Move all auxiliary function declaration after Main, so that INITSLOT
instructions counter works properly. `vmAndCompileInterop` loads program
and moves nextIP to the Main function offset if there's no _init
function. If _init is there, then nextIP will be moved to the start of
_init. In TestInline we don't handle instructions properly (CALL/JMP
don't change nextIP), we just perform instruction traversal from the
start point via Next(), thus INITSLOT counter value depends on the
starting instruction, which depends on _init presence.
If variable is unnamed and does not contain function call then it's
treated as unused and code generation may be omitted for it
initialization/declaration.
In case if global var is unnamed (and, as a consequence, unused) and
contains a function call inside its value specification, we need to emit
code for this var to be able to call the function as it can have
side-effects. See the example:
```
package foo
import "github.com/nspcc-dev/neo-go/pkg/interop/runtime"
var A = f()
func Main() int {
return 3
}
func f() int {
runtime.Notify("Valuable notification", 1)
return 2
}
```
An attempt to compile the following code leads to runtime panic:
```
package foo
type CustomInt int
func Main() int {
var i CustomInt
i = 5
return i.Do(2)
}
func (CustomInt) Do(arg int) int {
return arg
}
```
The panic:
```
panic: runtime error: index out of range [0] with length 0 [recovered]
panic: runtime error: index out of range [0] with length 0
goroutine 22 [running]:
testing.tRunner.func1.2({0xa341c0, 0xc0001606d8})
/usr/local/go/src/testing/testing.go:1209 +0x24e
testing.tRunner.func1()
/usr/local/go/src/testing/testing.go:1212 +0x218
panic({0xa341c0, 0xc0001606d8})
/usr/local/go/src/runtime/panic.go:1038 +0x215
github.com/nspcc-dev/neo-go/pkg/compiler.(*codegen).convertFuncDecl(0xc00015e3c0, {0xc753b8, 0xc000152c80}, 0xc000266300, 0x30)
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/codegen.go:497 +0x10b3
github.com/nspcc-dev/neo-go/pkg/compiler.(*codegen).compile.func2(0xc000152c80, 0xc00023c410)
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/codegen.go:2153 +0x3f8
github.com/nspcc-dev/neo-go/pkg/compiler.(*codegen).ForEachFile.func1(0xc000229b80)
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/compiler.go:102 +0x82
github.com/nspcc-dev/neo-go/pkg/compiler.(*codegen).ForEachPackage(0xc00015e3c0, 0xc000189bb0)
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/compiler.go:93 +0xc6
github.com/nspcc-dev/neo-go/pkg/compiler.(*codegen).ForEachFile(0x999a20, 0xc000130d80)
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/compiler.go:99 +0x45
github.com/nspcc-dev/neo-go/pkg/compiler.(*codegen).compile(0xc00015e3c0, 0xc0002669f0, 0x1)
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/codegen.go:2140 +0x445
github.com/nspcc-dev/neo-go/pkg/compiler.codeGen(0xc0002669f0)
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/codegen.go:2191 +0x353
github.com/nspcc-dev/neo-go/pkg/compiler.CompileWithOptions({0xa6f39a, 0x50b6b3}, {0xc6d1a0, 0xc0002421e0}, 0x0)
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/compiler.go:218 +0x65
github.com/nspcc-dev/neo-go/pkg/compiler_test.vmAndCompileInterop(0x5648df, {0xa9bf23, 0x94})
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/vm_test.go:75 +0x113
github.com/nspcc-dev/neo-go/pkg/compiler_test.eval(0xc0002421c0, {0xa9bf23, 0x61be8c7}, {0xa68880, 0xc0002421c0})
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/vm_test.go:36 +0x2d
github.com/nspcc-dev/neo-go/pkg/compiler_test.TestUnnamedMethodReceiver(0x4079f9)
/home/anna/Documents/GitProjects/nspcc-dev/neo-go/pkg/compiler/function_call_test.go:400 +0x4f
testing.tRunner(0xc000204b60, 0xbcebb0)
/usr/local/go/src/testing/testing.go:1259 +0x102
created by testing.(*T).Run
/usr/local/go/src/testing/testing.go:1306 +0x35a
```
The solution is to use the same approach as for unnamed function
parameters handling introduced in #2204. (c *funcScope).newVariable is
able to properly handle "_" receiver.
In case there are no returns in the inlined function, jumps point to the
next instruction and can be omitted. This optimization can be extended
to handle other cases, here we just make sure that already existing code
stays the same.
Signed-off-by: Evgeniy Stratonikov <evgeniy@nspcc.ru>
c.funcs contains function names using base types, while methods can be defined
on pointers and the value returned from c.getFuncNameFromSelector will have an
asterisk. We can't have the same name used for (*T) and (T) methods, so just
stripping the asterisk allows to get the right one.
Notice that this doesn't differentiate between (*T) and (T) receivers always
treating them as is. But we have the same problem with arguments now and the
number of inlined calls is limited, usually we want this behavior.
Regular methods need this, because it'll be packed into parameters, but
inlined ones should deal with it in inlining code itself because method
receiver will be some local (aliased) variable anyway.
We shouldn't use StoragePrice from Blockchain because its dao doesn't
contain the whole set of changes from previouse transactions in the
current block. Instead, we should use an updated storage price for
each transaction and retrieve the price from cached DAO.
The usage of the Blockchain's one leads to the same ExecFeeFactor within
a single block. What we need is to update ExecFeeFactor after each
transaction invocation, thus, cached DAO should be used as it contains
all relevant changes.
It's not a perfect thing, but neo-debugger just doesn't work at all with
relative pathes. Notice that `saveSequencePoint` still used absolute ones
leading to invalid debug.json data, but fixing it there doesn't help,
neo-debugger can't load source code using relatives.