit(0) != (ylsb & 0x1) {
y = subMod(big.NewInt(0), y, ec.P)
}
P.X = x
P.Y = y
if !ec.IsOnCurve(P.X, P.Y) {
return P, errors.New("compressed (x, ylsb) not on curve")
}
return P, nil
}
// Double will return the (x1+x1,y1+y1)
func (ec Curve) Double(x1, y1 *big.Int) (x, y *big.Int) {
x = &big.Int{}
x.SetBytes([]byte{0x00})
y = &big.Int{}
y.SetBytes([]byte{0x00})
return x, y
}

View file

@ -1,231 +0,0 @@
/* btckeygenie v1.0.0
* https://github.com/vsergeev/btckeygenie
* License: MIT
*/
package elliptic
import (
"encoding/hex"
"math/big"
"testing"
)
func init() {
curve = NewEllipticCurve(Secp256k1)
}
func hex2int(hexstring string) (v *big.Int) {
v, _ = new(big.Int).SetString(hexstring, 16)
return v
}
func TestOnCurve(t *testing.T) {
if !curve.IsOnCurve(curve.G.X, curve.G.Y) {
t.Fatal("failure G on curve")
}
t.Log("G on curve")
}
func TestInfinity(t *testing.T) {
O := Point{nil, nil}
/* O not on curve */
if curve.IsOnCurve(O.X, O.Y) {
t.Fatal("failure O on curve")
}
/* O is infinity */
if !curve.IsInfinity(O) {
t.Fatal("failure O not infinity on curve")
}
t.Log("O is not on curve and is infinity")
}
func TestPointAdd(t *testing.T) {
X := "50863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352"
Y := "2cd470243453a299fa9e77237716103abc11a1df38855ed6f2ee187e9c582ba6"
P := Point{hex2int(X), hex2int(Y)}
O := Point{nil, nil}
/* R = O + O = O */
{
R1, R2 := curve.Add(O.X, O.Y, O.X, O.Y)
R := Point{R1, R2}
if !curve.IsInfinity(R) {
t.Fatal("failure O + O = O")
}
t.Log("success O + O = O")
}
/* R = P + O = P */
{
R1, R2 := curve.Add(P.X, P.Y, O.X, O.Y)
R := Point{R1, R2}
if R.X.Cmp(P.X) != 0 || R.Y.Cmp(P.Y) != 0 {
t.Fatal("failure P + O = P")
}
t.Log("success P + O = P")
}
/* R = O + Q = Q */
{
R1, R2 := curve.Add(O.X, O.Y, P.X, P.Y)
R := Point{R1, R2}
if R.X.Cmp(P.X) != 0 || R.Y.Cmp(P.Y) != 0 {
t.Fatal("failure O + Q = Q")
}
t.Log("success O + Q = Q")
}
/* R = (x,y) + (x,-y) = O */
{
Q := Point{P.X, subMod(big.NewInt(0), P.Y, curve.P)}
R1, R2 := curve.Add(P.X, P.Y, Q.X, Q.Y)
R := Point{R1, R2}
if !curve.IsInfinity(R) {
t.Fatal("failure (x,y) + (x,-y) = O")
}
t.Log("success (x,y) + (x,-y) = O")
}
/* R = P + P */
{
PP := Point{hex2int("5dbcd5dfea550eb4fd3b5333f533f086bb5267c776e2a1a9d8e84c16a6743d82"), hex2int("8dde3986b6cbe395da64b6e95fb81f8af73f6e0cf1100555005bb4ba2a6a4a07")}
R1, R2 := curve.Add(P.X, P.Y, P.X, P.Y)
R := Point{R1, R2}
if R.X.Cmp(PP.X) != 0 || R.Y.Cmp(PP.Y) != 0 {
t.Fatal("failure P + P")
}
t.Log("success P + P")
}
Q := Point{hex2int("a83b8de893467d3a88d959c0eb4032d9ce3bf80f175d4d9e75892a3ebb8ab7e5"), hex2int("370f723328c24b7a97fe34063ba68f253fb08f8645d7c8b9a4ff98e3c29e7f0d")}
PQ := Point{hex2int("fe7d540002e4355eb0ec36c217b4735495de7bd8634055ded3683b0e9da70ef1"), hex2int("fc033c1d74cb34e087a3495e505c0fc0e9e3e8297994878d89d882254ce8a9ef")}
/* R = P + Q */
{
R1, R2 := curve.Add(P.X, P.Y, Q.X, Q.Y)
R := Point{R1, R2}
if R.X.Cmp(PQ.X) != 0 || R.Y.Cmp(PQ.Y) != 0 {
t.Fatal("failure P + Q")
}
t.Log("success P + Q")
}
/* R = Q + P */
{
R1, R2 := curve.Add(Q.X, Q.Y, P.X, P.Y)
R := Point{R1, R2}
if R.X.Cmp(PQ.X) != 0 || R.Y.Cmp(PQ.Y) != 0 {
t.Fatal("failure Q + P")
}
t.Log("success Q + P")
}
}
func TestPointScalarMult(t *testing.T) {
X := "50863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352"
Y := "2cd470243453a299fa9e77237716103abc11a1df38855ed6f2ee187e9c582ba6"
P := Point{hex2int(X), hex2int(Y)}
/* Q = k*P */
{
T := Point{hex2int("87d592bfdd24adb52147fea343db93e10d0585bc66d91e365c359973c0dc7067"), hex2int("a374e206cb7c8cd1074bdf9bf6ddea135f983aaa6475c9ab3bb4c38a0046541b")}
input, _ := hex.DecodeString("14eb373700c3836404acd0820d9fa8dfa098d26177ca6e18b1c7f70c6af8fc18")
Q1, Q2 := curve.ScalarMult(P.X, P.Y, input)
Q := Point{Q1, Q2}
if Q.X.Cmp(T.X) != 0 || Q.Y.Cmp(T.Y) != 0 {
t.Fatal("failure k*P")
}
t.Log("success k*P")
}
/* Q = n*G = O */
{
Q1, Q2 := curve.ScalarMult(curve.G.X, curve.G.Y, curve.N.Bytes())
Q := Point{Q1, Q2}
if !curve.IsInfinity(Q) {
t.Fatal("failure n*G = O")
}
t.Log("success n*G = O")
}
}
func TestPointScalarBaseMult(t *testing.T) {
/* Sample Private Key */
D := "18e14a7b6a307f426a94f8114701e7c8e774e7f9a47e2c2035db29a206321725"
/* Sample Corresponding Public Key */
X := "50863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352"
Y := "2cd470243453a299fa9e77237716103abc11a1df38855ed6f2ee187e9c582ba6"
P := Point{hex2int(X), hex2int(Y)}
/* Q = d*G = P */
Q1, Q2 := curve.ScalarBaseMult(hex2int(D).Bytes())
Q := Point{Q1, Q2}
if P.X.Cmp(Q.X) != 0 || P.Y.Cmp(Q.Y) != 0 {
t.Fatal("failure Q = d*G")
}
t.Log("success Q = d*G")
/* Q on curve */
if !curve.IsOnCurve(Q.X, Q.Y) {
t.Fatal("failure Q on curve")
}
t.Log("success Q on curve")
/* R = 0*G = O */
R1, R2 := curve.ScalarBaseMult(big.NewInt(0).Bytes())
R := Point{R1, R2}
if !curve.IsInfinity(R) {
t.Fatal("failure 0*G = O")
}
t.Log("success 0*G = O")
}
func TestPointDecompress(t *testing.T) {
/* Valid points */
var validDecompressVectors = []Point{
{hex2int("50863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352"), hex2int("2cd470243453a299fa9e77237716103abc11a1df38855ed6f2ee187e9c582ba6")},
{hex2int("a83b8de893467d3a88d959c0eb4032d9ce3bf80f175d4d9e75892a3ebb8ab7e5"), hex2int("370f723328c24b7a97fe34063ba68f253fb08f8645d7c8b9a4ff98e3c29e7f0d")},
{hex2int("f680556678e25084a82fa39e1b1dfd0944f7e69fddaa4e03ce934bd6b291dca0"), hex2int("52c10b721d34447e173721fb0151c68de1106badb089fb661523b8302a9097f5")},
{hex2int("241febb8e23cbd77d664a18f66ad6240aaec6ecdc813b088d5b901b2e285131f"), hex2int("513378d9ff94f8d3d6c420bd13981df8cd50fd0fbd0cb5afabb3e66f2750026d")},
}
for i := 0; i < len(validDecompressVectors); i++ {
P, err := curve.Decompress(validDecompressVectors[i].X, validDecompressVectors[i].Y.Bit(0))
if err != nil {
t.Fatalf("failure decompress P, got error %v on index %d", err, i)
}
if P.X.Cmp(validDecompressVectors[i].X) != 0 || P.Y.Cmp(validDecompressVectors[i].Y) != 0 {
t.Fatalf("failure decompress P, got mismatch on index %d", i)
}
}
t.Log("success Decompress() on valid vectors")
/* Invalid points */
var invalidDecompressVectors = []struct {
X *big.Int
YLsb uint
}{
{hex2int("c8e337cee51ae9af3c0ef923705a0cb1b76f7e8463b3d3060a1c8d795f9630fd"), 0},
{hex2int("c8e337cee51ae9af3c0ef923705a0cb1b76f7e8463b3d3060a1c8d795f9630fd"), 1},
}
for i := 0; i < len(invalidDecompressVectors); i++ {
_, err := curve.Decompress(invalidDecompressVectors[i].X, invalidDecompressVectors[i].YLsb)
if err == nil {
t.Fatalf("failure decompress invalid P, got decompressed point on index %d", i)
}
}
t.Log("success Decompress() on invalid vectors")
}

View file

@ -1,125 +0,0 @@
package privatekey
import (
"bytes"
"crypto/rand"
"crypto/sha256"
"encoding/hex"
"errors"
"fmt"
"io"
"math/big"
"github.com/CityOfZion/neo-go/pkg/crypto/publickey"
"github.com/CityOfZion/neo-go/pkg/crypto/base58"
"github.com/CityOfZion/neo-go/pkg/crypto/elliptic"
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
"github.com/nspcc-dev/rfc6979"
)
// PrivateKey represents a NEO private key.
type PrivateKey struct {
b []byte
}
// NewPrivateKey will create a new private key
// With curve as Secp256r1
func NewPrivateKey() (*PrivateKey, error) {
curve := elliptic.NewEllipticCurve(elliptic.Secp256r1)
b := make([]byte, curve.N.BitLen()/8+8)
if _, err := io.ReadFull(rand.Reader, b); err != nil {
return nil, err
}
d := new(big.Int).SetBytes(b)
d.Mod(d, new(big.Int).Sub(curve.N, big.NewInt(1)))
d.Add(d, big.NewInt(1))
p := &PrivateKey{b: d.Bytes()}
return p, nil
}
// NewPrivateKeyFromHex will create a new private key hex string
func NewPrivateKeyFromHex(str string) (*PrivateKey, error) {
b, err := hex.DecodeString(str)
if err != nil {
return nil, err
}
return NewPrivateKeyFromBytes(b)
}
// NewPrivateKeyFromBytes returns a NEO PrivateKey from the given byte slice.
func NewPrivateKeyFromBytes(b []byte) (*PrivateKey, error) {
if len(b) != 32 {
return nil, fmt.Errorf(
"invalid byte length: expected %d bytes got %d", 32, len(b),
)
}
return &PrivateKey{b}, nil
}
// PublicKey returns a the public corresponding to the private key
// For the curve secp256r1
func (p *PrivateKey) PublicKey() (*publickey.PublicKey, error) {
var (
c = elliptic.NewEllipticCurve(elliptic.Secp256r1)
q = new(big.Int).SetBytes(p.b)
)
p1, p2 := c.ScalarBaseMult(q.Bytes())
point := elliptic.Point{
X: p1,
Y: p2,
}
if !c.IsOnCurve(p1, p2) {
return nil, errors.New("failed to derive public key using elliptic curve")
}
return &publickey.PublicKey{
Curve: c,
Point: point,
}, nil
}
// WIFEncode will converts a private key
// to the Wallet Import Format for NEO
func WIFEncode(key []byte) (s string) {
if len(key) != 32 {
return "invalid private key length"
}
buf := new(bytes.Buffer)
buf.WriteByte(0x80)
buf.Write(key)
buf.WriteByte(0x01)
checksum, _ := hash.Checksum(buf.Bytes())
buf.Write(checksum)
WIF := base58.Encode(buf.Bytes())
return WIF
}
// Sign will sign the corresponding data using the private key
func (p *PrivateKey) Sign(data []byte) ([]byte, error) {
curve := elliptic.NewEllipticCurve(elliptic.Secp256r1)
key := p.b
digest, _ := hash.Sha256(data)
r, s, err := rfc6979.SignECDSA(curve, key, digest[:], sha256.New)
if err != nil {
return nil, err
}
curveOrderByteSize := curve.P.BitLen() / 8
rBytes, sBytes := r.Bytes(), s.Bytes()
signature := make([]byte, curveOrderByteSize*2)
copy(signature[curveOrderByteSize-len(rBytes):], rBytes)
copy(signature[curveOrderByteSize*2-len(sBytes):], sBytes)
return signature, nil
}

View file

@ -1,48 +0,0 @@
package privatekey
import (
"encoding/hex"
"strings"
"testing"
"github.com/stretchr/testify/assert"
)
func TestPrivateKeyToPublicKey(t *testing.T) {
input := "495d528227c7dcc234c690af1222e67cde916dac1652cad97e0263825a8268a6"
privateKey, err := NewPrivateKeyFromHex(input)
if err != nil {
t.Fatal(err)
}
pubKey, _ := privateKey.PublicKey()
pubKeyBytes := pubKey.Bytes()
actual := hex.EncodeToString(pubKeyBytes)
expected := "03cd4c4ee9c8e1fae9d12ecf7c96cb3a057b550393f9e82182c4dae1139871682e"
assert.Equal(t, expected, actual)
}
func TestWIFEncode(t *testing.T) {
input := "29bbf53185a973d2e3803cb92908fd08117486d1f2e7bab73ed0d00255511637"
inputBytes, _ := hex.DecodeString(input)
actual := WIFEncode(inputBytes)
expected := "KxcqV28rGDcpVR3fYg7R9vricLpyZ8oZhopyFLAWuRv7Y8TE9WhW"
assert.Equal(t, expected, actual)
}
func TestSigning(t *testing.T) {
// These were taken from the rfcPage:https://tools.ietf.org/html/rfc6979#page-33
// public key: U = xG
//Ux = 60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6
//Uy = 7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299
PrivateKey, _ := NewPrivateKeyFromHex("C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721")
data, err := PrivateKey.Sign([]byte("sample"))
if err != nil {
t.Fatal(err)
}
r := "EFD48B2AACB6A8FD1140DD9CD45E81D69D2C877B56AAF991C34D0EA84EAF3716"
s := "F7CB1C942D657C41D436C7A1B6E29F65F3E900DBB9AFF4064DC4AB2F843ACDA8"
assert.Equal(t, strings.ToLower(r+s), hex.EncodeToString(data))
}

View file

@ -1,33 +0,0 @@
package pubkeytesthelper
import (
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
"github.com/CityOfZion/neo-go/pkg/crypto/privatekey"
)
// SignDataWithRandomPrivateKey will sign data with
// a random private key, then verify said data
// returning true if Verify returns true
func SignDataWithRandomPrivateKey(data []byte) (bool, error) {
hashedData, err := hash.Sha256(data)
if err != nil {
return false, err
}
privKey, err := privatekey.NewPrivateKey()
if err != nil {
return false, err
}
signedData, err := privKey.Sign(data)
if err != nil {
return false, err
}
pubKey, err := privKey.PublicKey()
if err != nil {
return false, err
}
result := pubKey.Verify(signedData, hashedData.Bytes())
return result, nil
}

View file

@ -1,164 +0,0 @@
package publickey
import (
"bytes"
"crypto/ecdsa"
"encoding/binary"
"encoding/hex"
"fmt"
"io"
"math/big"
"github.com/CityOfZion/neo-go/pkg/crypto/base58"
"github.com/CityOfZion/neo-go/pkg/crypto/elliptic"
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
)
// PublicKeys is a list of public keys.
type PublicKeys []*PublicKey
func (keys PublicKeys) Len() int { return len(keys) }
func (keys PublicKeys) Swap(i, j int) { keys[i], keys[j] = keys[j], keys[i] }
func (keys PublicKeys) Less(i, j int) bool {
if keys[i].X.Cmp(keys[j].X) == -1 {
return true
}
if keys[i].X.Cmp(keys[j].X) == 1 {
return false
}
if keys[i].X.Cmp(keys[j].X) == 0 {
return false
}
return keys[i].Y.Cmp(keys[j].Y) == -1
}
// PublicKey represents a public key and provides a high level
// API around the ECPoint.
type PublicKey struct {
Curve elliptic.Curve
elliptic.Point
}
// NewPublicKeyFromString return a public key created from the
// given hex string.
func NewPublicKeyFromString(s string) (*PublicKey, error) {
b, err := hex.DecodeString(s)
if err != nil {
return nil, err
}
curve := elliptic.NewEllipticCurve(elliptic.Secp256r1)
pubKey := &PublicKey{curve, elliptic.Point{}}
if err := pubKey.DecodeBinary(bytes.NewReader(b)); err != nil {
return nil, err
}
return pubKey, nil
}
// Bytes returns the byte array representation of the public key.
func (p *PublicKey) Bytes() []byte {
if p.Curve.IsInfinity(p.Point) {
return []byte{0x00}
}
var (
x = p.X.Bytes()
paddedX = append(bytes.Repeat([]byte{0x00}, 32-len(x)), x...)
prefix = byte(0x03)
)
if p.Y.Bit(0) == 0 {
prefix = byte(0x02)
}
return append([]byte{prefix}, paddedX...)
}
// ToAddress will convert a public key to it's neo-address
func (p *PublicKey) ToAddress() string {
publicKeyBytes := p.Bytes()
publicKeyBytes = append([]byte{0x21}, publicKeyBytes...) // 0x21 = length of pubKey
publicKeyBytes = append(publicKeyBytes, 0xAC) // 0xAC = CheckSig
hash160PubKey, _ := hash.Hash160(publicKeyBytes)
versionHash160PubKey := append([]byte{0x17}, hash160PubKey.Bytes()...)
checksum, _ := hash.Checksum(versionHash160PubKey)
checkVersionHash160 := append(versionHash160PubKey, checksum...)
address := base58.Encode(checkVersionHash160)
return address
}
// DecodeBinary decodes a PublicKey from the given io.Reader.
func (p *PublicKey) DecodeBinary(r io.Reader) error {
var prefix uint8
if err := binary.Read(r, binary.LittleEndian, &prefix); err != nil {
return err
}
// Infinity
if prefix == 0x00 {
p.Point = elliptic.Point{}
return nil
}
// Compressed public keys.
if prefix == 0x02 || prefix == 0x03 {
b := make([]byte, 32)
if err := binary.Read(r, binary.LittleEndian, b); err != nil {
return err
}
var err error
p.Point, err = p.Curve.Decompress(new(big.Int).SetBytes(b), uint(prefix&0x1))
if err != nil {
return err
}
} else if prefix == 0x04 {
buf := make([]byte, 65)
if err := binary.Read(r, binary.LittleEndian, buf); err != nil {
return err
}
p.X = new(big.Int).SetBytes(buf[1:33])
p.Y = new(big.Int).SetBytes(buf[33:65])
} else {
return fmt.Errorf("invalid prefix %d", prefix)
}
return nil
}
// EncodeBinary encodes a PublicKey to the given io.Writer.
func (p *PublicKey) EncodeBinary(w io.Writer) error {
return binary.Write(w, binary.LittleEndian, p.Bytes())
}
// Verify returns true if the signature is valid and corresponds
// to the hash and public key
func (p *PublicKey) Verify(signature []byte, hash []byte) bool {
publicKey := &ecdsa.PublicKey{}
publicKey.Curve = p.Curve
publicKey.X = p.X
publicKey.Y = p.Y
if p.X == nil || p.Y == nil {
return false
}
rBytes := new(big.Int).SetBytes(signature[0:32])
sBytes := new(big.Int).SetBytes(signature[32:64])
return ecdsa.Verify(publicKey, hash, rBytes, sBytes)
}

View file

@ -1,81 +0,0 @@
package publickey
import (
"bytes"
"crypto/rand"
"encoding/hex"
"io"
"math/big"
"testing"
"github.com/CityOfZion/neo-go/pkg/crypto/elliptic"
"github.com/stretchr/testify/assert"
)
func TestDecodeFromString(t *testing.T) {
str := "03b209fd4f53a7170ea4444e0cb0a6bb6a53c2bd016926989cf85f9b0fba17a70c"
pubKey, err := NewPublicKeyFromString(str)
if err != nil {
t.Fatal(err)
}
assert.Equal(t, str, hex.EncodeToString(pubKey.Bytes()))
}
func TestEncodeDecodeInfinity(t *testing.T) {
curve := elliptic.NewEllipticCurve(elliptic.Secp256r1)
key := &PublicKey{curve, elliptic.Point{}}
buf := new(bytes.Buffer)
assert.Nil(t, key.EncodeBinary(buf))
assert.Equal(t, 1, buf.Len())
keyDecode := &PublicKey{}
assert.Nil(t, keyDecode.DecodeBinary(buf))
assert.Equal(t, []byte{0x00}, keyDecode.Bytes())
}
func TestEncodeDecodePublicKey(t *testing.T) {
curve := elliptic.NewEllipticCurve(elliptic.Secp256r1)
for i := 0; i < 4; i++ {
p := &PublicKey{curve, randomECPoint()}
buf := new(bytes.Buffer)
assert.Nil(t, p.EncodeBinary(buf))
pDecode := &PublicKey{curve, elliptic.Point{}}
assert.Nil(t, pDecode.DecodeBinary(buf))
assert.Equal(t, p.X, pDecode.X)
}
}
func TestPubkeyToAddress(t *testing.T) {
pubKey, err := NewPublicKeyFromString("031ee4e73a17d8f76dc02532e2620bcb12425b33c0c9f9694cc2caa8226b68cad4")
if err != nil {
t.Fatal(err)
}
actual := pubKey.ToAddress()
expected := "AUpGsNCHzSimeMRVPQfhwrVdiUp8Q2N2Qx"
assert.Equal(t, expected, actual)
}
func randomECPoint() elliptic.Point {
curve := elliptic.NewEllipticCurve(elliptic.Secp256r1)
b := make([]byte, curve.N.BitLen()/8+8)
if _, err := io.ReadFull(rand.Reader, b); err != nil {
return elliptic.Point{}
}
d := new(big.Int).SetBytes(b)
d.Mod(d, new(big.Int).Sub(curve.N, big.NewInt(1)))
d.Add(d, big.NewInt(1))
q := new(big.Int).SetBytes(d.Bytes())
P1, P2 := curve.ScalarBaseMult(q.Bytes())
return elliptic.Point{
X: P1,
Y: P2,
}
}

View file

@ -1,33 +0,0 @@
package checksum
import (
"bytes"
"encoding/binary"
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
)
// Compare calculates the checksum of b
// then compares it with the `have` checksum passed as a parameter
func Compare(have uint32, b []byte) bool {
want := FromBytes(b)
return have == want
}
// FromBuf calculates the checksum of a buffer
func FromBuf(buf *bytes.Buffer) uint32 {
return FromBytes(buf.Bytes())
}
// FromBytes calculates the checksum of a byte slice
func FromBytes(buf []byte) uint32 {
b, err := hash.DoubleSha256(buf)
if err != nil {
return 0
}
// checksum := SumSHA256(SumSHA256(buf.Bytes()))
return binary.LittleEndian.Uint32(b.Bytes()[:4])
}

View file

@ -1,43 +0,0 @@
package address
import (
"github.com/CityOfZion/neo-go/pkg/crypto/base58"
"github.com/CityOfZion/neo-go/pkg/wire/util"
)
// ToScriptHash converts an address to a script hash
func ToScriptHash(address string) string {
a, err := Uint160Decode(address)
if err != nil {
return ""
}
return a.String()
}
// ToReverseScriptHash converts an address to a reverse script hash
func ToReverseScriptHash(address string) string {
a, err := Uint160Decode(address)
if err != nil {
return ""
}
return a.ReverseString()
}
// FromUint160 returns the "NEO address" from the given
// Uint160.
func FromUint160(u util.Uint160) (string, error) {
// Dont forget to prepend the Address version 0x17 (23) A
b := append([]byte{0x17}, u.Bytes()...)
return base58.CheckEncode(b)
}
// Uint160Decode attempts to decode the given NEO address string
// into an Uint160.
func Uint160Decode(s string) (u util.Uint160, err error) {
b, err := base58.CheckDecode(s)
if err != nil {
return u, err
}
return util.Uint160DecodeBytes(b[1:21])
}

View file

@ -1,17 +0,0 @@
package address
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestScriptHash(t *testing.T) {
address := "AJeAEsmeD6t279Dx4n2HWdUvUmmXQ4iJvP"
hash := ToScriptHash(address)
reverseHash := ToReverseScriptHash(address)
assert.Equal(t, "b28427088a3729b2536d10122960394e8be6721f", reverseHash)
assert.Equal(t, "1f72e68b4e39602912106d53b229378a082784b2", hash)
}

View file

@ -1,17 +0,0 @@
package fileutils
import (
"os"
)
// UpdateFile appends a byte slice to a file
func UpdateFile(filename string, data []byte) error {
f, err := os.OpenFile(filename, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)
dataWNewline := append(data, []byte("\n")...)
_, err = f.Write(dataWNewline)
err = f.Close()
return err
}

View file

@ -1,20 +0,0 @@
package iputils
import (
"log"
"net"
)
//GetLocalIP returns the ip address of the current node
// https://stackoverflow.com/a/37382208
func GetLocalIP() net.IP {
conn, err := net.Dial("udp", "8.8.8.8:80")
if err != nil {
log.Fatal(err)
}
defer conn.Close()
localAddr := conn.LocalAddr().(*net.UDPAddr)
return localAddr.IP
}

View file

@ -7,7 +7,7 @@ import (
"io"
"github.com/CityOfZion/neo-go/pkg/core/storage"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
)
@ -52,7 +52,7 @@ type AccountState struct {
Version uint8
ScriptHash util.Uint160
IsFrozen bool
Votes []*crypto.PublicKey
Votes []*keys.PublicKey
Balances map[util.Uint256]util.Fixed8
}
@ -62,7 +62,7 @@ func NewAccountState(scriptHash util.Uint160) *AccountState {
Version: 0,
ScriptHash: scriptHash,
IsFrozen: false,
Votes: []*crypto.PublicKey{},
Votes: []*keys.PublicKey{},
Balances: make(map[util.Uint256]util.Fixed8),
}
}
@ -80,9 +80,9 @@ func (s *AccountState) DecodeBinary(r io.Reader) error {
}
lenVotes := util.ReadVarUint(r)
s.Votes = make([]*crypto.PublicKey, lenVotes)
s.Votes = make([]*keys.PublicKey, lenVotes)
for i := 0; i < int(lenVotes); i++ {
s.Votes[i] = &crypto.PublicKey{}
s.Votes[i] = &keys.PublicKey{}
if err := s.Votes[i].DecodeBinary(r); err != nil {
return err
}

View file

@ -5,6 +5,7 @@ import (
"testing"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
"github.com/stretchr/testify/assert"
)
@ -13,11 +14,11 @@ func TestDecodeEncodeAccountState(t *testing.T) {
var (
n = 10
balances = make(map[util.Uint256]util.Fixed8)
votes = make([]*crypto.PublicKey, n)
votes = make([]*keys.PublicKey, n)
)
for i := 0; i < n; i++ {
balances[randomUint256()] = util.Fixed8(int64(randomInt(1, 10000)))
votes[i] = &crypto.PublicKey{
votes[i] = &keys.PublicKey{
ECPoint: crypto.RandomECPoint(),
}
}

View file

@ -7,7 +7,7 @@ import (
"github.com/CityOfZion/neo-go/pkg/core/storage"
"github.com/CityOfZion/neo-go/pkg/core/transaction"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
)
@ -39,7 +39,7 @@ type AssetState struct {
Precision uint8
FeeMode uint8
FeeAddress util.Uint160
Owner *crypto.PublicKey
Owner *keys.PublicKey
Admin util.Uint160
Issuer util.Uint160
Expiration uint32
@ -77,7 +77,7 @@ func (a *AssetState) DecodeBinary(r io.Reader) error {
return err
}
a.Owner = &crypto.PublicKey{}
a.Owner = &keys.PublicKey{}
if err := a.Owner.DecodeBinary(r); err != nil {
return err
}

View file

@ -5,7 +5,7 @@ import (
"testing"
"github.com/CityOfZion/neo-go/pkg/core/transaction"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
"github.com/stretchr/testify/assert"
)
@ -19,7 +19,7 @@ func TestEncodeDecodeAssetState(t *testing.T) {
Available: util.Fixed8(100),
Precision: 0,
FeeMode: feeMode,
Owner: &crypto.PublicKey{},
Owner: &keys.PublicKey{},
Admin: randomUint160(),
Issuer: randomUint160(),
Expiration: 10,

View file

@ -3,7 +3,7 @@ package transaction
import (
"io"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
)
// A Enrollment transaction represents an enrollment form, which indicates
@ -13,12 +13,12 @@ import (
// The way to cancel the registration is: Spend the deposit on the address of the PublicKey.
type EnrollmentTX struct {
// PublicKey of the validator
PublicKey *crypto.PublicKey
PublicKey *keys.PublicKey
}
// DecodeBinary implements the Payload interface.
func (tx *EnrollmentTX) DecodeBinary(r io.Reader) error {
tx.PublicKey = &crypto.PublicKey{}
tx.PublicKey = &keys.PublicKey{}
return tx.PublicKey.DecodeBinary(r)
}

View file

@ -4,7 +4,7 @@ import (
"encoding/binary"
"io"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
)
@ -25,7 +25,7 @@ type RegisterTX struct {
Precision uint8
// Public key of the owner
Owner *crypto.PublicKey
Owner *keys.PublicKey
Admin util.Uint160
}
@ -50,7 +50,7 @@ func (tx *RegisterTX) DecodeBinary(r io.Reader) error {
return err
}
tx.Owner = &crypto.PublicKey{}
tx.Owner = &keys.PublicKey{}
if err := tx.Owner.DecodeBinary(r); err != nil {
return err
}

View file

@ -6,6 +6,7 @@ import (
"testing"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
"github.com/stretchr/testify/assert"
)
@ -20,7 +21,7 @@ func TestRegisterTX(t *testing.T) {
Name: "this is some token I created",
Amount: util.Fixed8FromInt64(1000000),
Precision: 8,
Owner: &crypto.PublicKey{},
Owner: &keys.PublicKey{},
Admin: someuint160,
},
}
@ -51,7 +52,7 @@ func TestDecodeRegisterTXFromRawString(t *testing.T) {
assert.Equal(t, "[{\"lang\":\"zh-CN\",\"name\":\"小蚁股\"},{\"lang\":\"en\",\"name\":\"AntShare\"}]", txData.Name)
assert.Equal(t, util.Fixed8FromInt64(100000000), txData.Amount)
assert.Equal(t, uint8(0), txData.Precision)
assert.Equal(t, &crypto.PublicKey{}, txData.Owner)
assert.Equal(t, &keys.PublicKey{}, txData.Owner)
assert.Equal(t, "Abf2qMs1pzQb8kYk9RuxtUb9jtRKJVuBJt", crypto.AddressFromUint160(txData.Admin))
assert.Equal(t, "c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b", tx.Hash().ReverseString())

View file

@ -8,8 +8,8 @@ import (
"github.com/CityOfZion/neo-go/config"
"github.com/CityOfZion/neo-go/pkg/core/storage"
"github.com/CityOfZion/neo-go/pkg/core/transaction"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/smartcontract"
"github.com/CityOfZion/neo-go/pkg/util"
"github.com/CityOfZion/neo-go/pkg/vm"
@ -101,7 +101,7 @@ func governingTokenTX() *transaction.Transaction {
Name: "[{\"lang\":\"zh-CN\",\"name\":\"小蚁股\"},{\"lang\":\"en\",\"name\":\"AntShare\"}]",
Amount: util.Fixed8FromInt64(100000000),
Precision: 0,
Owner: &crypto.PublicKey{},
Owner: &keys.PublicKey{},
Admin: admin,
}
@ -124,7 +124,7 @@ func utilityTokenTX() *transaction.Transaction {
Name: "[{\"lang\":\"zh-CN\",\"name\":\"小蚁币\"},{\"lang\":\"en\",\"name\":\"AntCoin\"}]",
Amount: calculateUtilityAmount(),
Precision: 8,
Owner: &crypto.PublicKey{},
Owner: &keys.PublicKey{},
Admin: admin,
}
tx := &transaction.Transaction{
@ -139,10 +139,10 @@ func utilityTokenTX() *transaction.Transaction {
return tx
}
func getValidators(cfg config.ProtocolConfiguration) ([]*crypto.PublicKey, error) {
validators := make([]*crypto.PublicKey, len(cfg.StandbyValidators))
func getValidators(cfg config.ProtocolConfiguration) ([]*keys.PublicKey, error) {
validators := make([]*keys.PublicKey, len(cfg.StandbyValidators))
for i, pubKeyStr := range cfg.StandbyValidators {
pubKey, err := crypto.NewPublicKeyFromString(pubKeyStr)
pubKey, err := keys.NewPublicKeyFromString(pubKeyStr)
if err != nil {
return nil, err
}
@ -151,7 +151,7 @@ func getValidators(cfg config.ProtocolConfiguration) ([]*crypto.PublicKey, error
return validators, nil
}
func getNextConsensusAddress(validators []*crypto.PublicKey) (val util.Uint160, err error) {
func getNextConsensusAddress(validators []*keys.PublicKey) (val util.Uint160, err error) {
vlen := len(validators)
raw, err := smartcontract.CreateMultiSigRedeemScript(
vlen-(vlen-1)/3,

View file

@ -1,16 +1,16 @@
package core
import (
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
)
// Validators is a mapping between public keys and ValidatorState.
type Validators map[*crypto.PublicKey]*ValidatorState
type Validators map[*keys.PublicKey]*ValidatorState
// ValidatorState holds the state of a validator.
type ValidatorState struct {
PublicKey *crypto.PublicKey
PublicKey *keys.PublicKey
Registered bool
Votes util.Fixed8
}

View file

@ -6,7 +6,7 @@ import (
"github.com/stretchr/testify/assert"
)
func TestUint160DecodeAddress(t *testing.T) {
func TestUint160DecodeEncodeAddress(t *testing.T) {
addrs := []string{
"AMLr1CpPQtbEdiJdriX1HpRNMZUwbU2Huj",
"AKtwd3DRXj3nL5kHMUoNsdnsCEVjnuuTFF",
@ -20,3 +20,15 @@ func TestUint160DecodeAddress(t *testing.T) {
assert.Equal(t, addr, AddressFromUint160(val))
}
}
func TestUint160DecodeKnownAddress(t *testing.T) {
address := "AJeAEsmeD6t279Dx4n2HWdUvUmmXQ4iJvP"
val, err := Uint160DecodeAddress(address)
if err != nil {
t.Fatal(err)
}
assert.Equal(t, "b28427088a3729b2536d10122960394e8be6721f", val.ReverseString())
assert.Equal(t, "1f72e68b4e39602912106d53b229378a082784b2", val.String())
}

View file

@ -1,4 +1,4 @@
package wallet
package keys
import (
"bytes"
@ -11,7 +11,7 @@ import (
"golang.org/x/text/unicode/norm"
)
// NEP-2 standard implementation for encrypting and decrypting wallets.
// NEP-2 standard implementation for encrypting and decrypting private keys.
// NEP-2 specified parameters used for cryptography.
const (
@ -24,20 +24,21 @@ const (
var nepHeader = []byte{0x01, 0x42}
type scryptParams struct {
type ScryptParams struct {
N int `json:"n"`
R int `json:"r"`
P int `json:"p"`
}
func newScryptParams() scryptParams {
return scryptParams{
func NEP2ScryptParams() ScryptParams {
return ScryptParams{
N: n,
R: r,
P: p,
}
}
// NEP2Encrypt encrypts a the PrivateKey using a given passphrase
// under the NEP-2 standard.
func NEP2Encrypt(priv *PrivateKey, passphrase string) (s string, err error) {

View file

@ -0,0 +1,42 @@
package keys
import (
"testing"
"github.com/CityOfZion/neo-go/pkg/internal/keytestcases"
"github.com/stretchr/testify/assert"
)
func TestNEP2Encrypt(t *testing.T) {
for _, testCase := range keytestcases.Arr {
privKey, err := NewPrivateKeyFromHex(testCase.PrivateKey)
assert.Nil(t, err)
encryptedWif, err := NEP2Encrypt(privKey, testCase.Passphrase)
assert.Nil(t, err)
assert.Equal(t, testCase.EncryptedWif, encryptedWif)
}
}
func TestNEP2Decrypt(t *testing.T) {
for _, testCase := range keytestcases.Arr {
privKeyString, err := NEP2Decrypt(testCase.EncryptedWif, testCase.Passphrase)
assert.Nil(t, err)
privKey, err := NewPrivateKeyFromWIF(privKeyString)
assert.Nil(t, err)
assert.Equal(t, testCase.PrivateKey, privKey.String())
wif, err := privKey.WIF()
assert.Nil(t, err)
assert.Equal(t, testCase.Wif, wif)
address, err := privKey.Address()
assert.Nil(t, err)
assert.Equal(t, testCase.Address, address)
}
}

View file

@ -1,4 +1,4 @@
package wallet
package keys
import (
"bytes"
@ -67,10 +67,10 @@ func NewPrivateKeyFromRawBytes(b []byte) (*PrivateKey, error) {
}
// PublicKey derives the public key from the private key.
func (p *PrivateKey) PublicKey() (*crypto.PublicKey, error) {
func (p *PrivateKey) PublicKey() (*PublicKey, error) {
var (
err error
pk crypto.PublicKey
pk PublicKey
c = crypto.NewEllipticCurve()
q = new(big.Int).SetBytes(p.b)
)
@ -125,7 +125,7 @@ func (p *PrivateKey) Address() (string, error) {
if err != nil {
return "", err
}
return pk.Address()
return pk.Address(), nil
}
// Signature creates the signature using the private key.
@ -134,7 +134,7 @@ func (p *PrivateKey) Signature() ([]byte, error) {
if err != nil {
return nil, err
}
return pk.Signature()
return pk.Signature(), nil
}
// Sign signs arbitrary length data using the private key.

View file

@ -0,0 +1,50 @@
package keys
import (
"encoding/hex"
"strings"
"testing"
"github.com/stretchr/testify/assert"
"github.com/CityOfZion/neo-go/pkg/internal/keytestcases"
)
func TestPrivateKey(t *testing.T) {
for _, testCase := range keytestcases.Arr {
privKey, err := NewPrivateKeyFromHex(testCase.PrivateKey)
assert.Nil(t, err)
address, err := privKey.Address()
assert.Nil(t, err)
assert.Equal(t, testCase.Address, address)
wif, err := privKey.WIF()
assert.Nil(t, err)
assert.Equal(t, testCase.Wif, wif)
pubKey, _ := privKey.PublicKey()
assert.Equal(t, hex.EncodeToString(pubKey.Bytes()), testCase.PublicKey)
}
}
func TestPrivateKeyFromWIF(t *testing.T) {
for _, testCase := range keytestcases.Arr {
key, err := NewPrivateKeyFromWIF(testCase.Wif)
assert.Nil(t, err)
assert.Equal(t, testCase.PrivateKey, key.String())
}
}
func TestSigning(t *testing.T) {
// These were taken from the rfcPage:https://tools.ietf.org/html/rfc6979#page-33
// public key: U = xG
//Ux = 60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6
//Uy = 7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299
PrivateKey, _ := NewPrivateKeyFromHex("C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721")
data, err := PrivateKey.Sign([]byte("sample"))
assert.Nil(t, err)
r := "EFD48B2AACB6A8FD1140DD9CD45E81D69D2C877B56AAF991C34D0EA84EAF3716"
s := "F7CB1C942D657C41D436C7A1B6E29F65F3E900DBB9AFF4064DC4AB2F843ACDA8"
assert.Equal(t, strings.ToLower(r+s), hex.EncodeToString(data))
}

View file

@ -1,8 +1,9 @@
package crypto
package keys
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/x509"
"encoding/binary"
"encoding/hex"
@ -10,6 +11,7 @@ import (
"math/big"
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/pkg/errors"
)
@ -35,7 +37,7 @@ func (keys PublicKeys) Less(i, j int) bool {
// PublicKey represents a public key and provides a high level
// API around the ECPoint.
type PublicKey struct {
ECPoint
crypto.ECPoint
}
// NewPublicKeyFromString return a public key created from the
@ -87,7 +89,7 @@ func NewPublicKeyFromRawBytes(data []byte) (*PublicKey, error) {
return nil, errors.New("given bytes aren't ECDSA public key")
}
key := PublicKey{
ECPoint{
crypto.ECPoint{
X: pk.X,
Y: pk.Y,
},
@ -102,14 +104,14 @@ func (p *PublicKey) DecodeBytes(data []byte) error {
switch prefix := data[0]; prefix {
// Infinity
case 0x00:
p.ECPoint = ECPoint{}
p.ECPoint = crypto.ECPoint{}
// Compressed public keys
case 0x02, 0x03:
if l < 33 {
return errors.Errorf("bad binary size(%d)", l)
}
c := NewEllipticCurve()
c := crypto.NewEllipticCurve()
var err error
p.ECPoint, err = c.Decompress(new(big.Int).SetBytes(data[1:]), uint(prefix&0x1))
if err != nil {
@ -139,7 +141,7 @@ func (p *PublicKey) DecodeBinary(r io.Reader) error {
// Infinity
switch prefix {
case 0x00:
p.ECPoint = ECPoint{}
p.ECPoint = crypto.ECPoint{}
return nil
// Compressed public keys
case 0x02, 0x03:
@ -166,30 +168,39 @@ func (p *PublicKey) EncodeBinary(w io.Writer) error {
return binary.Write(w, binary.LittleEndian, p.Bytes())
}
func (p *PublicKey) Signature() ([]byte, error) {
func (p *PublicKey) Signature() []byte {
b := p.Bytes()
b = append([]byte{0x21}, b...)
b = append(b, 0xAC)
sig := hash.Hash160(b)
return sig.Bytes(), nil
return sig.Bytes()
}
func (p *PublicKey) Address() (string, error) {
var (
err error
b []byte
)
if b, err = p.Signature(); err != nil {
return "", err
}
func (p *PublicKey) Address() string {
var b []byte = p.Signature()
b = append([]byte{0x17}, b...)
csum := hash.Checksum(b)
b = append(b, csum...)
address := Base58Encode(b)
return address, nil
address := crypto.Base58Encode(b)
return address
}
// Verify returns true if the signature is valid and corresponds
// to the hash and public key
func (p *PublicKey) Verify(signature []byte, hash []byte) bool {
publicKey := &ecdsa.PublicKey{}
publicKey.Curve = elliptic.P256()
publicKey.X = p.X
publicKey.Y = p.Y
if p.X == nil || p.Y == nil {
return false
}
rBytes := new(big.Int).SetBytes(signature[0:32])
sBytes := new(big.Int).SetBytes(signature[32:64])
return ecdsa.Verify(publicKey, hash, rBytes, sBytes)
}

View file

@ -1,15 +1,16 @@
package crypto
package keys
import (
"bytes"
"encoding/hex"
"testing"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/stretchr/testify/assert"
)
func TestEncodeDecodeInfinity(t *testing.T) {
key := &PublicKey{ECPoint{}}
key := &PublicKey{crypto.ECPoint{}}
buf := new(bytes.Buffer)
assert.Nil(t, key.EncodeBinary(buf))
assert.Equal(t, 1, buf.Len())
@ -21,7 +22,7 @@ func TestEncodeDecodeInfinity(t *testing.T) {
func TestEncodeDecodePublicKey(t *testing.T) {
for i := 0; i < 4; i++ {
p := &PublicKey{RandomECPoint()}
p := &PublicKey{crypto.RandomECPoint()}
buf := new(bytes.Buffer)
assert.Nil(t, p.EncodeBinary(buf))
@ -34,8 +35,14 @@ func TestEncodeDecodePublicKey(t *testing.T) {
func TestDecodeFromString(t *testing.T) {
str := "03b209fd4f53a7170ea4444e0cb0a6bb6a53c2bd016926989cf85f9b0fba17a70c"
pubKey, err := NewPublicKeyFromString(str)
if err != nil {
t.Fatal(err)
}
assert.Nil(t, err)
assert.Equal(t, str, hex.EncodeToString(pubKey.Bytes()))
}
func TestPubkeyToAddress(t *testing.T) {
pubKey, err := NewPublicKeyFromString("031ee4e73a17d8f76dc02532e2620bcb12425b33c0c9f9694cc2caa8226b68cad4")
assert.Nil(t, err)
actual := pubKey.Address()
expected := "AUpGsNCHzSimeMRVPQfhwrVdiUp8Q2N2Qx"
assert.Equal(t, expected, actual)
}

View file

@ -1,31 +1,34 @@
package pubkeytesthelper
package keys
import (
"testing"
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
"github.com/CityOfZion/neo-go/pkg/crypto/privatekey"
"github.com/stretchr/testify/assert"
)
func TestPubKeyVerify(t *testing.T) {
actual, err := SignDataWithRandomPrivateKey([]byte("sample"))
var data = []byte("sample")
hashedData := hash.Sha256(data)
if err != nil {
t.Fatal(err)
}
privKey, err := NewPrivateKey()
assert.Nil(t, err)
signedData, err := privKey.Sign(data)
assert.Nil(t, err)
pubKey, err := privKey.PublicKey()
assert.Nil(t, err)
result := pubKey.Verify(signedData, hashedData.Bytes())
expected := true
assert.Equal(t, expected, actual)
assert.Equal(t, expected, result)
}
func TestWrongPubKey(t *testing.T) {
privKey, _ := privatekey.NewPrivateKey()
privKey, _ := NewPrivateKey()
sample := []byte("sample")
hashedData, _ := hash.Sha256(sample)
hashedData := hash.Sha256(sample)
signedData, _ := privKey.Sign(sample)
secondPrivKey, _ := privatekey.NewPrivateKey()
secondPrivKey, _ := NewPrivateKey()
wrongPubKey, _ := secondPrivKey.PublicKey()
actual := wrongPubKey.Verify(signedData, hashedData.Bytes())

View file

@ -1,4 +1,4 @@
package wallet
package keys
import (
"bytes"
@ -98,7 +98,7 @@ func (wif WIF) GetVerificationScript() ([]byte, error) {
)
var (
vScript []byte
pubkey *crypto.PublicKey
pubkey *PublicKey
)
pubkey, err := wif.PrivateKey.PublicKey()
if err != nil {

View file

@ -1,8 +1,10 @@
package wallet
package keys
import (
"encoding/hex"
"testing"
"github.com/stretchr/testify/assert"
)
type wifTestCase struct {
@ -36,29 +38,15 @@ var wifTestCases = []wifTestCase{
func TestWIFEncodeDecode(t *testing.T) {
for _, testCase := range wifTestCases {
b, err := hex.DecodeString(testCase.privateKey)
if err != nil {
t.Fatal(err)
}
assert.Nil(t, err)
wif, err := WIFEncode(b, testCase.version, testCase.compressed)
if err != nil {
t.Fatal(err)
}
if want, have := testCase.wif, wif; want != have {
t.Fatalf("expected %s got %s", want, have)
}
assert.Nil(t, err)
assert.Equal(t, testCase.wif, wif)
WIF, err := WIFDecode(wif, testCase.version)
if err != nil {
t.Fatal(err)
}
if want, have := testCase.privateKey, WIF.PrivateKey.String(); want != have {
t.Fatalf("expected %s got %s", want, have)
}
if want, have := testCase.compressed, WIF.Compressed; want != have {
t.Fatalf("expected %v got %v", want, have)
}
if want, have := testCase.version, WIF.Version; want != have {
t.Fatalf("expected %d got %d", want, have)
}
assert.Nil(t, err)
assert.Equal(t, testCase.privateKey, WIF.PrivateKey.String())
assert.Equal(t, testCase.compressed, WIF.Compressed)
assert.Equal(t, testCase.version, WIF.Version)
}
}

View file

@ -0,0 +1,37 @@
package keytestcases
type Ktype struct {
Address,
PrivateKey,
PublicKey,
Wif,
Passphrase,
EncryptedWif string
}
var Arr = []Ktype{
{
Address: "ALq7AWrhAueN6mJNqk6FHJjnsEoPRytLdW",
PrivateKey: "7d128a6d096f0c14c3a25a2b0c41cf79661bfcb4a8cc95aaaea28bde4d732344",
PublicKey: "02028a99826edc0c97d18e22b6932373d908d323aa7f92656a77ec26e8861699ef",
Wif: "L1QqQJnpBwbsPGAuutuzPTac8piqvbR1HRjrY5qHup48TBCBFe4g",
Passphrase: "city of zion",
EncryptedWif: "6PYLHmDf6AjF4AsVtosmxHuPYeuyJL3SLuw7J1U8i7HxKAnYNsp61HYRfF",
},
{
Address: "ALfnhLg7rUyL6Jr98bzzoxz5J7m64fbR4s",
PrivateKey: "9ab7e154840daca3a2efadaf0df93cd3a5b51768c632f5433f86909d9b994a69",
PublicKey: "031d8e1630ce640966967bc6d95223d21f44304133003140c3b52004dc981349c9",
Wif: "L2QTooFoDFyRFTxmtiVHt5CfsXfVnexdbENGDkkrrgTTryiLsPMG",
Passphrase: "我的密码",
EncryptedWif: "6PYWVp3xfgvnuNKP7ZavSViYvvim2zuzx9Q33vuWZr8aURiKeJ6Zm7BfPQ",
},
{
Address: "AVf4UGKevVrMR1j3UkPsuoYKSC4ocoAkKx",
PrivateKey: "3edee7036b8fd9cef91de47386b191dd76db2888a553e7736bb02808932a915b",
PublicKey: "02232ce8d2e2063dce0451131851d47421bfc4fc1da4db116fca5302c0756462fa",
Wif: "KyKvWLZsNwBJx5j9nurHYRwhYfdQUu9tTEDsLCUHDbYBL8cHxMiG",
Passphrase: "MyL33tP@33w0rd",
EncryptedWif: "6PYNoc1EG5J38MTqGN9Anphfdd6UwbS4cpFCzHhrkSKBBbV1qkbJJZQnkn",
},
}

View file

@ -11,7 +11,7 @@ import (
"sync"
"time"
"github.com/CityOfZion/neo-go/pkg/wallet"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/pkg/errors"
)
@ -32,7 +32,7 @@ type Client struct {
ctx context.Context
version string
wifMu *sync.Mutex
wif *wallet.WIF
wif *keys.WIF
balancerMu *sync.Mutex
balancer BalanceGetter
}
@ -93,10 +93,10 @@ func NewClient(ctx context.Context, endpoint string, opts ClientOptions) (*Clien
}, nil
}
func (c *Client) WIF() wallet.WIF {
func (c *Client) WIF() keys.WIF {
c.wifMu.Lock()
defer c.wifMu.Unlock()
return wallet.WIF{
return keys.WIF{
Version: c.wif.Version,
Compressed: c.wif.Compressed,
PrivateKey: c.wif.PrivateKey,
@ -109,7 +109,7 @@ func (c *Client) WIF() wallet.WIF {
func (c *Client) SetWIF(wif string) error {
c.wifMu.Lock()
defer c.wifMu.Unlock()
decodedWif, err := wallet.WIFDecode(wif, 0x00)
decodedWif, err := keys.WIFDecode(wif, 0x00)
if err != nil {
return errors.Wrap(err, "Failed to decode WIF; failed to add WIF to client ")
}

View file

@ -5,8 +5,8 @@ import (
"github.com/CityOfZion/neo-go/pkg/core/transaction"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
"github.com/CityOfZion/neo-go/pkg/wallet"
errs "github.com/pkg/errors"
)
@ -67,7 +67,7 @@ func CreateRawContractTransaction(params ContractTxParams) (*transaction.Transac
return tx, nil
}
func GetInvocationScript(tx *transaction.Transaction, wif wallet.WIF) ([]byte, error) {
func GetInvocationScript(tx *transaction.Transaction, wif keys.WIF) ([]byte, error) {
const (
pushbytes64 = 0x40
)

View file

@ -8,7 +8,7 @@ package rpc
import (
"github.com/CityOfZion/neo-go/pkg/core/transaction"
"github.com/CityOfZion/neo-go/pkg/util"
"github.com/CityOfZion/neo-go/pkg/wallet"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
)
type (
@ -19,7 +19,7 @@ type (
assetId util.Uint256
address string
value util.Fixed8
wif wallet.WIF // a WIF to send the transaction
wif keys.WIF // a WIF to send the transaction
// since there are many ways to provide unspents,
// transaction composer stays agnostic to that how
// unspents was got;

View file

@ -5,7 +5,7 @@ import (
"sort"
"github.com/CityOfZion/neo-go/pkg/core"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
)
@ -15,7 +15,7 @@ type AccountState struct {
Version uint8 `json:"version"`
ScriptHash util.Uint160 `json:"script_hash"`
IsFrozen bool `json:"frozen"`
Votes []*crypto.PublicKey `json:"votes"`
Votes []*keys.PublicKey `json:"votes"`
Balances []Balance `json:"balances"`
}

View file

@ -5,12 +5,12 @@ import (
"fmt"
"sort"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/vm"
)
// CreateMultiSigRedeemScript will create a script runnable by the VM.
func CreateMultiSigRedeemScript(m int, publicKeys crypto.PublicKeys) ([]byte, error) {
func CreateMultiSigRedeemScript(m int, publicKeys keys.PublicKeys) ([]byte, error) {
if m <= 1 {
return nil, fmt.Errorf("param m cannot be smaller or equal to 1 got %d", m)
}

View file

@ -4,18 +4,18 @@ import (
"bytes"
"testing"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
"github.com/CityOfZion/neo-go/pkg/util"
"github.com/CityOfZion/neo-go/pkg/vm"
"github.com/stretchr/testify/assert"
)
func TestCreateMultiSigRedeemScript(t *testing.T) {
val1, _ := crypto.NewPublicKeyFromString("03b209fd4f53a7170ea4444e0cb0a6bb6a53c2bd016926989cf85f9b0fba17a70c")
val2, _ := crypto.NewPublicKeyFromString("02df48f60e8f3e01c48ff40b9b7f1310d7a8b2a193188befe1c2e3df740e895093")
val3, _ := crypto.NewPublicKeyFromString("03b8d9d5771d8f513aa0869b9cc8d50986403b78c6da36890638c3d46a5adce04a")
val1, _ := keys.NewPublicKeyFromString("03b209fd4f53a7170ea4444e0cb0a6bb6a53c2bd016926989cf85f9b0fba17a70c")
val2, _ := keys.NewPublicKeyFromString("02df48f60e8f3e01c48ff40b9b7f1310d7a8b2a193188befe1c2e3df740e895093")
val3, _ := keys.NewPublicKeyFromString("03b8d9d5771d8f513aa0869b9cc8d50986403b78c6da36890638c3d46a5adce04a")
validators := []*crypto.PublicKey{val1, val2, val3}
validators := []*keys.PublicKey{val1, val2, val3}
out, err := CreateMultiSigRedeemScript(3, validators)
if err != nil {

View file

@ -1,12 +1,15 @@
package wallet
import "github.com/CityOfZion/neo-go/pkg/util"
import (
"github.com/CityOfZion/neo-go/pkg/util"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
)
// Account represents a NEO account. It holds the private and public key
// along with some metadata.
type Account struct {
// NEO private key.
privateKey *PrivateKey
privateKey *keys.PrivateKey
// NEO public key.
publicKey []byte
@ -50,7 +53,7 @@ type Contract struct {
// NewAccount creates a new Account with a random generated PrivateKey.
func NewAccount() (*Account, error) {
priv, err := NewPrivateKey()
priv, err := keys.NewPrivateKey()
if err != nil {
return nil, err
}
@ -60,7 +63,7 @@ func NewAccount() (*Account, error) {
// DecryptAccount decrypt the encryptedWIF with the given passphrase and
// return the decrypted Account.
func DecryptAccount(encryptedWIF, passphrase string) (*Account, error) {
wif, err := NEP2Decrypt(encryptedWIF, passphrase)
wif, err := keys.NEP2Decrypt(encryptedWIF, passphrase)
if err != nil {
return nil, err
}
@ -70,7 +73,7 @@ func DecryptAccount(encryptedWIF, passphrase string) (*Account, error) {
// Encrypt encrypts the wallet's PrivateKey with the given passphrase
// under the NEP-2 standard.
func (a *Account) Encrypt(passphrase string) error {
wif, err := NEP2Encrypt(a.privateKey, passphrase)
wif, err := keys.NEP2Encrypt(a.privateKey, passphrase)
if err != nil {
return err
}
@ -80,7 +83,7 @@ func (a *Account) Encrypt(passphrase string) error {
// NewAccountFromWIF creates a new Account from the given WIF.
func NewAccountFromWIF(wif string) (*Account, error) {
privKey, err := NewPrivateKeyFromWIF(wif)
privKey, err := keys.NewPrivateKeyFromWIF(wif)
if err != nil {
return nil, err
}
@ -88,7 +91,7 @@ func NewAccountFromWIF(wif string) (*Account, error) {
}
// newAccountFromPrivateKey created a wallet from the given PrivateKey.
func newAccountFromPrivateKey(p *PrivateKey) (*Account, error) {
func newAccountFromPrivateKey(p *keys.PrivateKey) (*Account, error) {
pubKey, err := p.PublicKey()
if err != nil {
return nil, err

View file

@ -3,11 +3,13 @@ package wallet
import (
"encoding/hex"
"testing"
"github.com/CityOfZion/neo-go/pkg/internal/keytestcases"
)
func TestNewAccount(t *testing.T) {
for _, testCase := range testKeyCases {
acc, err := NewAccountFromWIF(testCase.wif)
for _, testCase := range keytestcases.Arr {
acc, err := NewAccountFromWIF(testCase.Wif)
if err != nil {
t.Fatal(err)
}
@ -16,8 +18,8 @@ func TestNewAccount(t *testing.T) {
}
func TestDecryptAccount(t *testing.T) {
for _, testCase := range testKeyCases {
acc, err := DecryptAccount(testCase.encryptedWif, testCase.passphrase)
for _, testCase := range keytestcases.Arr {
acc, err := DecryptAccount(testCase.EncryptedWif, testCase.Passphrase)
if err != nil {
t.Fatal(err)
}
@ -26,8 +28,8 @@ func TestDecryptAccount(t *testing.T) {
}
func TestNewFromWif(t *testing.T) {
for _, testCase := range testKeyCases {
acc, err := NewAccountFromWIF(testCase.wif)
for _, testCase := range keytestcases.Arr {
acc, err := NewAccountFromWIF(testCase.Wif)
if err != nil {
t.Fatal(err)
}
@ -35,17 +37,17 @@ func TestNewFromWif(t *testing.T) {
}
}
func compareFields(t *testing.T, tk testKey, acc *Account) {
if want, have := tk.address, acc.Address; want != have {
func compareFields(t *testing.T, tk keytestcases.Ktype, acc *Account) {
if want, have := tk.Address, acc.Address; want != have {
t.Fatalf("expected %s got %s", want, have)
}
if want, have := tk.wif, acc.wif; want != have {
if want, have := tk.Wif, acc.wif; want != have {
t.Fatalf("expected %s got %s", want, have)
}
if want, have := tk.publicKey, hex.EncodeToString(acc.publicKey); want != have {
if want, have := tk.PublicKey, hex.EncodeToString(acc.publicKey); want != have {
t.Fatalf("expected %s got %s", want, have)
}
if want, have := tk.privateKey, acc.privateKey.String(); want != have {
if want, have := tk.PrivateKey, acc.privateKey.String(); want != have {
t.Fatalf("expected %s got %s", want, have)
}
}

View file

@ -1,60 +0,0 @@
package wallet
import (
"testing"
)
func TestNEP2Encrypt(t *testing.T) {
for _, testCase := range testKeyCases {
privKey, err := NewPrivateKeyFromHex(testCase.privateKey)
if err != nil {
t.Fatal(err)
}
encryptedWif, err := NEP2Encrypt(privKey, testCase.passphrase)
if err != nil {
t.Fatal(err)
}
if want, have := testCase.encryptedWif, encryptedWif; want != have {
t.Fatalf("expected %s got %s", want, have)
}
}
}
func TestNEP2Decrypt(t *testing.T) {
for _, testCase := range testKeyCases {
privKeyString, err := NEP2Decrypt(testCase.encryptedWif, testCase.passphrase)
if err != nil {
t.Fatal(err)
}
privKey, err := NewPrivateKeyFromWIF(privKeyString)
if err != nil {
t.Fatal(err)
}
if want, have := testCase.privateKey, privKey.String(); want != have {
t.Fatalf("expected %s got %s", want, have)
}
wif, err := privKey.WIF()
if err != nil {
t.Fatal(err)
}
if want, have := testCase.wif, wif; want != have {
t.Fatalf("expected %s got %s", want, have)
}
address, err := privKey.Address()
if err != nil {
t.Fatal(err)
}
if want, have := testCase.address, address; want != have {
t.Fatalf("expected %s got %s", want, have)
}
}
}

View file

@ -1,74 +0,0 @@
package wallet
import "testing"
type testKey struct {
address,
privateKey,
publicKey,
wif,
passphrase,
encryptedWif string
}
var testKeyCases = []testKey{
{
address: "ALq7AWrhAueN6mJNqk6FHJjnsEoPRytLdW",
privateKey: "7d128a6d096f0c14c3a25a2b0c41cf79661bfcb4a8cc95aaaea28bde4d732344",
publicKey: "02028a99826edc0c97d18e22b6932373d908d323aa7f92656a77ec26e8861699ef",
wif: "L1QqQJnpBwbsPGAuutuzPTac8piqvbR1HRjrY5qHup48TBCBFe4g",
passphrase: "city of zion",
encryptedWif: "6PYLHmDf6AjF4AsVtosmxHuPYeuyJL3SLuw7J1U8i7HxKAnYNsp61HYRfF",
},
{
address: "ALfnhLg7rUyL6Jr98bzzoxz5J7m64fbR4s",
privateKey: "9ab7e154840daca3a2efadaf0df93cd3a5b51768c632f5433f86909d9b994a69",
publicKey: "031d8e1630ce640966967bc6d95223d21f44304133003140c3b52004dc981349c9",
wif: "L2QTooFoDFyRFTxmtiVHt5CfsXfVnexdbENGDkkrrgTTryiLsPMG",
passphrase: "我的密码",
encryptedWif: "6PYWVp3xfgvnuNKP7ZavSViYvvim2zuzx9Q33vuWZr8aURiKeJ6Zm7BfPQ",
},
{
address: "AVf4UGKevVrMR1j3UkPsuoYKSC4ocoAkKx",
privateKey: "3edee7036b8fd9cef91de47386b191dd76db2888a553e7736bb02808932a915b",
publicKey: "02232ce8d2e2063dce0451131851d47421bfc4fc1da4db116fca5302c0756462fa",
wif: "KyKvWLZsNwBJx5j9nurHYRwhYfdQUu9tTEDsLCUHDbYBL8cHxMiG",
passphrase: "MyL33tP@33w0rd",
encryptedWif: "6PYNoc1EG5J38MTqGN9Anphfdd6UwbS4cpFCzHhrkSKBBbV1qkbJJZQnkn",
},
}
func TestPrivateKey(t *testing.T) {
for _, testCase := range testKeyCases {
privKey, err := NewPrivateKeyFromHex(testCase.privateKey)
if err != nil {
t.Fatal(err)
}
address, err := privKey.Address()
if err != nil {
t.Fatal(err)
}
if want, have := testCase.address, address; want != have {
t.Fatalf("expected %s got %s", want, have)
}
wif, err := privKey.WIF()
if err != nil {
t.Fatal(err)
}
if want, have := testCase.wif, wif; want != have {
t.Fatalf("expected %s got %s", want, have)
}
}
}
func TestPrivateKeyFromWIF(t *testing.T) {
for _, testCase := range testKeyCases {
key, err := NewPrivateKeyFromWIF(testCase.wif)
if err != nil {
t.Fatal(err)
}
if want, have := testCase.privateKey, key.String(); want != have {
t.Fatalf("expected %s got %s", want, have)
}
}
}

View file

@ -4,6 +4,8 @@ import (
"encoding/json"
"io"
"os"
"github.com/CityOfZion/neo-go/pkg/crypto/keys"
)
const (
@ -20,7 +22,7 @@ type Wallet struct {
// in the wallet.
Accounts []*Account `json:"accounts"`
Scrypt scryptParams `json:"scrypt"`
Scrypt keys.ScryptParams `json:"scrypt"`
// Extra metadata can be used for storing arbitrary data.
// This field can be empty.
@ -66,7 +68,7 @@ func newWallet(rw io.ReadWriter) *Wallet {
return &Wallet{
Version: walletVersion,
Accounts: []*Account{},
Scrypt: newScryptParams(),
Scrypt: keys.NEP2ScryptParams(),
rw: rw,
path: path,
}