package dao import ( "bytes" "context" "encoding/binary" "errors" "fmt" iocore "io" "math/big" "sync" "github.com/nspcc-dev/neo-go/pkg/config/limits" "github.com/nspcc-dev/neo-go/pkg/core/block" "github.com/nspcc-dev/neo-go/pkg/core/state" "github.com/nspcc-dev/neo-go/pkg/core/storage" "github.com/nspcc-dev/neo-go/pkg/core/transaction" "github.com/nspcc-dev/neo-go/pkg/encoding/address" "github.com/nspcc-dev/neo-go/pkg/encoding/bigint" "github.com/nspcc-dev/neo-go/pkg/io" "github.com/nspcc-dev/neo-go/pkg/smartcontract/trigger" "github.com/nspcc-dev/neo-go/pkg/util" "github.com/nspcc-dev/neo-go/pkg/vm/stackitem" ) // HasTransaction errors. var ( // ErrAlreadyExists is returned when the transaction exists in dao. ErrAlreadyExists = errors.New("transaction already exists") // ErrHasConflicts is returned when the transaction is in the list of conflicting // transactions which are already in dao. ErrHasConflicts = errors.New("transaction has conflicts") // ErrInternalDBInconsistency is returned when the format of the retrieved DAO // record is unexpected. ErrInternalDBInconsistency = errors.New("internal DB inconsistency") ) // conflictRecordValueLen is the length of value of transaction conflict record. // It consists of 1-byte [storage.ExecTransaction] prefix and 4-bytes block index // in the LE form. const conflictRecordValueLen = 1 + 4 // Simple is memCached wrapper around DB, simple DAO implementation. type Simple struct { Version Version Store *storage.MemCachedStore nativeCacheLock sync.RWMutex nativeCache map[int32]NativeContractCache // nativeCachePS is the backend store that provides functionality to store // and retrieve multi-tier native contract cache. The lowest Simple has its // nativeCachePS set to nil. nativeCachePS *Simple private bool serCtx *stackitem.SerializationContext keyBuf []byte dataBuf *io.BufBinWriter } // NativeContractCache is an interface representing cache for a native contract. // Cache can be copied to create a wrapper around current DAO layer. Wrapped cache // can be persisted to the underlying DAO native cache. type NativeContractCache interface { // Copy returns a copy of native cache item that can safely be changed within // the subsequent DAO operations. Copy() NativeContractCache } // NewSimple creates a new simple dao using the provided backend store. func NewSimple(backend storage.Store, stateRootInHeader bool) *Simple { st := storage.NewMemCachedStore(backend) return newSimple(st, stateRootInHeader) } func newSimple(st *storage.MemCachedStore, stateRootInHeader bool) *Simple { return &Simple{ Version: Version{ StoragePrefix: storage.STStorage, StateRootInHeader: stateRootInHeader, }, Store: st, nativeCache: make(map[int32]NativeContractCache), } } // GetBatch returns the currently accumulated DB changeset. func (dao *Simple) GetBatch() *storage.MemBatch { return dao.Store.GetBatch() } // GetWrapped returns a new DAO instance with another layer of wrapped // MemCachedStore around the current DAO Store. func (dao *Simple) GetWrapped() *Simple { d := NewSimple(dao.Store, dao.Version.StateRootInHeader) d.Version = dao.Version d.nativeCachePS = dao return d } // GetPrivate returns a new DAO instance with another layer of private // MemCachedStore around the current DAO Store. func (dao *Simple) GetPrivate() *Simple { d := &Simple{ Version: dao.Version, keyBuf: dao.keyBuf, dataBuf: dao.dataBuf, serCtx: dao.serCtx, } // Inherit everything... d.Store = storage.NewPrivateMemCachedStore(dao.Store) // except storage, wrap another layer. d.private = true d.nativeCachePS = dao // Do not inherit cache from nativeCachePS; instead should create clear map: // GetRWCache and GetROCache will retrieve cache from the underlying // nativeCache if requested. The lowest underlying DAO MUST have its native // cache initialized before access it, otherwise GetROCache and GetRWCache // won't work properly. d.nativeCache = make(map[int32]NativeContractCache) return d } // GetAndDecode performs get operation and decoding with serializable structures. func (dao *Simple) GetAndDecode(entity io.Serializable, key []byte) error { entityBytes, err := dao.Store.Get(key) if err != nil { return err } reader := io.NewBinReaderFromBuf(entityBytes) entity.DecodeBinary(reader) return reader.Err } // putWithBuffer performs put operation using buf as a pre-allocated buffer for serialization. func (dao *Simple) putWithBuffer(entity io.Serializable, key []byte, buf *io.BufBinWriter) error { entity.EncodeBinary(buf.BinWriter) if buf.Err != nil { return buf.Err } dao.Store.Put(key, buf.Bytes()) return nil } // -- start NEP-17 transfer info. func (dao *Simple) makeTTIKey(acc util.Uint160) []byte { key := dao.getKeyBuf(1 + util.Uint160Size) key[0] = byte(storage.STTokenTransferInfo) copy(key[1:], acc.BytesBE()) return key } // GetTokenTransferInfo retrieves NEP-17 transfer info from the cache. func (dao *Simple) GetTokenTransferInfo(acc util.Uint160) (*state.TokenTransferInfo, error) { key := dao.makeTTIKey(acc) bs := state.NewTokenTransferInfo() err := dao.GetAndDecode(bs, key) if err != nil && !errors.Is(err, storage.ErrKeyNotFound) { return nil, err } return bs, nil } // PutTokenTransferInfo saves NEP-17 transfer info in the cache. func (dao *Simple) PutTokenTransferInfo(acc util.Uint160, bs *state.TokenTransferInfo) error { return dao.putTokenTransferInfo(acc, bs, dao.getDataBuf()) } func (dao *Simple) putTokenTransferInfo(acc util.Uint160, bs *state.TokenTransferInfo, buf *io.BufBinWriter) error { return dao.putWithBuffer(bs, dao.makeTTIKey(acc), buf) } // -- end NEP-17 transfer info. // -- start transfer log. func (dao *Simple) getTokenTransferLogKey(acc util.Uint160, newestTimestamp uint64, index uint32, isNEP11 bool) []byte { key := dao.getKeyBuf(1 + util.Uint160Size + 8 + 4) if isNEP11 { key[0] = byte(storage.STNEP11Transfers) } else { key[0] = byte(storage.STNEP17Transfers) } copy(key[1:], acc.BytesBE()) binary.BigEndian.PutUint64(key[1+util.Uint160Size:], newestTimestamp) binary.BigEndian.PutUint32(key[1+util.Uint160Size+8:], index) return key } // SeekNEP17TransferLog executes f for each NEP-17 transfer in log starting from // the transfer with the newest timestamp up to the oldest transfer. It continues // iteration until false is returned from f. The last non-nil error is returned. func (dao *Simple) SeekNEP17TransferLog(acc util.Uint160, newestTimestamp uint64, f func(*state.NEP17Transfer) (bool, error)) error { key := dao.getTokenTransferLogKey(acc, newestTimestamp, 0, false) prefixLen := 1 + util.Uint160Size var seekErr error dao.Store.Seek(storage.SeekRange{ Prefix: key[:prefixLen], Start: key[prefixLen : prefixLen+8], Backwards: true, }, func(k, v []byte) bool { lg := &state.TokenTransferLog{Raw: v} cont, err := lg.ForEachNEP17(f) if err != nil { seekErr = err } return cont }) return seekErr } // SeekNEP11TransferLog executes f for each NEP-11 transfer in log starting from // the transfer with the newest timestamp up to the oldest transfer. It continues // iteration until false is returned from f. The last non-nil error is returned. func (dao *Simple) SeekNEP11TransferLog(acc util.Uint160, newestTimestamp uint64, f func(*state.NEP11Transfer) (bool, error)) error { key := dao.getTokenTransferLogKey(acc, newestTimestamp, 0, true) prefixLen := 1 + util.Uint160Size var seekErr error dao.Store.Seek(storage.SeekRange{ Prefix: key[:prefixLen], Start: key[prefixLen : prefixLen+8], Backwards: true, }, func(k, v []byte) bool { lg := &state.TokenTransferLog{Raw: v} cont, err := lg.ForEachNEP11(f) if err != nil { seekErr = err } return cont }) return seekErr } // GetTokenTransferLog retrieves transfer log from the cache. func (dao *Simple) GetTokenTransferLog(acc util.Uint160, newestTimestamp uint64, index uint32, isNEP11 bool) (*state.TokenTransferLog, error) { key := dao.getTokenTransferLogKey(acc, newestTimestamp, index, isNEP11) value, err := dao.Store.Get(key) if err != nil { if errors.Is(err, storage.ErrKeyNotFound) { return new(state.TokenTransferLog), nil } return nil, err } return &state.TokenTransferLog{Raw: value}, nil } // PutTokenTransferLog saves the given transfer log in the cache. func (dao *Simple) PutTokenTransferLog(acc util.Uint160, start uint64, index uint32, isNEP11 bool, lg *state.TokenTransferLog) { key := dao.getTokenTransferLogKey(acc, start, index, isNEP11) dao.Store.Put(key, lg.Raw) } // -- end transfer log. // -- start notification event. func (dao *Simple) makeExecutableKey(hash util.Uint256) []byte { key := dao.getKeyBuf(1 + util.Uint256Size) key[0] = byte(storage.DataExecutable) copy(key[1:], hash.BytesBE()) return key } // GetAppExecResults gets application execution results with the specified trigger from the // given store. func (dao *Simple) GetAppExecResults(hash util.Uint256, trig trigger.Type) ([]state.AppExecResult, error) { key := dao.makeExecutableKey(hash) bs, err := dao.Store.Get(key) if err != nil { return nil, err } if len(bs) == 0 { return nil, fmt.Errorf("%w: empty execution log", ErrInternalDBInconsistency) } switch bs[0] { case storage.ExecBlock: r := io.NewBinReaderFromBuf(bs) _ = r.ReadB() _, err = block.NewTrimmedFromReader(dao.Version.StateRootInHeader, r) if err != nil { return nil, err } result := make([]state.AppExecResult, 0, 2) for { aer := new(state.AppExecResult) aer.DecodeBinary(r) if r.Err != nil { if errors.Is(r.Err, iocore.EOF) { break } return nil, r.Err } if aer.Trigger&trig != 0 { result = append(result, *aer) } } return result, nil case storage.ExecTransaction: _, _, aer, err := decodeTxAndExecResult(bs) if err != nil { return nil, err } if aer.Trigger&trig != 0 { return []state.AppExecResult{*aer}, nil } return nil, nil default: return nil, fmt.Errorf("%w: unexpected executable prefix %d", ErrInternalDBInconsistency, bs[0]) } } // GetTxExecResult gets application execution result of the specified transaction // and returns the transaction itself, its height and its AppExecResult. func (dao *Simple) GetTxExecResult(hash util.Uint256) (uint32, *transaction.Transaction, *state.AppExecResult, error) { key := dao.makeExecutableKey(hash) bs, err := dao.Store.Get(key) if err != nil { return 0, nil, nil, err } if len(bs) == 0 { return 0, nil, nil, fmt.Errorf("%w: empty execution log", ErrInternalDBInconsistency) } if bs[0] != storage.ExecTransaction { return 0, nil, nil, storage.ErrKeyNotFound } return decodeTxAndExecResult(bs) } // decodeTxAndExecResult decodes transaction, its height and execution result from // the given executable bytes. It performs no executable prefix check. func decodeTxAndExecResult(buf []byte) (uint32, *transaction.Transaction, *state.AppExecResult, error) { if len(buf) == conflictRecordValueLen { // conflict record stub. return 0, nil, nil, storage.ErrKeyNotFound } r := io.NewBinReaderFromBuf(buf) _ = r.ReadB() h := r.ReadU32LE() tx := &transaction.Transaction{} tx.DecodeBinary(r) if r.Err != nil { return 0, nil, nil, r.Err } aer := new(state.AppExecResult) aer.DecodeBinary(r) if r.Err != nil { return 0, nil, nil, r.Err } return h, tx, aer, nil } // -- end notification event. // -- start storage item. // GetStorageItem returns StorageItem if it exists in the given store. func (dao *Simple) GetStorageItem(id int32, key []byte) state.StorageItem { b, err := dao.Store.Get(dao.makeStorageItemKey(id, key)) if err != nil { return nil } return b } // PutStorageItem puts the given StorageItem for the given id with the given // key into the given store. func (dao *Simple) PutStorageItem(id int32, key []byte, si state.StorageItem) { stKey := dao.makeStorageItemKey(id, key) dao.Store.Put(stKey, si) } // PutBigInt serializaed and puts the given integer for the given id with the given // key into the given store. func (dao *Simple) PutBigInt(id int32, key []byte, n *big.Int) { var buf [bigint.MaxBytesLen]byte stData := bigint.ToPreallocatedBytes(n, buf[:]) dao.PutStorageItem(id, key, stData) } // DeleteStorageItem drops a storage item for the given id with the // given key from the store. func (dao *Simple) DeleteStorageItem(id int32, key []byte) { stKey := dao.makeStorageItemKey(id, key) dao.Store.Delete(stKey) } // Seek executes f for all storage items matching the given `rng` (matching the given prefix and // starting from the point specified). If the key or the value is to be used outside of f, they // may not be copied. Seek continues iterating until false is returned from f. A requested prefix // (if any non-empty) is trimmed before passing to f. func (dao *Simple) Seek(id int32, rng storage.SeekRange, f func(k, v []byte) bool) { rng.Prefix = bytes.Clone(dao.makeStorageItemKey(id, rng.Prefix)) // f() can use dao too. dao.Store.Seek(rng, func(k, v []byte) bool { return f(k[len(rng.Prefix):], v) }) } // SeekAsync sends all storage items matching the given `rng` (matching the given prefix and // starting from the point specified) to a channel and returns the channel. // Resulting keys and values may not be copied. func (dao *Simple) SeekAsync(ctx context.Context, id int32, rng storage.SeekRange) chan storage.KeyValue { rng.Prefix = bytes.Clone(dao.makeStorageItemKey(id, rng.Prefix)) return dao.Store.SeekAsync(ctx, rng, true) } // makeStorageItemKey returns the key used to store the StorageItem in the DB. func (dao *Simple) makeStorageItemKey(id int32, key []byte) []byte { // 1 for prefix + 4 for Uint32 + len(key) for key buf := dao.getKeyBuf(5 + len(key)) buf[0] = byte(dao.Version.StoragePrefix) binary.LittleEndian.PutUint32(buf[1:], uint32(id)) copy(buf[5:], key) return buf } // -- end storage item. // -- other. // GetBlock returns Block by the given hash if it exists in the store. func (dao *Simple) GetBlock(hash util.Uint256) (*block.Block, error) { return dao.getBlock(dao.makeExecutableKey(hash)) } func (dao *Simple) getBlock(key []byte) (*block.Block, error) { b, err := dao.Store.Get(key) if err != nil { return nil, err } r := io.NewBinReaderFromBuf(b) if r.ReadB() != storage.ExecBlock { // It may be a transaction. return nil, storage.ErrKeyNotFound } block, err := block.NewTrimmedFromReader(dao.Version.StateRootInHeader, r) if err != nil { return nil, err } return block, nil } // Version represents the current dao version. type Version struct { StoragePrefix storage.KeyPrefix StateRootInHeader bool P2PSigExtensions bool P2PStateExchangeExtensions bool KeepOnlyLatestState bool Magic uint32 Value string } const ( stateRootInHeaderBit = 1 << iota p2pSigExtensionsBit p2pStateExchangeExtensionsBit keepOnlyLatestStateBit ) // FromBytes decodes v from a byte-slice. func (v *Version) FromBytes(data []byte) error { if len(data) == 0 { return errors.New("missing version") } i := 0 for i < len(data) && data[i] != '\x00' { i++ } if i == len(data) { v.Value = string(data) return nil } if len(data) < i+3 { return errors.New("version is invalid") } v.Value = string(data[:i]) v.StoragePrefix = storage.KeyPrefix(data[i+1]) v.StateRootInHeader = data[i+2]&stateRootInHeaderBit != 0 v.P2PSigExtensions = data[i+2]&p2pSigExtensionsBit != 0 v.P2PStateExchangeExtensions = data[i+2]&p2pStateExchangeExtensionsBit != 0 v.KeepOnlyLatestState = data[i+2]&keepOnlyLatestStateBit != 0 m := i + 3 if len(data) == m+4 { v.Magic = binary.LittleEndian.Uint32(data[m:]) } return nil } // Bytes encodes v to a byte-slice. func (v *Version) Bytes() []byte { var mask byte if v.StateRootInHeader { mask |= stateRootInHeaderBit } if v.P2PSigExtensions { mask |= p2pSigExtensionsBit } if v.P2PStateExchangeExtensions { mask |= p2pStateExchangeExtensionsBit } if v.KeepOnlyLatestState { mask |= keepOnlyLatestStateBit } res := append([]byte(v.Value), '\x00', byte(v.StoragePrefix), mask) res = binary.LittleEndian.AppendUint32(res, v.Magic) return res } func (dao *Simple) mkKeyPrefix(k storage.KeyPrefix) []byte { b := dao.getKeyBuf(1) b[0] = byte(k) return b } // GetVersion attempts to get the current version stored in the // underlying store. func (dao *Simple) GetVersion() (Version, error) { var version Version data, err := dao.Store.Get(dao.mkKeyPrefix(storage.SYSVersion)) if err == nil { err = version.FromBytes(data) } return version, err } // GetCurrentBlockHeight returns the current block height found in the // underlying store. func (dao *Simple) GetCurrentBlockHeight() (uint32, error) { b, err := dao.Store.Get(dao.mkKeyPrefix(storage.SYSCurrentBlock)) if err != nil { return 0, err } return binary.LittleEndian.Uint32(b[32:36]), nil } // GetCurrentHeaderHeight returns the current header height and hash from // the underlying store. func (dao *Simple) GetCurrentHeaderHeight() (i uint32, h util.Uint256, err error) { var b []byte b, err = dao.Store.Get(dao.mkKeyPrefix(storage.SYSCurrentHeader)) if err != nil { return } i = binary.LittleEndian.Uint32(b[32:36]) h, err = util.Uint256DecodeBytesLE(b[:32]) return } // GetStateSyncPoint returns current state synchronization point P. func (dao *Simple) GetStateSyncPoint() (uint32, error) { b, err := dao.Store.Get(dao.mkKeyPrefix(storage.SYSStateSyncPoint)) if err != nil { return 0, err } return binary.LittleEndian.Uint32(b), nil } // GetStateSyncCurrentBlockHeight returns the current block height stored during state // synchronization process. func (dao *Simple) GetStateSyncCurrentBlockHeight() (uint32, error) { b, err := dao.Store.Get(dao.mkKeyPrefix(storage.SYSStateSyncCurrentBlockHeight)) if err != nil { return 0, err } return binary.LittleEndian.Uint32(b), nil } // GetHeaderHashes returns a page of header hashes retrieved from // the given underlying store. func (dao *Simple) GetHeaderHashes(height uint32) ([]util.Uint256, error) { var hashes []util.Uint256 key := dao.mkHeaderHashKey(height) b, err := dao.Store.Get(key) if err != nil { return nil, err } br := io.NewBinReaderFromBuf(b) br.ReadArray(&hashes) if br.Err != nil { return nil, br.Err } return hashes, nil } // DeleteHeaderHashes removes batches of header hashes starting from the one that // contains header with index `since` up to the most recent batch. It assumes that // all stored batches contain `batchSize` hashes. func (dao *Simple) DeleteHeaderHashes(since uint32, batchSize int) { dao.Store.Seek(storage.SeekRange{ Prefix: dao.mkKeyPrefix(storage.IXHeaderHashList), Backwards: true, }, func(k, _ []byte) bool { first := binary.BigEndian.Uint32(k[1:]) if first >= since { dao.Store.Delete(k) return first != since } if first+uint32(batchSize)-1 >= since { dao.Store.Delete(k) } return false }) } // GetTransaction returns Transaction and its height by the given hash // if it exists in the store. It does not return conflict record stubs. func (dao *Simple) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) { key := dao.makeExecutableKey(hash) b, err := dao.Store.Get(key) if err != nil { return nil, 0, err } if len(b) < 1 { return nil, 0, errors.New("bad transaction bytes") } if b[0] != storage.ExecTransaction { // It may be a block. return nil, 0, storage.ErrKeyNotFound } if len(b) == conflictRecordValueLen { // It's a conflict record stub. return nil, 0, storage.ErrKeyNotFound } r := io.NewBinReaderFromBuf(b) _ = r.ReadB() var height = r.ReadU32LE() tx := &transaction.Transaction{} tx.DecodeBinary(r) if r.Err != nil { return nil, 0, r.Err } return tx, height, nil } // PutVersion stores the given version in the underlying store. func (dao *Simple) PutVersion(v Version) { dao.Version = v dao.Store.Put(dao.mkKeyPrefix(storage.SYSVersion), v.Bytes()) } // PutCurrentHeader stores the current header. func (dao *Simple) PutCurrentHeader(h util.Uint256, index uint32) { buf := dao.getDataBuf() buf.WriteBytes(h.BytesLE()) buf.WriteU32LE(index) dao.Store.Put(dao.mkKeyPrefix(storage.SYSCurrentHeader), buf.Bytes()) } // PutStateSyncPoint stores the current state synchronization point P. func (dao *Simple) PutStateSyncPoint(p uint32) { buf := dao.getDataBuf() buf.WriteU32LE(p) dao.Store.Put(dao.mkKeyPrefix(storage.SYSStateSyncPoint), buf.Bytes()) } // PutStateSyncCurrentBlockHeight stores the current block height during state synchronization process. func (dao *Simple) PutStateSyncCurrentBlockHeight(h uint32) { buf := dao.getDataBuf() buf.WriteU32LE(h) dao.Store.Put(dao.mkKeyPrefix(storage.SYSStateSyncCurrentBlockHeight), buf.Bytes()) } func (dao *Simple) mkHeaderHashKey(h uint32) []byte { b := dao.getKeyBuf(1 + 4) b[0] = byte(storage.IXHeaderHashList) binary.BigEndian.PutUint32(b[1:], h) return b } // StoreHeaderHashes pushes a batch of header hashes into the store. func (dao *Simple) StoreHeaderHashes(hashes []util.Uint256, height uint32) error { key := dao.mkHeaderHashKey(height) buf := dao.getDataBuf() buf.WriteArray(hashes) if buf.Err != nil { return buf.Err } dao.Store.Put(key, buf.Bytes()) return nil } // HasTransaction returns nil if the given store does not contain the given // Transaction hash. It returns an error in case the transaction is in chain // or in the list of conflicting transactions. If non-zero signers are specified, // then additional check against the conflicting transaction signers intersection // is held. Do not omit signers in case if it's important to check the validity // of a supposedly conflicting on-chain transaction. The retrieved conflict isn't // checked against the maxTraceableBlocks setting if signers are omitted. // HasTransaction does not consider the case of block executable. func (dao *Simple) HasTransaction(hash util.Uint256, signers []transaction.Signer, currentIndex uint32, maxTraceableBlocks uint32) error { key := dao.makeExecutableKey(hash) bytes, err := dao.Store.Get(key) if err != nil { return nil } if len(bytes) < conflictRecordValueLen { // (storage.ExecTransaction + index) for conflict record return nil } if bytes[0] != storage.ExecTransaction { // It's a block, thus no conflict. This path is needed since there's a transaction accepted on mainnet // that conflicts with block. This transaction was declined by Go nodes, but accepted by C# nodes, and hence // we need to adjust Go behaviour post-factum. Ref. #3427 and 0x289c235dcdab8be7426d05f0fbb5e86c619f81481ea136493fa95deee5dbb7cc. return nil } if len(bytes) != conflictRecordValueLen { return ErrAlreadyExists // fully-qualified transaction } if len(signers) == 0 { return ErrHasConflicts } if !isTraceableBlock(bytes[1:], currentIndex, maxTraceableBlocks) { // The most fresh conflict record is already outdated. return nil } for _, s := range signers { v, err := dao.Store.Get(append(key, s.Account.BytesBE()...)) if err == nil { if isTraceableBlock(v[1:], currentIndex, maxTraceableBlocks) { return ErrHasConflicts } } } return nil } func isTraceableBlock(indexBytes []byte, height, maxTraceableBlocks uint32) bool { index := binary.LittleEndian.Uint32(indexBytes) return index <= height && index+maxTraceableBlocks > height } // StoreAsBlock stores given block as DataBlock. It can reuse given buffer for // the purpose of value serialization. func (dao *Simple) StoreAsBlock(block *block.Block, aer1 *state.AppExecResult, aer2 *state.AppExecResult) error { var ( key = dao.makeExecutableKey(block.Hash()) buf = dao.getDataBuf() ) buf.WriteB(storage.ExecBlock) block.EncodeTrimmed(buf.BinWriter) if aer1 != nil { aer1.EncodeBinaryWithContext(buf.BinWriter, dao.GetItemCtx()) } if aer2 != nil { aer2.EncodeBinaryWithContext(buf.BinWriter, dao.GetItemCtx()) } if buf.Err != nil { return buf.Err } dao.Store.Put(key, buf.Bytes()) return nil } // DeleteBlock removes the block from dao. It's not atomic, so make sure you're // using private MemCached instance here. func (dao *Simple) DeleteBlock(h util.Uint256) error { key := dao.makeExecutableKey(h) b, err := dao.getBlock(key) if err != nil { return err } err = dao.storeHeader(key, &b.Header) if err != nil { return err } for _, tx := range b.Transactions { copy(key[1:], tx.Hash().BytesBE()) dao.Store.Delete(key) for _, attr := range tx.GetAttributes(transaction.ConflictsT) { hash := attr.Value.(*transaction.Conflicts).Hash copy(key[1:], hash.BytesBE()) v, err := dao.Store.Get(key) if err != nil { return fmt.Errorf("failed to retrieve conflict record stub for %s (height %d, conflict %s): %w", tx.Hash().StringLE(), b.Index, hash.StringLE(), err) } index := binary.LittleEndian.Uint32(v[1:]) // We can check for `<=` here, but use equality comparison to be more precise // and do not touch earlier conflict records (if any). Their removal must be triggered // by the caller code. if index == b.Index { dao.Store.Delete(key) } for _, s := range tx.Signers { sKey := append(key, s.Account.BytesBE()...) v, err := dao.Store.Get(sKey) if err != nil { return fmt.Errorf("failed to retrieve conflict record for %s (height %d, conflict %s, signer %s): %w", tx.Hash().StringLE(), b.Index, hash.StringLE(), address.Uint160ToString(s.Account), err) } index = binary.LittleEndian.Uint32(v[1:]) if index == b.Index { dao.Store.Delete(sKey) } } } } return nil } // PurgeHeader completely removes specified header from dao. It differs from // DeleteBlock in that it removes header anyway and does nothing except removing // header. It does no checks for header existence. func (dao *Simple) PurgeHeader(h util.Uint256) { key := dao.makeExecutableKey(h) dao.Store.Delete(key) } // StoreHeader saves the block header into the store. func (dao *Simple) StoreHeader(h *block.Header) error { return dao.storeHeader(dao.makeExecutableKey(h.Hash()), h) } func (dao *Simple) storeHeader(key []byte, h *block.Header) error { buf := dao.getDataBuf() buf.WriteB(storage.ExecBlock) h.EncodeBinary(buf.BinWriter) buf.BinWriter.WriteB(0) if buf.Err != nil { return buf.Err } dao.Store.Put(key, buf.Bytes()) return nil } // StoreAsCurrentBlock stores the hash of the given block with prefix // SYSCurrentBlock. func (dao *Simple) StoreAsCurrentBlock(block *block.Block) { buf := dao.getDataBuf() h := block.Hash() h.EncodeBinary(buf.BinWriter) buf.WriteU32LE(block.Index) dao.Store.Put(dao.mkKeyPrefix(storage.SYSCurrentBlock), buf.Bytes()) } // StoreAsTransaction stores the given TX as DataTransaction. It also stores conflict records // (hashes of transactions the given tx has conflicts with) as DataTransaction with value containing // only five bytes: 1-byte [storage.ExecTransaction] executable prefix + 4-bytes-LE block index. It can reuse the given // buffer for the purpose of value serialization. func (dao *Simple) StoreAsTransaction(tx *transaction.Transaction, index uint32, aer *state.AppExecResult) error { key := dao.makeExecutableKey(tx.Hash()) buf := dao.getDataBuf() buf.WriteB(storage.ExecTransaction) buf.WriteU32LE(index) tx.EncodeBinary(buf.BinWriter) if aer != nil { aer.EncodeBinaryWithContext(buf.BinWriter, dao.GetItemCtx()) } if buf.Err != nil { return buf.Err } val := buf.Bytes() dao.Store.Put(key, val) val = val[:conflictRecordValueLen] // storage.ExecTransaction (1 byte) + index (4 bytes) attrs := tx.GetAttributes(transaction.ConflictsT) for _, attr := range attrs { // Conflict record stub. hash := attr.Value.(*transaction.Conflicts).Hash copy(key[1:], hash.BytesBE()) // A short path if there's a block with the matching hash. If it's there, then // don't store the conflict record stub and conflict signers since it's a // useless record, no transaction with the same hash is possible. exec, err := dao.Store.Get(key) if err == nil { if len(exec) > 0 && exec[0] != storage.ExecTransaction { continue } } dao.Store.Put(key, val) // Conflicting signers. sKey := make([]byte, len(key)+util.Uint160Size) copy(sKey, key) for _, s := range tx.Signers { copy(sKey[len(key):], s.Account.BytesBE()) dao.Store.Put(sKey, val) } } return nil } func (dao *Simple) getKeyBuf(l int) []byte { if dao.private { if dao.keyBuf == nil { dao.keyBuf = make([]byte, 0, 1+4+limits.MaxStorageKeyLen) // Prefix, uint32, key. } return dao.keyBuf[:l] // Should have enough capacity. } return make([]byte, l) } func (dao *Simple) getDataBuf() *io.BufBinWriter { if dao.private { if dao.dataBuf == nil { dao.dataBuf = io.NewBufBinWriter() } dao.dataBuf.Reset() return dao.dataBuf } return io.NewBufBinWriter() } func (dao *Simple) GetItemCtx() *stackitem.SerializationContext { if dao.private { if dao.serCtx == nil { dao.serCtx = stackitem.NewSerializationContext() } return dao.serCtx } return stackitem.NewSerializationContext() } // Persist flushes all the changes made into the (supposedly) persistent // underlying store. It doesn't block accesses to DAO from other threads. func (dao *Simple) Persist() (int, error) { if dao.nativeCachePS != nil { dao.nativeCacheLock.Lock() dao.nativeCachePS.nativeCacheLock.Lock() defer func() { dao.nativeCachePS.nativeCacheLock.Unlock() dao.nativeCacheLock.Unlock() }() dao.persistNativeCache() } return dao.Store.Persist() } // PersistSync flushes all the changes made into the (supposedly) persistent // underlying store. It's a synchronous version of Persist that doesn't allow // other threads to work with DAO while flushing the Store. func (dao *Simple) PersistSync() (int, error) { if dao.nativeCachePS != nil { dao.nativeCacheLock.Lock() dao.nativeCachePS.nativeCacheLock.Lock() defer func() { dao.nativeCachePS.nativeCacheLock.Unlock() dao.nativeCacheLock.Unlock() }() dao.persistNativeCache() } return dao.Store.PersistSync() } // persistNativeCache is internal unprotected method for native cache persisting. // It does NO checks for nativeCachePS is not nil. func (dao *Simple) persistNativeCache() { lower := dao.nativeCachePS for id, nativeCache := range dao.nativeCache { lower.nativeCache[id] = nativeCache } dao.nativeCache = nil } // GetROCache returns native contact cache. The cache CAN NOT be modified by // the caller. It's the caller's duty to keep it unmodified. func (dao *Simple) GetROCache(id int32) NativeContractCache { dao.nativeCacheLock.RLock() defer dao.nativeCacheLock.RUnlock() return dao.getCache(id, true) } // GetRWCache returns native contact cache. The cache CAN BE safely modified // by the caller. func (dao *Simple) GetRWCache(id int32) NativeContractCache { dao.nativeCacheLock.Lock() defer dao.nativeCacheLock.Unlock() return dao.getCache(id, false) } // getCache is an internal unlocked representation of GetROCache and GetRWCache. func (dao *Simple) getCache(k int32, ro bool) NativeContractCache { if itm, ok := dao.nativeCache[k]; ok { // Don't need to create itm copy, because its value was already copied // the first time it was retrieved from lower ps. return itm } if dao.nativeCachePS != nil { if ro { return dao.nativeCachePS.GetROCache(k) } v := dao.nativeCachePS.GetRWCache(k) if v != nil { // Create a copy here in order not to modify the existing cache. cp := v.Copy() dao.nativeCache[k] = cp return cp } } return nil } // SetCache adds native contract cache to the cache map. func (dao *Simple) SetCache(id int32, v NativeContractCache) { dao.nativeCacheLock.Lock() defer dao.nativeCacheLock.Unlock() dao.nativeCache[id] = v }