package core import ( "bytes" "context" "encoding/binary" "fmt" "math" "sync/atomic" "time" "github.com/CityOfZion/neo-go/config" "github.com/CityOfZion/neo-go/pkg/core/storage" "github.com/CityOfZion/neo-go/pkg/core/transaction" "github.com/CityOfZion/neo-go/pkg/util" "github.com/pkg/errors" log "github.com/sirupsen/logrus" ) // tuning parameters const ( headerBatchCount = 2000 version = "0.0.1" ) var ( genAmount = []int{8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} decrementInterval = 2000000 persistInterval = 1 * time.Second ) // Blockchain represents the blockchain. type Blockchain struct { config config.ProtocolConfiguration // Any object that satisfies the BlockchainStorer interface. storage.Store // Current index/height of the highest block. // Read access should always be called by BlockHeight(). // Write access should only happen in persist(). blockHeight uint32 // Number of headers stored in the chain file. storedHeaderCount uint32 blockCache *Cache // All operation on headerList must be called from an // headersOp to be routine safe. headerList *HeaderHashList // Only for operating on the headerList. headersOp chan headersOpFunc headersOpDone chan struct{} // Whether we will verify received blocks. verifyBlocks bool memPool MemPool } type headersOpFunc func(headerList *HeaderHashList) // NewBlockchain return a new blockchain object the will use the // given Store as its underlying storage. func NewBlockchain(ctx context.Context, s storage.Store, cfg config.ProtocolConfiguration) (*Blockchain, error) { bc := &Blockchain{ config: cfg, Store: s, headersOp: make(chan headersOpFunc), headersOpDone: make(chan struct{}), blockCache: NewCache(), verifyBlocks: false, memPool: NewMemPool(50000), } go bc.run(ctx) if err := bc.init(); err != nil { return nil, err } return bc, nil } func (bc *Blockchain) init() error { // If we could not find the version in the Store, we know that there is nothing stored. ver, err := storage.Version(bc.Store) if err != nil { log.Infof("no storage version found! creating genesis block") if err = storage.PutVersion(bc.Store, version); err != nil { return err } genesisBlock, err := createGenesisBlock(bc.config) if err != nil { return err } bc.headerList = NewHeaderHashList(genesisBlock.Hash()) return bc.persistBlock(genesisBlock) } if ver != version { return fmt.Errorf("storage version mismatch betweeen %s and %s", version, ver) } // At this point there was no version found in the storage which // implies a creating fresh storage with the version specified // and the genesis block as first block. log.Infof("restoring blockchain with version: %s", version) bHeight, err := storage.CurrentBlockHeight(bc.Store) if err != nil { return err } bc.blockHeight = bHeight hashes, err := storage.HeaderHashes(bc.Store) if err != nil { return err } bc.headerList = NewHeaderHashList(hashes...) bc.storedHeaderCount = uint32(len(hashes)) currHeaderHeight, currHeaderHash, err := storage.CurrentHeaderHeight(bc.Store) if err != nil { return err } // There is a high chance that the Node is stopped before the next // batch of 2000 headers was stored. Via the currentHeaders stored we can sync // that with stored blocks. if currHeaderHeight > bc.storedHeaderCount { hash := currHeaderHash targetHash := bc.headerList.Get(bc.headerList.Len() - 1) headers := make([]*Header, 0) for hash != targetHash { header, err := bc.GetHeader(hash) if err != nil { return fmt.Errorf("could not get header %s: %s", hash, err) } headers = append(headers, header) hash = header.PrevHash } headerSliceReverse(headers) if err := bc.AddHeaders(headers...); err != nil { return err } } return nil } func (bc *Blockchain) run(ctx context.Context) { persistTimer := time.NewTimer(persistInterval) defer func() { persistTimer.Stop() if err := bc.Store.Close(); err != nil { log.Warnf("failed to close db: %s", err) } }() for { select { case <-ctx.Done(): return case op := <-bc.headersOp: op(bc.headerList) bc.headersOpDone <- struct{}{} case <-persistTimer.C: go bc.persist(ctx) persistTimer.Reset(persistInterval) } } } // AddBlock processes the given block and will add it to the cache so it // can be persisted. func (bc *Blockchain) AddBlock(block *Block) error { if !bc.blockCache.Has(block.Hash()) { bc.blockCache.Add(block.Hash(), block) } headerLen := bc.headerListLen() if int(block.Index-1) >= headerLen { return nil } if int(block.Index) == headerLen { if bc.verifyBlocks && !block.Verify(false) { return fmt.Errorf("block %s is invalid", block.Hash()) } return bc.AddHeaders(block.Header()) } return nil } // AddHeaders will process the given headers and add them to the // HeaderHashList. func (bc *Blockchain) AddHeaders(headers ...*Header) (err error) { var ( start = time.Now() batch = bc.Batch() ) bc.headersOp <- func(headerList *HeaderHashList) { for _, h := range headers { if int(h.Index-1) >= headerList.Len() { err = fmt.Errorf( "height of received header %d is higher then the current header %d", h.Index, headerList.Len(), ) return } if int(h.Index) < headerList.Len() { continue } if !h.Verify() { err = fmt.Errorf("header %v is invalid", h) return } if err = bc.processHeader(h, batch, headerList); err != nil { return } } if batch.Len() > 0 { if err = bc.PutBatch(batch); err != nil { return } log.WithFields(log.Fields{ "headerIndex": headerList.Len() - 1, "blockHeight": bc.BlockHeight(), "took": time.Since(start), }).Debug("done processing headers") } } <-bc.headersOpDone return err } // processHeader processes the given header. Note that this is only thread safe // if executed in headers operation. func (bc *Blockchain) processHeader(h *Header, batch storage.Batch, headerList *HeaderHashList) error { headerList.Add(h.Hash()) buf := new(bytes.Buffer) for int(h.Index)-headerBatchCount >= int(bc.storedHeaderCount) { if err := headerList.Write(buf, int(bc.storedHeaderCount), headerBatchCount); err != nil { return err } key := storage.AppendPrefixInt(storage.IXHeaderHashList, int(bc.storedHeaderCount)) batch.Put(key, buf.Bytes()) bc.storedHeaderCount += headerBatchCount buf.Reset() } buf.Reset() if err := h.EncodeBinary(buf); err != nil { return err } key := storage.AppendPrefix(storage.DataBlock, h.Hash().BytesReverse()) batch.Put(key, buf.Bytes()) batch.Put(storage.SYSCurrentHeader.Bytes(), hashAndIndexToBytes(h.Hash(), h.Index)) return nil } // TODO: persistBlock needs some more love, its implemented as in the original // project. This for the sake of development speed and understanding of what // is happening here, quite allot as you can see :). If things are wired together // and all tests are in place, we can make a more optimized and cleaner implementation. func (bc *Blockchain) persistBlock(block *Block) error { var ( batch = bc.Batch() unspentCoins = make(UnspentCoins) spentCoins = make(SpentCoins) accounts = make(Accounts) assets = make(Assets) ) if err := storeAsBlock(batch, block, 0); err != nil { return err } storeAsCurrentBlock(batch, block) for _, tx := range block.Transactions { if err := storeAsTransaction(batch, tx, block.Index); err != nil { return err } unspentCoins[tx.Hash()] = NewUnspentCoinState(len(tx.Outputs)) // Process TX outputs. for _, output := range tx.Outputs { account, err := accounts.getAndUpdate(bc.Store, output.ScriptHash) if err != nil { return err } if _, ok := account.Balances[output.AssetID]; ok { account.Balances[output.AssetID] += output.Amount } else { account.Balances[output.AssetID] = output.Amount } } // Process TX inputs that are grouped by previous hash. for prevHash, inputs := range tx.GroupInputsByPrevHash() { prevTX, prevTXHeight, err := bc.GetTransaction(prevHash) if err != nil { return fmt.Errorf("could not find previous TX: %s", prevHash) } for _, input := range inputs { unspent, err := unspentCoins.getAndUpdate(bc.Store, input.PrevHash) if err != nil { return err } unspent.states[input.PrevIndex] = CoinStateSpent prevTXOutput := prevTX.Outputs[input.PrevIndex] account, err := accounts.getAndUpdate(bc.Store, prevTXOutput.ScriptHash) if err != nil { return err } if prevTXOutput.AssetID.Equals(governingTokenTX().Hash()) { spentCoin := NewSpentCoinState(input.PrevHash, prevTXHeight) spentCoin.items[input.PrevIndex] = block.Index spentCoins[input.PrevHash] = spentCoin } account.Balances[prevTXOutput.AssetID] -= prevTXOutput.Amount } } // Process the underlying type of the TX. switch t := tx.Data.(type) { case *transaction.RegisterTX: assets[tx.Hash()] = &AssetState{ ID: tx.Hash(), AssetType: t.AssetType, Name: t.Name, Amount: t.Amount, Precision: t.Precision, Owner: t.Owner, Admin: t.Admin, } case *transaction.IssueTX: case *transaction.ClaimTX: case *transaction.EnrollmentTX: case *transaction.StateTX: case *transaction.PublishTX: contract := &ContractState{ Script: t.Script, ParamList: t.ParamList, ReturnType: t.ReturnType, HasStorage: t.NeedStorage, Name: t.Name, CodeVersion: t.CodeVersion, Author: t.Author, Email: t.Email, Description: t.Description, } _ = contract case *transaction.InvocationTX: } } // Persist all to storage. if err := accounts.commit(batch); err != nil { return err } if err := unspentCoins.commit(batch); err != nil { return err } if err := spentCoins.commit(batch); err != nil { return err } if err := assets.commit(batch); err != nil { return err } if err := bc.PutBatch(batch); err != nil { return err } atomic.StoreUint32(&bc.blockHeight, block.Index) return nil } func (bc *Blockchain) persist(ctx context.Context) (err error) { var ( start = time.Now() persisted = 0 lenCache = bc.blockCache.Len() ) if lenCache == 0 { return nil } bc.headersOp <- func(headerList *HeaderHashList) { for i := 0; i < lenCache; i++ { if uint32(headerList.Len()) <= bc.BlockHeight() { return } hash := headerList.Get(int(bc.BlockHeight() + 1)) if block, ok := bc.blockCache.GetBlock(hash); ok { if err = bc.persistBlock(block); err != nil { log.Warnf("failed to persist blocks: %s", err) return } bc.blockCache.Delete(hash) persisted++ } else { // no next block in the cache, no reason to continue looping break } } } select { case <-ctx.Done(): return case <-bc.headersOpDone: // } if persisted > 0 { log.WithFields(log.Fields{ "persisted": persisted, "headerHeight": bc.HeaderHeight(), "blockHeight": bc.BlockHeight(), "took": time.Since(start), }).Info("blockchain persist completed") } else { // So we have some blocks in cache but can't persist them? // Either there are some stale blocks there or the other way // around (which was seen in practice) --- there are some fresh // blocks that we can't persist yet. Some of the latter can be useful // or can be bogus (higher than the header height we expect at // the moment). So try to reap oldies and strange newbies, if // there are any. bc.blockCache.ReapStrangeBlocks(bc.BlockHeight(), bc.HeaderHeight()) } return } func (bc *Blockchain) headerListLen() (n int) { bc.headersOp <- func(headerList *HeaderHashList) { n = headerList.Len() } <-bc.headersOpDone return } // GetTransaction returns a TX and its height by the given hash. func (bc *Blockchain) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) { if tx, ok := bc.memPool.TryGetValue(hash); ok { return tx, 0, nil // the height is not actually defined for memPool transaction. Not sure if zero is a good number in this case. } key := storage.AppendPrefix(storage.DataTransaction, hash.BytesReverse()) b, err := bc.Get(key) if err != nil { return nil, 0, err } r := bytes.NewReader(b) var height uint32 if err := binary.Read(r, binary.LittleEndian, &height); err != nil { return nil, 0, err } tx := &transaction.Transaction{} if err := tx.DecodeBinary(r); err != nil { return nil, 0, err } return tx, height, nil } // GetBlock returns a Block by the given hash. func (bc *Blockchain) GetBlock(hash util.Uint256) (*Block, error) { key := storage.AppendPrefix(storage.DataBlock, hash.BytesReverse()) b, err := bc.Get(key) if err != nil { return nil, err } block, err := NewBlockFromTrimmedBytes(b) if err != nil { return nil, err } // TODO: persist TX first before we can handle this logic. // if len(block.Transactions) == 0 { // return nil, fmt.Errorf("block has no TX") // } return block, nil } // GetHeader returns data block header identified with the given hash value. func (bc *Blockchain) GetHeader(hash util.Uint256) (*Header, error) { b, err := bc.Get(storage.AppendPrefix(storage.DataBlock, hash.BytesReverse())) if err != nil { return nil, err } block, err := NewBlockFromTrimmedBytes(b) if err != nil { return nil, err } return block.Header(), nil } // HasTransaction return true if the blockchain contains he given // transaction hash. func (bc *Blockchain) HasTransaction(hash util.Uint256) bool { if bc.memPool.ContainsKey(hash) { return true } key := storage.AppendPrefix(storage.DataTransaction, hash.BytesReverse()) if _, err := bc.Get(key); err == nil { return true } return false } // HasBlock return true if the blockchain contains the given // block hash. func (bc *Blockchain) HasBlock(hash util.Uint256) bool { if header, err := bc.GetHeader(hash); err == nil { return header.Index <= bc.BlockHeight() } return false } // CurrentBlockHash returns the highest processed block hash. func (bc *Blockchain) CurrentBlockHash() (hash util.Uint256) { bc.headersOp <- func(headerList *HeaderHashList) { hash = headerList.Get(int(bc.BlockHeight())) } <-bc.headersOpDone return } // CurrentHeaderHash returns the hash of the latest known header. func (bc *Blockchain) CurrentHeaderHash() (hash util.Uint256) { bc.headersOp <- func(headerList *HeaderHashList) { hash = headerList.Last() } <-bc.headersOpDone return } // GetHeaderHash return the hash from the headerList by its // height/index. func (bc *Blockchain) GetHeaderHash(i int) (hash util.Uint256) { bc.headersOp <- func(headerList *HeaderHashList) { hash = headerList.Get(i) } <-bc.headersOpDone return } // BlockHeight returns the height/index of the highest block. func (bc *Blockchain) BlockHeight() uint32 { return atomic.LoadUint32(&bc.blockHeight) } // HeaderHeight returns the index/height of the highest header. func (bc *Blockchain) HeaderHeight() uint32 { return uint32(bc.headerListLen() - 1) } // GetAssetState returns asset state from its assetID func (bc *Blockchain) GetAssetState(assetID util.Uint256) *AssetState { var as *AssetState bc.Store.Seek(storage.STAsset.Bytes(), func(k, v []byte) { var a AssetState if err := a.DecodeBinary(bytes.NewReader(v)); err == nil && a.ID == assetID { as = &a } }) return as } // GetAccountState returns the account state from its script hash func (bc *Blockchain) GetAccountState(scriptHash util.Uint160) *AccountState { var as *AccountState bc.Store.Seek(storage.STAccount.Bytes(), func(k, v []byte) { var a AccountState if err := a.DecodeBinary(bytes.NewReader(v)); err == nil && a.ScriptHash == scriptHash { as = &a } }) return as } // GetConfig returns the config stored in the blockchain func (bc *Blockchain) GetConfig() config.ProtocolConfiguration { return bc.config } // References returns a map with input prevHash as key (util.Uint256) // and transaction output as value from a transaction t. // @TODO: unfortunately we couldn't attach this method to the Transaction struct in the // transaction package because of a import cycle problem. Perhaps we should think to re-design // the code base to avoid this situation. func (bc *Blockchain) References(t *transaction.Transaction) map[util.Uint256]*transaction.Output { references := make(map[util.Uint256]*transaction.Output, 0) for prevHash, inputs := range t.GroupInputsByPrevHash() { if tx, _, err := bc.GetTransaction(prevHash); err != nil { tx = nil } else if tx != nil { for _, in := range inputs { references[in.PrevHash] = tx.Outputs[in.PrevIndex] } } else { references = nil } } return references } // FeePerByte returns network fee divided by the size of the transaction func (bc *Blockchain) FeePerByte(t *transaction.Transaction) util.Fixed8 { return bc.NetworkFee(t).Div(int64(t.Size())) } // NetworkFee returns network fee func (bc *Blockchain) NetworkFee(t *transaction.Transaction) util.Fixed8 { inputAmount := util.Fixed8FromInt64(0) for _, txOutput := range bc.References(t) { if txOutput.AssetID == utilityTokenTX().Hash() { inputAmount.Add(txOutput.Amount) } } outputAmount := util.Fixed8FromInt64(0) for _, txOutput := range t.Outputs { if txOutput.AssetID == utilityTokenTX().Hash() { outputAmount.Add(txOutput.Amount) } } return inputAmount.Sub(outputAmount).Sub(bc.SystemFee(t)) } // SystemFee returns system fee func (bc *Blockchain) SystemFee(t *transaction.Transaction) util.Fixed8 { return bc.GetConfig().SystemFee.TryGetValue(t.Type) } // IsLowPriority flags a trnsaction as low priority if the network fee is less than // LowPriorityThreshold func (bc *Blockchain) IsLowPriority(t *transaction.Transaction) bool { return bc.NetworkFee(t) < util.Fixed8FromFloat(bc.GetConfig().LowPriorityThreshold) } // GetMemPool returns the memory pool of the blockchain. func (bc *Blockchain) GetMemPool() MemPool { return bc.memPool } // Verify verifies whether a transaction is bonafide or not. // Golang implementation of Verify method in C# (https://github.com/neo-project/neo/blob/master/neo/Network/P2P/Payloads/Transaction.cs#L270). func (bc *Blockchain) Verify(t *transaction.Transaction) error { if t.Size() > transaction.MaxTransactionSize { return errors.Errorf("invalid transaction size = %d. It shoud be less then MaxTransactionSize = %d", t.Size(), transaction.MaxTransactionSize) } if ok := bc.verifyInputs(t); !ok { return errors.New("invalid transaction's inputs") } if ok := bc.memPool.Verify(t); !ok { return errors.New("invalid transaction due to conflicts with the memory pool") } if IsDoubleSpend(bc.Store, t) { return errors.New("invalid transaction caused by double spending") } if ok := bc.verifyOutputs(t); !ok { return errors.New("invalid transaction's outputs") } if ok := bc.verifyResults(t); !ok { return errors.New("invalid transaction's results") } for _, a := range t.Attributes { if a.Usage == transaction.ECDH02 || a.Usage == transaction.ECDH03 { return errors.Errorf("invalid attribute's usage = %s ", a.Usage) } } return bc.VerifyWitnesses(t) } func (bc *Blockchain) verifyInputs(t *transaction.Transaction) bool { for i := 1; i < len(t.Inputs); i++ { for j := 0; j < i; j++ { if t.Inputs[i].PrevHash == t.Inputs[j].PrevHash && t.Inputs[i].PrevIndex == t.Inputs[j].PrevIndex { return false } } } return true } func (bc *Blockchain) verifyOutputs(t *transaction.Transaction) bool { for assetID, outputs := range t.GroupOutputByAssetID() { assetState := bc.GetAssetState(assetID) if assetState == nil { return false } if assetState.Expiration < bc.blockHeight+1 && assetState.AssetType != transaction.GoverningToken && assetState.AssetType != transaction.UtilityToken { return false } for _, out := range outputs { if int64(out.Amount)%int64(math.Pow10(8-int(assetState.Precision))) != 0 { return false } } } return true } func (bc *Blockchain) verifyResults(t *transaction.Transaction) bool { results := bc.GetTransationResults(t) if results == nil { return false } var resultsDestroy []*transaction.Result var resultsIssue []*transaction.Result for _, re := range results { if re.Amount.GreaterThan(util.Fixed8(0)) { resultsDestroy = append(resultsDestroy, re) } if re.Amount.LessThan(util.Fixed8(0)) { resultsIssue = append(resultsIssue, re) } } if len(resultsDestroy) > 1 { return false } if len(resultsDestroy) == 1 && resultsDestroy[0].AssetID != utilityTokenTX().Hash() { return false } if bc.SystemFee(t).GreaterThan(util.Fixed8(0)) && (len(resultsDestroy) == 0 || resultsDestroy[0].Amount.LessThan(bc.SystemFee(t))) { return false } switch t.Type { case transaction.MinerType, transaction.ClaimType: for _, r := range resultsIssue { if r.AssetID != utilityTokenTX().Hash() { return false } } break case transaction.IssueType: for _, r := range resultsIssue { if r.AssetID == utilityTokenTX().Hash() { return false } } break default: if len(resultsIssue) > 0 { return false } break } return true } // GetTransationResults returns the transaction results aggregate by assetID. // Golang of GetTransationResults method in C# (https://github.com/neo-project/neo/blob/master/neo/Network/P2P/Payloads/Transaction.cs#L207) func (bc *Blockchain) GetTransationResults(t *transaction.Transaction) []*transaction.Result { var tempResults []*transaction.Result var results []*transaction.Result tempGroupResult := make(map[util.Uint256]util.Fixed8) references := bc.References(t) if references == nil { return nil } for _, output := range references { tempResults = append(tempResults, &transaction.Result{ AssetID: output.AssetID, Amount: output.Amount, }) } for _, output := range t.Outputs { tempResults = append(tempResults, &transaction.Result{ AssetID: output.AssetID, Amount: -output.Amount, }) } for _, r := range tempResults { if amount, ok := tempGroupResult[r.AssetID]; ok { tempGroupResult[r.AssetID] = amount.Add(r.Amount) } else { tempGroupResult[r.AssetID] = r.Amount } } results = []*transaction.Result{} // this assignment is necessary. (Most of the time amount == 0 and results is the empty slice.) for assetID, amount := range tempGroupResult { if amount != util.Fixed8(0) { results = append(results, &transaction.Result{ AssetID: assetID, Amount: amount, }) } } return results } // GetScriptHashesForVerifying returns all the ScriptHashes of a transaction which will be use // to verify whether the transaction is bonafide or not. // Golang implementation of GetScriptHashesForVerifying method in C# (https://github.com/neo-project/neo/blob/master/neo/Network/P2P/Payloads/Transaction.cs#L190) func (bc *Blockchain) GetScriptHashesForVerifying(t *transaction.Transaction) ([]util.Uint160, error) { references := bc.References(t) if references == nil { return nil, errors.New("Invalid operation") } hashes := make(map[util.Uint160]bool) for _, i := range t.Inputs { h := references[i.PrevHash].ScriptHash if _, ok := hashes[h]; !ok { hashes[h] = true } } for _, a := range t.Attributes { if a.Usage == transaction.Script { h, err := util.Uint160DecodeBytes(a.Data) if err != nil { return nil, err } if _, ok := hashes[h]; !ok { hashes[h] = true } } } for a, outputs := range t.GroupOutputByAssetID() { as := bc.GetAssetState(a) if as == nil { return nil, errors.New("Invalid operation") } if as.AssetType == transaction.DutyFlag { for _, o := range outputs { h := o.ScriptHash if _, ok := hashes[h]; !ok { hashes[h] = true } } } } // convert hashes to []util.Uint160 hashesResult := make([]util.Uint160, 0, len(hashes)) for h := range hashes { hashesResult = append(hashesResult, h) } return hashesResult, nil } // VerifyWitnesses verify the scripts (witnesses) that come with a transactions. // Golang implementation of VerifyWitnesses method in C# (https://github.com/neo-project/neo/blob/master/neo/SmartContract/Helper.cs#L87). // Unfortunately the IVerifiable interface could not be implemented because we can't move the References method in blockchain.go to the transaction.go file func (bc *Blockchain) VerifyWitnesses(t *transaction.Transaction) error { hashes, err := bc.GetScriptHashesForVerifying(t) if err != nil { return err } witnesses := t.Scripts if len(hashes) != len(witnesses) { return errors.Errorf("expected len(hashes) == len(witnesses). got: %d != %d", len(hashes), len(witnesses)) } for i := 0; i < len(hashes); i++ { verification := witnesses[i].VerificationScript if len(verification) == 0 { /*TODO: replicate following C# code: using (ScriptBuilder sb = new ScriptBuilder()) { sb.EmitAppCall(hashes[i].ToArray()); verification = sb.ToArray(); } */ } else { if h := witnesses[i].ScriptHash(); hashes[i] != h { return errors.Errorf("hash mismatch for script #%d", i) } } /*TODO: replicate following C# code: using (ApplicationEngine engine = new ApplicationEngine(TriggerType.Verification, verifiable, snapshot, Fixed8.Zero)) { engine.LoadScript(verification); engine.LoadScript(verifiable.Witnesses[i].InvocationScript); if (!engine.Execute()) return false; if (engine.ResultStack.Count != 1 || !engine.ResultStack.Pop().GetBoolean()) return false; }*/ } return nil } func hashAndIndexToBytes(h util.Uint256, index uint32) []byte { buf := make([]byte, 4) binary.LittleEndian.PutUint32(buf, index) return append(h.BytesReverse(), buf...) } func (bc *Blockchain) secondsPerBlock() int { return bc.config.SecondsPerBlock }