neoneo-go/pkg/core/blockchain.go
Roman Khimov 9c8ba5777e
Merge pull request #2323 from nspcc-dev/drop-blockchainer
Reduce blockchainer.Blockchainer use
2022-01-14 20:47:26 +03:00

2355 lines
79 KiB
Go

package core
import (
"bytes"
"errors"
"fmt"
"math"
"math/big"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/nspcc-dev/neo-go/pkg/config"
"github.com/nspcc-dev/neo-go/pkg/core/block"
"github.com/nspcc-dev/neo-go/pkg/core/blockchainer"
"github.com/nspcc-dev/neo-go/pkg/core/blockchainer/services"
"github.com/nspcc-dev/neo-go/pkg/core/dao"
"github.com/nspcc-dev/neo-go/pkg/core/interop"
"github.com/nspcc-dev/neo-go/pkg/core/interop/contract"
"github.com/nspcc-dev/neo-go/pkg/core/mempool"
"github.com/nspcc-dev/neo-go/pkg/core/native"
"github.com/nspcc-dev/neo-go/pkg/core/native/noderoles"
"github.com/nspcc-dev/neo-go/pkg/core/state"
"github.com/nspcc-dev/neo-go/pkg/core/stateroot"
"github.com/nspcc-dev/neo-go/pkg/core/statesync"
"github.com/nspcc-dev/neo-go/pkg/core/storage"
"github.com/nspcc-dev/neo-go/pkg/core/transaction"
"github.com/nspcc-dev/neo-go/pkg/crypto/hash"
"github.com/nspcc-dev/neo-go/pkg/crypto/keys"
"github.com/nspcc-dev/neo-go/pkg/encoding/fixedn"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/rpc/response/result/subscriptions"
"github.com/nspcc-dev/neo-go/pkg/smartcontract"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/callflag"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/manifest"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/trigger"
"github.com/nspcc-dev/neo-go/pkg/util"
"github.com/nspcc-dev/neo-go/pkg/vm"
"github.com/nspcc-dev/neo-go/pkg/vm/stackitem"
"go.uber.org/zap"
)
// Tuning parameters.
const (
headerBatchCount = 2000
version = "0.2.1"
defaultInitialGAS = 52000000_00000000
defaultMemPoolSize = 50000
defaultP2PNotaryRequestPayloadPoolSize = 1000
defaultMaxBlockSize = 262144
defaultMaxBlockSystemFee = 900000000000
defaultMaxTraceableBlocks = 2102400 // 1 year of 15s blocks
defaultMaxTransactionsPerBlock = 512
// HeaderVerificationGasLimit is the maximum amount of GAS for block header verification.
HeaderVerificationGasLimit = 3_00000000 // 3 GAS
defaultStateSyncInterval = 40000
)
// stateJumpStage denotes the stage of state jump process.
type stateJumpStage byte
const (
// none means that no state jump process was initiated yet.
none stateJumpStage = 1 << iota
// stateJumpStarted means that state jump was just initiated, but outdated storage items
// were not yet removed.
stateJumpStarted
// newStorageItemsAdded means that contract storage items are up-to-date with the current
// state.
newStorageItemsAdded
// genesisStateRemoved means that state corresponding to the genesis block was removed
// from the storage.
genesisStateRemoved
)
var (
// ErrAlreadyExists is returned when trying to add some already existing
// transaction into the pool (not specifying whether it exists in the
// chain or mempool).
ErrAlreadyExists = errors.New("already exists")
// ErrOOM is returned when adding transaction to the memory pool because
// it reached its full capacity.
ErrOOM = errors.New("no space left in the memory pool")
// ErrPolicy is returned on attempt to add transaction that doesn't
// comply with node's configured policy into the mempool.
ErrPolicy = errors.New("not allowed by policy")
// ErrInvalidBlockIndex is returned when trying to add block with index
// other than expected height of the blockchain.
ErrInvalidBlockIndex = errors.New("invalid block index")
// ErrHasConflicts is returned when trying to add some transaction which
// conflicts with other transaction in the chain or pool according to
// Conflicts attribute.
ErrHasConflicts = errors.New("has conflicts")
)
var (
persistInterval = 1 * time.Second
)
// Blockchain represents the blockchain. It maintans internal state representing
// the state of the ledger that can be accessed in various ways and changed by
// adding new blocks or headers.
type Blockchain struct {
config config.ProtocolConfiguration
// The only way chain state changes is by adding blocks, so we can't
// allow concurrent block additions. It differs from the next lock in
// that it's only for AddBlock method itself, the chain state is
// protected by the lock below, but holding it during all of AddBlock
// is too expensive (because the state only changes when persisting
// change cache).
addLock sync.Mutex
// This lock ensures blockchain immutability for operations that need
// that while performing their tasks. It's mostly used as a read lock
// with the only writer being the block addition logic.
lock sync.RWMutex
// Data access object for CRUD operations around storage. It's write-cached.
dao *dao.Simple
// persistent is the same DB as dao, but we never write to it, so all reads
// are directly from underlying persistent store.
persistent *dao.Simple
// Current index/height of the highest block.
// Read access should always be called by BlockHeight().
// Write access should only happen in storeBlock().
blockHeight uint32
// Current top Block wrapped in an atomic.Value for safe access.
topBlock atomic.Value
// Current persisted block count.
persistedHeight uint32
// Number of headers stored in the chain file.
storedHeaderCount uint32
// Header hashes list with associated lock.
headerHashesLock sync.RWMutex
headerHashes []util.Uint256
// Stop synchronization mechanisms.
stopCh chan struct{}
runToExitCh chan struct{}
memPool *mempool.Pool
// postBlock is a set of callback methods which should be run under the Blockchain lock after new block is persisted.
// Block's transactions are passed via mempool.
postBlock []func(func(*transaction.Transaction, *mempool.Pool, bool) bool, *mempool.Pool, *block.Block)
sbCommittee keys.PublicKeys
log *zap.Logger
lastBatch *storage.MemBatch
contracts native.Contracts
extensible atomic.Value
// defaultBlockWitness stores transaction.Witness with m out of n multisig,
// where n = ValidatorsCount.
defaultBlockWitness atomic.Value
stateRoot *stateroot.Module
// Notification subsystem.
events chan bcEvent
subCh chan interface{}
unsubCh chan interface{}
}
// bcEvent is an internal event generated by the Blockchain and then
// broadcasted to other parties. It joins the new block and associated
// invocation logs, all the other events visible from outside can be produced
// from this combination.
type bcEvent struct {
block *block.Block
appExecResults []*state.AppExecResult
}
// transferData is used for transfer caching during storeBlock.
type transferData struct {
Info state.TokenTransferInfo
Log11 state.TokenTransferLog
Log17 state.TokenTransferLog
}
// NewBlockchain returns a new blockchain object the will use the
// given Store as its underlying storage. For it to work correctly you need
// to spawn a goroutine for its Run method after this initialization.
func NewBlockchain(s storage.Store, cfg config.ProtocolConfiguration, log *zap.Logger) (*Blockchain, error) {
if log == nil {
return nil, errors.New("empty logger")
}
if cfg.InitialGASSupply <= 0 {
cfg.InitialGASSupply = fixedn.Fixed8(defaultInitialGAS)
log.Info("initial gas supply is not set or wrong, setting default value", zap.String("InitialGASSupply", cfg.InitialGASSupply.String()))
}
if cfg.MemPoolSize <= 0 {
cfg.MemPoolSize = defaultMemPoolSize
log.Info("mempool size is not set or wrong, setting default value", zap.Int("MemPoolSize", cfg.MemPoolSize))
}
if cfg.P2PSigExtensions && cfg.P2PNotaryRequestPayloadPoolSize <= 0 {
cfg.P2PNotaryRequestPayloadPoolSize = defaultP2PNotaryRequestPayloadPoolSize
log.Info("P2PNotaryRequestPayloadPool size is not set or wrong, setting default value", zap.Int("P2PNotaryRequestPayloadPoolSize", cfg.P2PNotaryRequestPayloadPoolSize))
}
if cfg.MaxBlockSize == 0 {
cfg.MaxBlockSize = defaultMaxBlockSize
log.Info("MaxBlockSize is not set or wrong, setting default value", zap.Uint32("MaxBlockSize", cfg.MaxBlockSize))
}
if cfg.MaxBlockSystemFee <= 0 {
cfg.MaxBlockSystemFee = defaultMaxBlockSystemFee
log.Info("MaxBlockSystemFee is not set or wrong, setting default value", zap.Int64("MaxBlockSystemFee", cfg.MaxBlockSystemFee))
}
if cfg.MaxTraceableBlocks == 0 {
cfg.MaxTraceableBlocks = defaultMaxTraceableBlocks
log.Info("MaxTraceableBlocks is not set or wrong, using default value", zap.Uint32("MaxTraceableBlocks", cfg.MaxTraceableBlocks))
}
if cfg.MaxTransactionsPerBlock == 0 {
cfg.MaxTransactionsPerBlock = defaultMaxTransactionsPerBlock
log.Info("MaxTransactionsPerBlock is not set or wrong, using default value",
zap.Uint16("MaxTransactionsPerBlock", cfg.MaxTransactionsPerBlock))
}
if cfg.MaxValidUntilBlockIncrement == 0 {
const secondsPerDay = int(24 * time.Hour / time.Second)
cfg.MaxValidUntilBlockIncrement = uint32(secondsPerDay / cfg.SecondsPerBlock)
log.Info("MaxValidUntilBlockIncrement is not set or wrong, using default value",
zap.Uint32("MaxValidUntilBlockIncrement", cfg.MaxValidUntilBlockIncrement))
}
if cfg.P2PStateExchangeExtensions {
if !cfg.StateRootInHeader {
return nil, errors.New("P2PStatesExchangeExtensions are enabled, but StateRootInHeader is off")
}
if cfg.StateSyncInterval <= 0 {
cfg.StateSyncInterval = defaultStateSyncInterval
log.Info("StateSyncInterval is not set or wrong, using default value",
zap.Int("StateSyncInterval", cfg.StateSyncInterval))
}
}
committee, err := committeeFromConfig(cfg)
if err != nil {
return nil, err
}
if len(cfg.NativeUpdateHistories) == 0 {
cfg.NativeUpdateHistories = map[string][]uint32{}
log.Info("NativeActivations are not set, using default values")
}
bc := &Blockchain{
config: cfg,
dao: dao.NewSimple(s, cfg.StateRootInHeader, cfg.P2PSigExtensions),
persistent: dao.NewSimple(s, cfg.StateRootInHeader, cfg.P2PSigExtensions),
stopCh: make(chan struct{}),
runToExitCh: make(chan struct{}),
memPool: mempool.New(cfg.MemPoolSize, 0, false),
sbCommittee: committee,
log: log,
events: make(chan bcEvent),
subCh: make(chan interface{}),
unsubCh: make(chan interface{}),
contracts: *native.NewContracts(cfg),
}
bc.stateRoot = stateroot.NewModule(bc.GetConfig(), bc.VerifyWitness, bc.log, bc.dao.Store)
bc.contracts.Designate.StateRootService = bc.stateRoot
if err := bc.init(); err != nil {
return nil, err
}
return bc, nil
}
// SetOracle sets oracle module. It doesn't protected by mutex and
// must be called before `bc.Run()` to avoid data race.
func (bc *Blockchain) SetOracle(mod services.Oracle) {
orc := bc.contracts.Oracle
md, ok := orc.GetMethod(manifest.MethodVerify, -1)
if !ok {
panic(fmt.Errorf("%s method not found", manifest.MethodVerify))
}
mod.UpdateNativeContract(orc.NEF.Script, orc.GetOracleResponseScript(),
orc.Hash, md.MD.Offset)
orc.Module.Store(mod)
bc.contracts.Designate.OracleService.Store(mod)
}
// SetNotary sets notary module. It doesn't protected by mutex and
// must be called before `bc.Run()` to avoid data race.
func (bc *Blockchain) SetNotary(mod services.Notary) {
bc.contracts.Designate.NotaryService.Store(mod)
}
func (bc *Blockchain) init() error {
// If we could not find the version in the Store, we know that there is nothing stored.
ver, err := bc.dao.GetVersion()
if err != nil {
bc.log.Info("no storage version found! creating genesis block")
ver = dao.Version{
StoragePrefix: storage.STStorage,
StateRootInHeader: bc.config.StateRootInHeader,
P2PSigExtensions: bc.config.P2PSigExtensions,
P2PStateExchangeExtensions: bc.config.P2PStateExchangeExtensions,
KeepOnlyLatestState: bc.config.KeepOnlyLatestState,
Value: version,
}
if err = bc.dao.PutVersion(ver); err != nil {
return err
}
bc.dao.Version = ver
bc.persistent.Version = ver
genesisBlock, err := createGenesisBlock(bc.config)
if err != nil {
return err
}
bc.headerHashes = []util.Uint256{genesisBlock.Hash()}
err = bc.dao.PutCurrentHeader(hashAndIndexToBytes(genesisBlock.Hash(), genesisBlock.Index))
if err != nil {
return err
}
if err := bc.stateRoot.Init(0, bc.config.KeepOnlyLatestState); err != nil {
return fmt.Errorf("can't init MPT: %w", err)
}
return bc.storeBlock(genesisBlock, nil)
}
if ver.Value != version {
return fmt.Errorf("storage version mismatch betweeen %s and %s", version, ver.Value)
}
if ver.StateRootInHeader != bc.config.StateRootInHeader {
return fmt.Errorf("StateRootInHeader setting mismatch (config=%t, db=%t)",
ver.StateRootInHeader, bc.config.StateRootInHeader)
}
if ver.P2PSigExtensions != bc.config.P2PSigExtensions {
return fmt.Errorf("P2PSigExtensions setting mismatch (old=%t, new=%t",
ver.P2PSigExtensions, bc.config.P2PSigExtensions)
}
if ver.P2PStateExchangeExtensions != bc.config.P2PStateExchangeExtensions {
return fmt.Errorf("P2PStateExchangeExtensions setting mismatch (old=%t, new=%t",
ver.P2PStateExchangeExtensions, bc.config.P2PStateExchangeExtensions)
}
if ver.KeepOnlyLatestState != bc.config.KeepOnlyLatestState {
return fmt.Errorf("KeepOnlyLatestState setting mismatch: old=%v, new=%v",
ver.KeepOnlyLatestState, bc.config.KeepOnlyLatestState)
}
bc.dao.Version = ver
bc.persistent.Version = ver
// Always try to remove garbage. If there is nothing to do, it will exit quickly.
go bc.removeOldStorageItems()
// At this point there was no version found in the storage which
// implies a creating fresh storage with the version specified
// and the genesis block as first block.
bc.log.Info("restoring blockchain", zap.String("version", version))
bc.headerHashes, err = bc.dao.GetHeaderHashes()
if err != nil {
return err
}
bc.storedHeaderCount = uint32(len(bc.headerHashes))
currHeaderHeight, currHeaderHash, err := bc.dao.GetCurrentHeaderHeight()
if err != nil {
return err
}
if bc.storedHeaderCount == 0 && currHeaderHeight == 0 {
bc.headerHashes = append(bc.headerHashes, currHeaderHash)
}
// There is a high chance that the Node is stopped before the next
// batch of 2000 headers was stored. Via the currentHeaders stored we can sync
// that with stored blocks.
if currHeaderHeight >= bc.storedHeaderCount {
hash := currHeaderHash
var targetHash util.Uint256
if len(bc.headerHashes) > 0 {
targetHash = bc.headerHashes[len(bc.headerHashes)-1]
} else {
genesisBlock, err := createGenesisBlock(bc.config)
if err != nil {
return err
}
targetHash = genesisBlock.Hash()
bc.headerHashes = append(bc.headerHashes, targetHash)
}
headers := make([]*block.Header, 0)
for hash != targetHash {
header, err := bc.GetHeader(hash)
if err != nil {
return fmt.Errorf("could not get header %s: %w", hash, err)
}
headers = append(headers, header)
hash = header.PrevHash
}
headerSliceReverse(headers)
for _, h := range headers {
bc.headerHashes = append(bc.headerHashes, h.Hash())
}
}
// Check whether StateJump stage is in the storage and continue interrupted state jump if so.
jumpStage, err := bc.dao.Store.Get(storage.SYSStateJumpStage.Bytes())
if err == nil {
if !(bc.GetConfig().P2PStateExchangeExtensions && bc.GetConfig().RemoveUntraceableBlocks) {
return errors.New("state jump was not completed, but P2PStateExchangeExtensions are disabled or archival node capability is on. " +
"To start an archival node drop the database manually and restart the node")
}
if len(jumpStage) != 1 {
return fmt.Errorf("invalid state jump stage format")
}
// State jump wasn't finished yet, thus continue it.
stateSyncPoint, err := bc.dao.GetStateSyncPoint()
if err != nil {
return fmt.Errorf("failed to get state sync point from the storage")
}
return bc.jumpToStateInternal(stateSyncPoint, stateJumpStage(jumpStage[0]))
}
bHeight, err := bc.dao.GetCurrentBlockHeight()
if err != nil {
return err
}
bc.blockHeight = bHeight
bc.persistedHeight = bHeight
if err = bc.stateRoot.Init(bHeight, bc.config.KeepOnlyLatestState); err != nil {
return fmt.Errorf("can't init MPT at height %d: %w", bHeight, err)
}
err = bc.contracts.NEO.InitializeCache(bc, bc.dao)
if err != nil {
return fmt.Errorf("can't init cache for NEO native contract: %w", err)
}
err = bc.contracts.Management.InitializeCache(bc.dao)
if err != nil {
return fmt.Errorf("can't init cache for Management native contract: %w", err)
}
// Check autogenerated native contracts' manifests and NEFs against the stored ones.
// Need to be done after native Management cache initialisation to be able to get
// contract state from DAO via high-level bc API.
for _, c := range bc.contracts.Contracts {
md := c.Metadata()
history := md.UpdateHistory
if len(history) == 0 || history[0] > bHeight {
continue
}
storedCS := bc.GetContractState(md.Hash)
if storedCS == nil {
return fmt.Errorf("native contract %s is not stored", md.Name)
}
storedCSBytes, err := stackitem.SerializeConvertible(storedCS)
if err != nil {
return fmt.Errorf("failed to check native %s state against autogenerated one: %w", md.Name, err)
}
autogenCS := &state.Contract{
ContractBase: md.ContractBase,
UpdateCounter: storedCS.UpdateCounter, // it can be restored only from the DB, so use the stored value.
}
autogenCSBytes, err := stackitem.SerializeConvertible(autogenCS)
if err != nil {
return fmt.Errorf("failed to check native %s state against autogenerated one: %w", md.Name, err)
}
if !bytes.Equal(storedCSBytes, autogenCSBytes) {
return fmt.Errorf("native %s: version mismatch (stored contract state differs from autogenerated one), "+
"try to resynchronize the node from the genesis", md.Name)
}
}
return bc.updateExtensibleWhitelist(bHeight)
}
func (bc *Blockchain) removeOldStorageItems() {
_, err := bc.dao.Store.Get(storage.SYSCleanStorage.Bytes())
if err != nil {
return
}
b := bc.dao.Store.Batch()
prefix := statesync.TemporaryPrefix(bc.dao.Version.StoragePrefix)
bc.dao.Store.Seek(storage.SeekRange{Prefix: []byte{byte(prefix)}}, func(k, _ []byte) {
// #1468, but don't need to copy here, because it is done by Store.
b.Delete(k)
})
b.Delete(storage.SYSCleanStorage.Bytes())
err = bc.dao.Store.PutBatch(b)
if err != nil {
bc.log.Error("failed to remove old storage items", zap.Error(err))
}
}
// jumpToState is an atomic operation that changes Blockchain state to the one
// specified by the state sync point p. All the data needed for the jump must be
// collected by the state sync module.
func (bc *Blockchain) jumpToState(p uint32) error {
bc.addLock.Lock()
bc.lock.Lock()
defer bc.lock.Unlock()
defer bc.addLock.Unlock()
return bc.jumpToStateInternal(p, none)
}
// jumpToStateInternal is an internal representation of jumpToState callback that
// changes Blockchain state to the one specified by state sync point p and state
// jump stage. All the data needed for the jump must be in the DB, otherwise an
// error is returned. It is not protected by mutex.
func (bc *Blockchain) jumpToStateInternal(p uint32, stage stateJumpStage) error {
if p+1 >= uint32(len(bc.headerHashes)) {
return fmt.Errorf("invalid state sync point %d: headerHeignt is %d", p, len(bc.headerHashes))
}
bc.log.Info("jumping to state sync point", zap.Uint32("state sync point", p))
writeBuf := io.NewBufBinWriter()
jumpStageKey := storage.SYSStateJumpStage.Bytes()
switch stage {
case none:
err := bc.dao.Store.Put(jumpStageKey, []byte{byte(stateJumpStarted)})
if err != nil {
return fmt.Errorf("failed to store state jump stage: %w", err)
}
fallthrough
case stateJumpStarted:
newPrefix := statesync.TemporaryPrefix(bc.dao.Version.StoragePrefix)
v, err := bc.dao.GetVersion()
if err != nil {
return fmt.Errorf("failed to get dao.Version: %w", err)
}
v.StoragePrefix = newPrefix
if err := bc.dao.PutVersion(v); err != nil {
return fmt.Errorf("failed to update dao.Version: %w", err)
}
bc.persistent.Version = v
err = bc.dao.Store.Put(jumpStageKey, []byte{byte(newStorageItemsAdded)})
if err != nil {
return fmt.Errorf("failed to store state jump stage: %w", err)
}
err = bc.dao.Store.Put(storage.SYSCleanStorage.Bytes(), []byte{})
if err != nil {
return fmt.Errorf("failed to store clean storage flag: %w", err)
}
go bc.removeOldStorageItems()
fallthrough
case newStorageItemsAdded:
// After current state is updated, we need to remove outdated state-related data if so.
// The only outdated data we might have is genesis-related data, so check it.
if p-bc.config.MaxTraceableBlocks > 0 {
cache := bc.dao.GetWrapped()
writeBuf.Reset()
err := cache.DeleteBlock(bc.headerHashes[0], writeBuf)
if err != nil {
return fmt.Errorf("failed to remove outdated state data for the genesis block: %w", err)
}
// TODO: remove NEP-17 transfers and NEP-17 transfer info for genesis block, #2096 related.
_, err = cache.Persist()
if err != nil {
return fmt.Errorf("failed to drop genesis block state: %w", err)
}
}
err := bc.dao.Store.Put(jumpStageKey, []byte{byte(genesisStateRemoved)})
if err != nil {
return fmt.Errorf("failed to store state jump stage: %w", err)
}
case genesisStateRemoved:
// there's nothing to do after that, so just continue with common operations
// and remove state jump stage in the end.
default:
return errors.New("unknown state jump stage")
}
block, err := bc.dao.GetBlock(bc.headerHashes[p])
if err != nil {
return fmt.Errorf("failed to get current block: %w", err)
}
writeBuf.Reset()
err = bc.dao.StoreAsCurrentBlock(block, writeBuf)
if err != nil {
return fmt.Errorf("failed to store current block: %w", err)
}
bc.topBlock.Store(block)
atomic.StoreUint32(&bc.blockHeight, p)
atomic.StoreUint32(&bc.persistedHeight, p)
block, err = bc.dao.GetBlock(bc.headerHashes[p+1])
if err != nil {
return fmt.Errorf("failed to get block to init MPT: %w", err)
}
if err = bc.stateRoot.JumpToState(&state.MPTRoot{
Index: p,
Root: block.PrevStateRoot,
}, bc.config.KeepOnlyLatestState); err != nil {
return fmt.Errorf("can't perform MPT jump to height %d: %w", p, err)
}
err = bc.contracts.NEO.InitializeCache(bc, bc.dao)
if err != nil {
return fmt.Errorf("can't init cache for NEO native contract: %w", err)
}
err = bc.contracts.Management.InitializeCache(bc.dao)
if err != nil {
return fmt.Errorf("can't init cache for Management native contract: %w", err)
}
bc.contracts.Designate.InitializeCache()
if err := bc.updateExtensibleWhitelist(p); err != nil {
return fmt.Errorf("failed to update extensible whitelist: %w", err)
}
updateBlockHeightMetric(p)
err = bc.dao.Store.Delete(jumpStageKey)
if err != nil {
return fmt.Errorf("failed to remove outdated state jump stage: %w", err)
}
return nil
}
// Run runs chain loop, it needs to be run as goroutine and executing it is
// critical for correct Blockchain operation.
func (bc *Blockchain) Run() {
persistTimer := time.NewTimer(persistInterval)
defer func() {
persistTimer.Stop()
if _, err := bc.persist(true); err != nil {
bc.log.Warn("failed to persist", zap.Error(err))
}
if err := bc.dao.Store.Close(); err != nil {
bc.log.Warn("failed to close db", zap.Error(err))
}
close(bc.runToExitCh)
}()
go bc.notificationDispatcher()
var nextSync bool
for {
select {
case <-bc.stopCh:
return
case <-persistTimer.C:
dur, err := bc.persist(nextSync)
if err != nil {
bc.log.Warn("failed to persist blockchain", zap.Error(err))
}
nextSync = dur > persistInterval*2
interval := persistInterval - dur
if interval <= 0 {
interval = time.Microsecond // Reset doesn't work with zero value
}
persistTimer.Reset(interval)
}
}
}
// notificationDispatcher manages subscription to events and broadcasts new events.
func (bc *Blockchain) notificationDispatcher() {
var (
// These are just sets of subscribers, though modelled as maps
// for ease of management (not a lot of subscriptions is really
// expected, but maps are convenient for adding/deleting elements).
blockFeed = make(map[chan<- *block.Block]bool)
txFeed = make(map[chan<- *transaction.Transaction]bool)
notificationFeed = make(map[chan<- *subscriptions.NotificationEvent]bool)
executionFeed = make(map[chan<- *state.AppExecResult]bool)
)
for {
select {
case <-bc.stopCh:
return
case sub := <-bc.subCh:
switch ch := sub.(type) {
case chan<- *block.Block:
blockFeed[ch] = true
case chan<- *transaction.Transaction:
txFeed[ch] = true
case chan<- *subscriptions.NotificationEvent:
notificationFeed[ch] = true
case chan<- *state.AppExecResult:
executionFeed[ch] = true
default:
panic(fmt.Sprintf("bad subscription: %T", sub))
}
case unsub := <-bc.unsubCh:
switch ch := unsub.(type) {
case chan<- *block.Block:
delete(blockFeed, ch)
case chan<- *transaction.Transaction:
delete(txFeed, ch)
case chan<- *subscriptions.NotificationEvent:
delete(notificationFeed, ch)
case chan<- *state.AppExecResult:
delete(executionFeed, ch)
default:
panic(fmt.Sprintf("bad unsubscription: %T", unsub))
}
case event := <-bc.events:
// We don't want to waste time looping through transactions when there are no
// subscribers.
if len(txFeed) != 0 || len(notificationFeed) != 0 || len(executionFeed) != 0 {
aer := event.appExecResults[0]
if !aer.Container.Equals(event.block.Hash()) {
panic("inconsistent application execution results")
}
for ch := range executionFeed {
ch <- aer
}
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &subscriptions.NotificationEvent{
Container: aer.Container,
NotificationEvent: aer.Events[i],
}
}
}
aerIdx := 1
for _, tx := range event.block.Transactions {
aer := event.appExecResults[aerIdx]
if !aer.Container.Equals(tx.Hash()) {
panic("inconsistent application execution results")
}
aerIdx++
for ch := range executionFeed {
ch <- aer
}
if aer.VMState == vm.HaltState {
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &subscriptions.NotificationEvent{
Container: aer.Container,
NotificationEvent: aer.Events[i],
}
}
}
}
for ch := range txFeed {
ch <- tx
}
}
aer = event.appExecResults[aerIdx]
if !aer.Container.Equals(event.block.Hash()) {
panic("inconsistent application execution results")
}
for ch := range executionFeed {
ch <- aer
}
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &subscriptions.NotificationEvent{
Container: aer.Container,
NotificationEvent: aer.Events[i],
}
}
}
}
for ch := range blockFeed {
ch <- event.block
}
}
}
}
// Close stops Blockchain's internal loop, syncs changes to persistent storage
// and closes it. The Blockchain is no longer functional after the call to Close.
func (bc *Blockchain) Close() {
// If there is a block addition in progress, wait for it to finish and
// don't allow new ones.
bc.addLock.Lock()
close(bc.stopCh)
<-bc.runToExitCh
bc.addLock.Unlock()
}
// AddBlock accepts successive block for the Blockchain, verifies it and
// stores internally. Eventually it will be persisted to the backing storage.
func (bc *Blockchain) AddBlock(block *block.Block) error {
bc.addLock.Lock()
defer bc.addLock.Unlock()
var mp *mempool.Pool
expectedHeight := bc.BlockHeight() + 1
if expectedHeight != block.Index {
return fmt.Errorf("expected %d, got %d: %w", expectedHeight, block.Index, ErrInvalidBlockIndex)
}
if bc.config.StateRootInHeader != block.StateRootEnabled {
return fmt.Errorf("%w: %v != %v",
ErrHdrStateRootSetting, bc.config.StateRootInHeader, block.StateRootEnabled)
}
if block.Index == bc.HeaderHeight()+1 {
err := bc.addHeaders(bc.config.VerifyBlocks, &block.Header)
if err != nil {
return err
}
}
if bc.config.VerifyBlocks {
merkle := block.ComputeMerkleRoot()
if !block.MerkleRoot.Equals(merkle) {
return errors.New("invalid block: MerkleRoot mismatch")
}
mp = mempool.New(len(block.Transactions), 0, false)
for _, tx := range block.Transactions {
var err error
// Transactions are verified before adding them
// into the pool, so there is no point in doing
// it again even if we're verifying in-block transactions.
if bc.memPool.ContainsKey(tx.Hash()) {
err = mp.Add(tx, bc)
if err == nil {
continue
}
} else {
err = bc.verifyAndPoolTx(tx, mp, bc)
}
if err != nil && bc.config.VerifyTransactions {
return fmt.Errorf("transaction %s failed to verify: %w", tx.Hash().StringLE(), err)
}
}
}
return bc.storeBlock(block, mp)
}
// AddHeaders processes the given headers and add them to the
// HeaderHashList. It expects headers to be sorted by index.
func (bc *Blockchain) AddHeaders(headers ...*block.Header) error {
return bc.addHeaders(bc.config.VerifyBlocks, headers...)
}
// addHeaders is an internal implementation of AddHeaders (`verify` parameter
// tells it to verify or not verify given headers).
func (bc *Blockchain) addHeaders(verify bool, headers ...*block.Header) error {
var (
start = time.Now()
batch = bc.dao.Store.Batch()
err error
)
if len(headers) > 0 {
var i int
curHeight := bc.HeaderHeight()
for i = range headers {
if headers[i].Index > curHeight {
break
}
}
headers = headers[i:]
}
if len(headers) == 0 {
return nil
} else if verify {
// Verify that the chain of the headers is consistent.
var lastHeader *block.Header
if lastHeader, err = bc.GetHeader(headers[0].PrevHash); err != nil {
return fmt.Errorf("previous header was not found: %w", err)
}
for _, h := range headers {
if err = bc.verifyHeader(h, lastHeader); err != nil {
return err
}
lastHeader = h
}
}
buf := io.NewBufBinWriter()
bc.headerHashesLock.Lock()
defer bc.headerHashesLock.Unlock()
oldlen := len(bc.headerHashes)
var lastHeader *block.Header
for _, h := range headers {
if int(h.Index) != len(bc.headerHashes) {
continue
}
bc.headerHashes = append(bc.headerHashes, h.Hash())
buf.WriteB(storage.ExecBlock)
h.EncodeBinary(buf.BinWriter)
buf.BinWriter.WriteB(0)
if buf.Err != nil {
return buf.Err
}
key := storage.AppendPrefix(storage.DataExecutable, h.Hash().BytesBE())
batch.Put(key, buf.Bytes())
buf.Reset()
lastHeader = h
}
if oldlen != len(bc.headerHashes) {
for int(lastHeader.Index)-headerBatchCount >= int(bc.storedHeaderCount) {
buf.WriteArray(bc.headerHashes[bc.storedHeaderCount : bc.storedHeaderCount+headerBatchCount])
if buf.Err != nil {
return buf.Err
}
key := storage.AppendPrefixInt(storage.IXHeaderHashList, int(bc.storedHeaderCount))
batch.Put(key, buf.Bytes())
bc.storedHeaderCount += headerBatchCount
}
batch.Put(storage.SYSCurrentHeader.Bytes(), hashAndIndexToBytes(lastHeader.Hash(), lastHeader.Index))
updateHeaderHeightMetric(len(bc.headerHashes) - 1)
if err = bc.dao.Store.PutBatch(batch); err != nil {
return err
}
bc.log.Debug("done processing headers",
zap.Int("headerIndex", len(bc.headerHashes)-1),
zap.Uint32("blockHeight", bc.BlockHeight()),
zap.Duration("took", time.Since(start)))
}
return nil
}
// GetStateModule returns state root service instance.
func (bc *Blockchain) GetStateModule() blockchainer.StateRoot {
return bc.stateRoot
}
// GetStateSyncModule returns new state sync service instance.
func (bc *Blockchain) GetStateSyncModule() *statesync.Module {
return statesync.NewModule(bc, bc.stateRoot, bc.log, bc.dao, bc.jumpToState)
}
// storeBlock performs chain update using the block given, it executes all
// transactions with all appropriate side-effects and updates Blockchain state.
// This is the only way to change Blockchain state.
func (bc *Blockchain) storeBlock(block *block.Block, txpool *mempool.Pool) error {
var (
cache = bc.dao.GetWrapped()
aerCache = bc.dao.GetWrapped()
appExecResults = make([]*state.AppExecResult, 0, 2+len(block.Transactions))
aerchan = make(chan *state.AppExecResult, len(block.Transactions)/8) // Tested 8 and 4 with no practical difference, but feel free to test more and tune.
aerdone = make(chan error)
)
go func() {
var (
kvcache = aerCache
writeBuf = io.NewBufBinWriter()
err error
txCnt int
baer1, baer2 *state.AppExecResult
transCache = make(map[util.Uint160]transferData)
)
if err := kvcache.StoreAsCurrentBlock(block, writeBuf); err != nil {
aerdone <- err
return
}
writeBuf.Reset()
if bc.config.RemoveUntraceableBlocks {
var start, stop uint32
if bc.config.P2PStateExchangeExtensions {
// remove batch of old blocks starting from P2-MaxTraceableBlocks-StateSyncInterval up to P2-MaxTraceableBlocks
if block.Index >= 2*uint32(bc.config.StateSyncInterval) &&
block.Index >= uint32(bc.config.StateSyncInterval)+bc.config.MaxTraceableBlocks && // check this in case if MaxTraceableBlocks>StateSyncInterval
int(block.Index)%bc.config.StateSyncInterval == 0 {
stop = block.Index - uint32(bc.config.StateSyncInterval) - bc.config.MaxTraceableBlocks
if stop > uint32(bc.config.StateSyncInterval) {
start = stop - uint32(bc.config.StateSyncInterval)
}
}
} else if block.Index > bc.config.MaxTraceableBlocks {
start = block.Index - bc.config.MaxTraceableBlocks // is at least 1
stop = start + 1
}
for index := start; index < stop; index++ {
err := kvcache.DeleteBlock(bc.headerHashes[index], writeBuf)
if err != nil {
bc.log.Warn("error while removing old block",
zap.Uint32("index", index),
zap.Error(err))
}
writeBuf.Reset()
}
}
for aer := range aerchan {
if aer.Container == block.Hash() {
if baer1 == nil {
baer1 = aer
} else {
baer2 = aer
}
} else {
err = kvcache.StoreAsTransaction(block.Transactions[txCnt], block.Index, aer, writeBuf)
txCnt++
}
if err != nil {
err = fmt.Errorf("failed to store exec result: %w", err)
break
}
if aer.Execution.VMState == vm.HaltState {
for j := range aer.Execution.Events {
bc.handleNotification(&aer.Execution.Events[j], kvcache, transCache, block, aer.Container)
}
}
writeBuf.Reset()
}
if err != nil {
aerdone <- err
return
}
if err := kvcache.StoreAsBlock(block, baer1, baer2, writeBuf); err != nil {
aerdone <- err
return
}
writeBuf.Reset()
for acc, trData := range transCache {
err = kvcache.PutTokenTransferInfo(acc, &trData.Info)
if err != nil {
aerdone <- err
return
}
if !trData.Info.NewNEP11Batch {
err = kvcache.PutTokenTransferLog(acc, trData.Info.NextNEP11Batch, true, &trData.Log11)
if err != nil {
aerdone <- err
return
}
}
if !trData.Info.NewNEP17Batch {
err = kvcache.PutTokenTransferLog(acc, trData.Info.NextNEP17Batch, false, &trData.Log17)
if err != nil {
aerdone <- err
return
}
}
}
close(aerdone)
}()
aer, err := bc.runPersist(bc.contracts.GetPersistScript(), block, cache, trigger.OnPersist)
if err != nil {
// Release goroutines, don't care about errors, we already have one.
close(aerchan)
<-aerdone
return fmt.Errorf("onPersist failed: %w", err)
}
appExecResults = append(appExecResults, aer)
aerchan <- aer
for _, tx := range block.Transactions {
systemInterop := bc.newInteropContext(trigger.Application, cache, block, tx)
v := systemInterop.SpawnVM()
v.LoadScriptWithFlags(tx.Script, callflag.All)
v.SetPriceGetter(systemInterop.GetPrice)
v.LoadToken = contract.LoadToken(systemInterop)
v.GasLimit = tx.SystemFee
err := systemInterop.Exec()
var faultException string
if !v.HasFailed() {
_, err := systemInterop.DAO.Persist()
if err != nil {
// Release goroutines, don't care about errors, we already have one.
close(aerchan)
<-aerdone
return fmt.Errorf("failed to persist invocation results: %w", err)
}
} else {
bc.log.Warn("contract invocation failed",
zap.String("tx", tx.Hash().StringLE()),
zap.Uint32("block", block.Index),
zap.Error(err))
faultException = err.Error()
}
aer := &state.AppExecResult{
Container: tx.Hash(),
Execution: state.Execution{
Trigger: trigger.Application,
VMState: v.State(),
GasConsumed: v.GasConsumed(),
Stack: v.Estack().ToArray(),
Events: systemInterop.Notifications,
FaultException: faultException,
},
}
appExecResults = append(appExecResults, aer)
aerchan <- aer
}
aer, err = bc.runPersist(bc.contracts.GetPostPersistScript(), block, cache, trigger.PostPersist)
if err != nil {
// Release goroutines, don't care about errors, we already have one.
close(aerchan)
<-aerdone
return fmt.Errorf("postPersist failed: %w", err)
}
appExecResults = append(appExecResults, aer)
aerchan <- aer
close(aerchan)
d := cache.(*dao.Simple)
b := d.GetMPTBatch()
mpt, sr, err := bc.stateRoot.AddMPTBatch(block.Index, b, d.Store)
if err != nil {
// Release goroutines, don't care about errors, we already have one.
<-aerdone
// Here MPT can be left in a half-applied state.
// However if this error occurs, this is a bug somewhere in code
// because changes applied are the ones from HALTed transactions.
return fmt.Errorf("error while trying to apply MPT changes: %w", err)
}
if bc.config.StateRootInHeader && bc.HeaderHeight() > sr.Index {
h, err := bc.GetHeader(bc.GetHeaderHash(int(sr.Index) + 1))
if err != nil {
err = fmt.Errorf("failed to get next header: %w", err)
} else if h.PrevStateRoot != sr.Root {
err = fmt.Errorf("local stateroot and next header's PrevStateRoot mismatch: %s vs %s", sr.Root.StringBE(), h.PrevStateRoot.StringBE())
}
if err != nil {
// Release goroutines, don't care about errors, we already have one.
<-aerdone
return err
}
}
if bc.config.SaveStorageBatch {
bc.lastBatch = d.GetBatch()
}
// Every persist cycle we also compact our in-memory MPT. It's flushed
// already in AddMPTBatch, so collapsing it is safe.
persistedHeight := atomic.LoadUint32(&bc.persistedHeight)
if persistedHeight == block.Index-1 {
// 10 is good and roughly estimated to fit remaining trie into 1M of memory.
mpt.Collapse(10)
}
aererr := <-aerdone
if aererr != nil {
return aererr
}
bc.lock.Lock()
_, err = aerCache.Persist()
if err != nil {
bc.lock.Unlock()
return err
}
_, err = cache.Persist()
if err != nil {
bc.lock.Unlock()
return err
}
mpt.Store = bc.dao.Store
bc.stateRoot.UpdateCurrentLocal(mpt, sr)
bc.topBlock.Store(block)
atomic.StoreUint32(&bc.blockHeight, block.Index)
bc.memPool.RemoveStale(func(tx *transaction.Transaction) bool { return bc.IsTxStillRelevant(tx, txpool, false) }, bc)
for _, f := range bc.postBlock {
f(bc.IsTxStillRelevant, txpool, block)
}
if err := bc.updateExtensibleWhitelist(block.Index); err != nil {
bc.lock.Unlock()
return err
}
bc.lock.Unlock()
updateBlockHeightMetric(block.Index)
// Genesis block is stored when Blockchain is not yet running, so there
// is no one to read this event. And it doesn't make much sense as event
// anyway.
if block.Index != 0 {
bc.events <- bcEvent{block, appExecResults}
}
return nil
}
func (bc *Blockchain) updateExtensibleWhitelist(height uint32) error {
updateCommittee := native.ShouldUpdateCommittee(height, bc)
stateVals, sh, err := bc.contracts.Designate.GetDesignatedByRole(bc.dao, noderoles.StateValidator, height)
if err != nil {
return err
}
if bc.extensible.Load() != nil && !updateCommittee && sh != height {
return nil
}
newList := []util.Uint160{bc.contracts.NEO.GetCommitteeAddress()}
nextVals := bc.contracts.NEO.GetNextBlockValidatorsInternal()
script, err := smartcontract.CreateDefaultMultiSigRedeemScript(nextVals)
if err != nil {
return err
}
newList = append(newList, hash.Hash160(script))
bc.updateExtensibleList(&newList, bc.contracts.NEO.GetNextBlockValidatorsInternal())
if len(stateVals) > 0 {
h, err := bc.contracts.Designate.GetLastDesignatedHash(bc.dao, noderoles.StateValidator)
if err != nil {
return err
}
newList = append(newList, h)
bc.updateExtensibleList(&newList, stateVals)
}
sort.Slice(newList, func(i, j int) bool {
return newList[i].Less(newList[j])
})
bc.extensible.Store(newList)
return nil
}
func (bc *Blockchain) updateExtensibleList(s *[]util.Uint160, pubs keys.PublicKeys) {
for _, pub := range pubs {
*s = append(*s, pub.GetScriptHash())
}
}
// IsExtensibleAllowed determines if script hash is allowed to send extensible payloads.
func (bc *Blockchain) IsExtensibleAllowed(u util.Uint160) bool {
us := bc.extensible.Load().([]util.Uint160)
n := sort.Search(len(us), func(i int) bool { return !us[i].Less(u) })
return n < len(us)
}
func (bc *Blockchain) runPersist(script []byte, block *block.Block, cache dao.DAO, trig trigger.Type) (*state.AppExecResult, error) {
systemInterop := bc.newInteropContext(trig, cache, block, nil)
v := systemInterop.SpawnVM()
v.LoadScriptWithFlags(script, callflag.All)
v.SetPriceGetter(systemInterop.GetPrice)
if err := systemInterop.Exec(); err != nil {
return nil, fmt.Errorf("VM has failed: %w", err)
} else if _, err := systemInterop.DAO.Persist(); err != nil {
return nil, fmt.Errorf("can't save changes: %w", err)
}
return &state.AppExecResult{
Container: block.Hash(), // application logs can be retrieved by block hash
Execution: state.Execution{
Trigger: trig,
VMState: v.State(),
GasConsumed: v.GasConsumed(),
Stack: v.Estack().ToArray(),
Events: systemInterop.Notifications,
},
}, nil
}
func (bc *Blockchain) handleNotification(note *state.NotificationEvent, d dao.DAO,
transCache map[util.Uint160]transferData, b *block.Block, h util.Uint256) {
if note.Name != "Transfer" {
return
}
arr, ok := note.Item.Value().([]stackitem.Item)
if !ok || !(len(arr) == 3 || len(arr) == 4) {
return
}
from, err := parseUint160(arr[0])
if err != nil {
return
}
to, err := parseUint160(arr[1])
if err != nil {
return
}
amount, err := arr[2].TryInteger()
if err != nil {
return
}
var id []byte
if len(arr) == 4 {
id, err = arr[3].TryBytes()
if err != nil || len(id) > storage.MaxStorageKeyLen {
return
}
}
bc.processTokenTransfer(d, transCache, h, b, note.ScriptHash, from, to, amount, id)
}
func parseUint160(itm stackitem.Item) (util.Uint160, error) {
_, ok := itm.(stackitem.Null) // Minting or burning.
if ok {
return util.Uint160{}, nil
}
bytes, err := itm.TryBytes()
if err != nil {
return util.Uint160{}, err
}
return util.Uint160DecodeBytesBE(bytes)
}
func (bc *Blockchain) processTokenTransfer(cache dao.DAO, transCache map[util.Uint160]transferData,
h util.Uint256, b *block.Block, sc util.Uint160, from util.Uint160, to util.Uint160,
amount *big.Int, tokenID []byte) {
var id int32
nativeContract := bc.contracts.ByHash(sc)
if nativeContract != nil {
id = nativeContract.Metadata().ID
} else {
assetContract, err := bc.contracts.Management.GetContract(cache, sc)
if err != nil {
return
}
id = assetContract.ID
}
var transfer io.Serializable
var nep17xfer *state.NEP17Transfer
var isNEP11 = (tokenID != nil)
if !isNEP11 {
nep17xfer = &state.NEP17Transfer{
Asset: id,
From: from,
To: to,
Block: b.Index,
Timestamp: b.Timestamp,
Tx: h,
}
transfer = nep17xfer
} else {
nep11xfer := &state.NEP11Transfer{
NEP17Transfer: state.NEP17Transfer{
Asset: id,
From: from,
To: to,
Block: b.Index,
Timestamp: b.Timestamp,
Tx: h,
},
ID: tokenID,
}
transfer = nep11xfer
nep17xfer = &nep11xfer.NEP17Transfer
}
if !from.Equals(util.Uint160{}) {
_ = nep17xfer.Amount.Neg(amount) // We already have the Int.
if appendTokenTransfer(cache, transCache, from, transfer, id, b.Index, isNEP11) != nil {
return
}
}
if !to.Equals(util.Uint160{}) {
_ = nep17xfer.Amount.Set(amount) // We already have the Int.
_ = appendTokenTransfer(cache, transCache, to, transfer, id, b.Index, isNEP11) // Nothing useful we can do.
}
}
func appendTokenTransfer(cache dao.DAO, transCache map[util.Uint160]transferData, addr util.Uint160, transfer io.Serializable,
token int32, bIndex uint32, isNEP11 bool) error {
transferData, ok := transCache[addr]
if !ok {
balances, err := cache.GetTokenTransferInfo(addr)
if err != nil {
return err
}
if !balances.NewNEP11Batch {
trLog, err := cache.GetTokenTransferLog(addr, balances.NextNEP11Batch, true)
if err != nil {
return err
}
transferData.Log11 = *trLog
}
if !balances.NewNEP17Batch {
trLog, err := cache.GetTokenTransferLog(addr, balances.NextNEP17Batch, false)
if err != nil {
return err
}
transferData.Log17 = *trLog
}
transferData.Info = *balances
}
var (
log *state.TokenTransferLog
newBatch *bool
nextBatch *uint32
)
if !isNEP11 {
log = &transferData.Log17
newBatch = &transferData.Info.NewNEP17Batch
nextBatch = &transferData.Info.NextNEP17Batch
} else {
log = &transferData.Log11
newBatch = &transferData.Info.NewNEP11Batch
nextBatch = &transferData.Info.NextNEP11Batch
}
err := log.Append(transfer)
if err != nil {
return err
}
transferData.Info.LastUpdated[token] = bIndex
*newBatch = log.Size() >= state.TokenTransferBatchSize
if *newBatch {
err = cache.PutTokenTransferLog(addr, *nextBatch, isNEP11, log)
if err != nil {
return err
}
*nextBatch++
// Put makes a copy of it anyway.
log.Raw = log.Raw[:0]
}
transCache[addr] = transferData
return nil
}
// ForEachNEP17Transfer executes f for each NEP-17 transfer in log.
func (bc *Blockchain) ForEachNEP17Transfer(acc util.Uint160, f func(*state.NEP17Transfer) (bool, error)) error {
balances, err := bc.dao.GetTokenTransferInfo(acc)
if err != nil {
return nil
}
for i := int(balances.NextNEP17Batch); i >= 0; i-- {
lg, err := bc.dao.GetTokenTransferLog(acc, uint32(i), false)
if err != nil {
return nil
}
cont, err := lg.ForEachNEP17(f)
if err != nil {
return err
}
if !cont {
break
}
}
return nil
}
// ForEachNEP11Transfer executes f for each NEP-11 transfer in log.
func (bc *Blockchain) ForEachNEP11Transfer(acc util.Uint160, f func(*state.NEP11Transfer) (bool, error)) error {
balances, err := bc.dao.GetTokenTransferInfo(acc)
if err != nil {
return nil
}
for i := int(balances.NextNEP11Batch); i >= 0; i-- {
lg, err := bc.dao.GetTokenTransferLog(acc, uint32(i), true)
if err != nil {
return nil
}
cont, err := lg.ForEachNEP11(f)
if err != nil {
return err
}
if !cont {
break
}
}
return nil
}
// GetNEP17Contracts returns the list of deployed NEP-17 contracts.
func (bc *Blockchain) GetNEP17Contracts() []util.Uint160 {
return bc.contracts.Management.GetNEP17Contracts()
}
// GetNEP11Contracts returns the list of deployed NEP-11 contracts.
func (bc *Blockchain) GetNEP11Contracts() []util.Uint160 {
return bc.contracts.Management.GetNEP11Contracts()
}
// GetTokenLastUpdated returns a set of contract ids with the corresponding last updated
// block indexes. In case of an empty account, latest stored state synchronisation point
// is returned under Math.MinInt32 key.
func (bc *Blockchain) GetTokenLastUpdated(acc util.Uint160) (map[int32]uint32, error) {
info, err := bc.dao.GetTokenTransferInfo(acc)
if err != nil {
return nil, err
}
if bc.config.P2PStateExchangeExtensions && bc.config.RemoveUntraceableBlocks {
if _, ok := info.LastUpdated[bc.contracts.NEO.ID]; !ok {
nBalance, lub := bc.contracts.NEO.BalanceOf(bc.dao, acc)
if nBalance.Sign() != 0 {
info.LastUpdated[bc.contracts.NEO.ID] = lub
}
}
}
stateSyncPoint, err := bc.dao.GetStateSyncPoint()
if err == nil {
info.LastUpdated[math.MinInt32] = stateSyncPoint
}
return info.LastUpdated, nil
}
// GetUtilityTokenBalance returns utility token (GAS) balance for the acc.
func (bc *Blockchain) GetUtilityTokenBalance(acc util.Uint160) *big.Int {
bs := bc.contracts.GAS.BalanceOf(bc.dao, acc)
if bs == nil {
return big.NewInt(0)
}
return bs
}
// GetGoverningTokenBalance returns governing token (NEO) balance and the height
// of the last balance change for the account.
func (bc *Blockchain) GetGoverningTokenBalance(acc util.Uint160) (*big.Int, uint32) {
return bc.contracts.NEO.BalanceOf(bc.dao, acc)
}
// GetNotaryBalance returns Notary deposit amount for the specified account.
func (bc *Blockchain) GetNotaryBalance(acc util.Uint160) *big.Int {
return bc.contracts.Notary.BalanceOf(bc.dao, acc)
}
// GetNotaryContractScriptHash returns Notary native contract hash.
func (bc *Blockchain) GetNotaryContractScriptHash() util.Uint160 {
if bc.P2PSigExtensionsEnabled() {
return bc.contracts.Notary.Hash
}
return util.Uint160{}
}
// GetNotaryDepositExpiration returns Notary deposit expiration height for the specified account.
func (bc *Blockchain) GetNotaryDepositExpiration(acc util.Uint160) uint32 {
return bc.contracts.Notary.ExpirationOf(bc.dao, acc)
}
// LastBatch returns last persisted storage batch.
func (bc *Blockchain) LastBatch() *storage.MemBatch {
return bc.lastBatch
}
// persist flushes current in-memory Store contents to the persistent storage.
func (bc *Blockchain) persist(isSync bool) (time.Duration, error) {
var (
start = time.Now()
duration time.Duration
persisted int
err error
)
if isSync {
persisted, err = bc.dao.PersistSync()
} else {
persisted, err = bc.dao.Persist()
}
if err != nil {
return 0, err
}
if persisted > 0 {
bHeight, err := bc.persistent.GetCurrentBlockHeight()
if err != nil {
return 0, err
}
oldHeight := atomic.SwapUint32(&bc.persistedHeight, bHeight)
diff := bHeight - oldHeight
storedHeaderHeight, _, err := bc.persistent.GetCurrentHeaderHeight()
if err != nil {
return 0, err
}
duration = time.Since(start)
bc.log.Info("persisted to disk",
zap.Uint32("blocks", diff),
zap.Int("keys", persisted),
zap.Uint32("headerHeight", storedHeaderHeight),
zap.Uint32("blockHeight", bHeight),
zap.Duration("took", duration))
// update monitoring metrics.
updatePersistedHeightMetric(bHeight)
}
return duration, nil
}
// GetTransaction returns a TX and its height by the given hash. The height is MaxUint32 if tx is in the mempool.
func (bc *Blockchain) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) {
if tx, ok := bc.memPool.TryGetValue(hash); ok {
return tx, math.MaxUint32, nil // the height is not actually defined for memPool transaction.
}
return bc.dao.GetTransaction(hash)
}
// GetAppExecResults returns application execution results with the specified trigger by the given
// tx hash or block hash.
func (bc *Blockchain) GetAppExecResults(hash util.Uint256, trig trigger.Type) ([]state.AppExecResult, error) {
return bc.dao.GetAppExecResults(hash, trig)
}
// GetStorageItem returns an item from storage.
func (bc *Blockchain) GetStorageItem(id int32, key []byte) state.StorageItem {
return bc.dao.GetStorageItem(id, key)
}
// GetStorageItems returns all storage items for a given contract id.
func (bc *Blockchain) GetStorageItems(id int32) ([]state.StorageItemWithKey, error) {
return bc.dao.GetStorageItems(id)
}
// GetBlock returns a Block by the given hash.
func (bc *Blockchain) GetBlock(hash util.Uint256) (*block.Block, error) {
topBlock := bc.topBlock.Load()
if topBlock != nil {
tb := topBlock.(*block.Block)
if tb.Hash().Equals(hash) {
return tb, nil
}
}
block, err := bc.dao.GetBlock(hash)
if err != nil {
return nil, err
}
if !block.MerkleRoot.Equals(util.Uint256{}) && len(block.Transactions) == 0 {
return nil, errors.New("only header is found")
}
for _, tx := range block.Transactions {
stx, _, err := bc.dao.GetTransaction(tx.Hash())
if err != nil {
return nil, err
}
*tx = *stx
}
return block, nil
}
// GetHeader returns data block header identified with the given hash value.
func (bc *Blockchain) GetHeader(hash util.Uint256) (*block.Header, error) {
topBlock := bc.topBlock.Load()
if topBlock != nil {
tb := topBlock.(*block.Block)
if tb.Hash().Equals(hash) {
return &tb.Header, nil
}
}
block, err := bc.dao.GetBlock(hash)
if err != nil {
return nil, err
}
return &block.Header, nil
}
// HasTransaction returns true if the blockchain contains he given
// transaction hash.
func (bc *Blockchain) HasTransaction(hash util.Uint256) bool {
if bc.memPool.ContainsKey(hash) {
return true
}
return bc.dao.HasTransaction(hash) == dao.ErrAlreadyExists
}
// HasBlock returns true if the blockchain contains the given
// block hash.
func (bc *Blockchain) HasBlock(hash util.Uint256) bool {
if header, err := bc.GetHeader(hash); err == nil {
return header.Index <= bc.BlockHeight()
}
return false
}
// CurrentBlockHash returns the highest processed block hash.
func (bc *Blockchain) CurrentBlockHash() util.Uint256 {
topBlock := bc.topBlock.Load()
if topBlock != nil {
tb := topBlock.(*block.Block)
return tb.Hash()
}
return bc.GetHeaderHash(int(bc.BlockHeight()))
}
// CurrentHeaderHash returns the hash of the latest known header.
func (bc *Blockchain) CurrentHeaderHash() util.Uint256 {
bc.headerHashesLock.RLock()
hash := bc.headerHashes[len(bc.headerHashes)-1]
bc.headerHashesLock.RUnlock()
return hash
}
// GetHeaderHash returns hash of the header/block with specified index, if
// Blockchain doesn't have a hash for this height, zero Uint256 value is returned.
func (bc *Blockchain) GetHeaderHash(i int) util.Uint256 {
bc.headerHashesLock.RLock()
defer bc.headerHashesLock.RUnlock()
hashesLen := len(bc.headerHashes)
if hashesLen <= i {
return util.Uint256{}
}
return bc.headerHashes[i]
}
// BlockHeight returns the height/index of the highest block.
func (bc *Blockchain) BlockHeight() uint32 {
return atomic.LoadUint32(&bc.blockHeight)
}
// HeaderHeight returns the index/height of the highest header.
func (bc *Blockchain) HeaderHeight() uint32 {
bc.headerHashesLock.RLock()
n := len(bc.headerHashes)
bc.headerHashesLock.RUnlock()
return uint32(n - 1)
}
// GetContractState returns contract by its script hash.
func (bc *Blockchain) GetContractState(hash util.Uint160) *state.Contract {
contract, err := bc.contracts.Management.GetContract(bc.dao, hash)
if contract == nil && err != storage.ErrKeyNotFound {
bc.log.Warn("failed to get contract state", zap.Error(err))
}
return contract
}
// GetContractScriptHash returns contract script hash by its ID.
func (bc *Blockchain) GetContractScriptHash(id int32) (util.Uint160, error) {
return bc.dao.GetContractScriptHash(id)
}
// GetNativeContractScriptHash returns native contract script hash by its name.
func (bc *Blockchain) GetNativeContractScriptHash(name string) (util.Uint160, error) {
c := bc.contracts.ByName(name)
if c != nil {
return c.Metadata().Hash, nil
}
return util.Uint160{}, errors.New("Unknown native contract")
}
// GetNatives returns list of native contracts.
func (bc *Blockchain) GetNatives() []state.NativeContract {
res := make([]state.NativeContract, 0, len(bc.contracts.Contracts))
for _, c := range bc.contracts.Contracts {
res = append(res, c.Metadata().NativeContract)
}
return res
}
// GetConfig returns the config stored in the blockchain.
func (bc *Blockchain) GetConfig() config.ProtocolConfiguration {
return bc.config
}
// SubscribeForBlocks adds given channel to new block event broadcasting, so when
// there is a new block added to the chain you'll receive it via this channel.
// Make sure it's read from regularly as not reading these events might affect
// other Blockchain functions.
func (bc *Blockchain) SubscribeForBlocks(ch chan<- *block.Block) {
bc.subCh <- ch
}
// SubscribeForTransactions adds given channel to new transaction event
// broadcasting, so when there is a new transaction added to the chain (in a
// block) you'll receive it via this channel. Make sure it's read from regularly
// as not reading these events might affect other Blockchain functions.
func (bc *Blockchain) SubscribeForTransactions(ch chan<- *transaction.Transaction) {
bc.subCh <- ch
}
// SubscribeForNotifications adds given channel to new notifications event
// broadcasting, so when an in-block transaction execution generates a
// notification you'll receive it via this channel. Only notifications from
// successful transactions are broadcasted, if you're interested in failed
// transactions use SubscribeForExecutions instead. Make sure this channel is
// read from regularly as not reading these events might affect other Blockchain
// functions.
func (bc *Blockchain) SubscribeForNotifications(ch chan<- *subscriptions.NotificationEvent) {
bc.subCh <- ch
}
// SubscribeForExecutions adds given channel to new transaction execution event
// broadcasting, so when an in-block transaction execution happens you'll receive
// the result of it via this channel. Make sure it's read from regularly as not
// reading these events might affect other Blockchain functions.
func (bc *Blockchain) SubscribeForExecutions(ch chan<- *state.AppExecResult) {
bc.subCh <- ch
}
// UnsubscribeFromBlocks unsubscribes given channel from new block notifications,
// you can close it afterwards. Passing non-subscribed channel is a no-op.
func (bc *Blockchain) UnsubscribeFromBlocks(ch chan<- *block.Block) {
bc.unsubCh <- ch
}
// UnsubscribeFromTransactions unsubscribes given channel from new transaction
// notifications, you can close it afterwards. Passing non-subscribed channel is
// a no-op.
func (bc *Blockchain) UnsubscribeFromTransactions(ch chan<- *transaction.Transaction) {
bc.unsubCh <- ch
}
// UnsubscribeFromNotifications unsubscribes given channel from new
// execution-generated notifications, you can close it afterwards. Passing
// non-subscribed channel is a no-op.
func (bc *Blockchain) UnsubscribeFromNotifications(ch chan<- *subscriptions.NotificationEvent) {
bc.unsubCh <- ch
}
// UnsubscribeFromExecutions unsubscribes given channel from new execution
// notifications, you can close it afterwards. Passing non-subscribed channel is
// a no-op.
func (bc *Blockchain) UnsubscribeFromExecutions(ch chan<- *state.AppExecResult) {
bc.unsubCh <- ch
}
// CalculateClaimable calculates the amount of GAS generated by owning specified
// amount of NEO between specified blocks.
func (bc *Blockchain) CalculateClaimable(acc util.Uint160, endHeight uint32) (*big.Int, error) {
return bc.contracts.NEO.CalculateBonus(bc.dao, acc, endHeight)
}
// FeePerByte returns transaction network fee per byte.
func (bc *Blockchain) FeePerByte() int64 {
return bc.contracts.Policy.GetFeePerByteInternal(bc.dao)
}
// GetMemPool returns the memory pool of the blockchain.
func (bc *Blockchain) GetMemPool() *mempool.Pool {
return bc.memPool
}
// ApplyPolicyToTxSet applies configured policies to given transaction set. It
// expects slice to be ordered by fee and returns a subslice of it.
func (bc *Blockchain) ApplyPolicyToTxSet(txes []*transaction.Transaction) []*transaction.Transaction {
maxTx := bc.config.MaxTransactionsPerBlock
if maxTx != 0 && len(txes) > int(maxTx) {
txes = txes[:maxTx]
}
maxBlockSize := bc.config.MaxBlockSize
maxBlockSysFee := bc.config.MaxBlockSystemFee
defaultWitness := bc.defaultBlockWitness.Load()
if defaultWitness == nil {
m := smartcontract.GetDefaultHonestNodeCount(bc.config.ValidatorsCount)
verification, _ := smartcontract.CreateDefaultMultiSigRedeemScript(bc.contracts.NEO.GetNextBlockValidatorsInternal())
defaultWitness = transaction.Witness{
InvocationScript: make([]byte, 66*m),
VerificationScript: verification,
}
bc.defaultBlockWitness.Store(defaultWitness)
}
var (
b = &block.Block{Header: block.Header{Script: defaultWitness.(transaction.Witness)}}
blockSize = uint32(b.GetExpectedBlockSizeWithoutTransactions(len(txes)))
blockSysFee int64
)
for i, tx := range txes {
blockSize += uint32(tx.Size())
blockSysFee += tx.SystemFee
if blockSize > maxBlockSize || blockSysFee > maxBlockSysFee {
txes = txes[:i]
break
}
}
return txes
}
// Various errors that could be returns upon header verification.
var (
ErrHdrHashMismatch = errors.New("previous header hash doesn't match")
ErrHdrIndexMismatch = errors.New("previous header index doesn't match")
ErrHdrInvalidTimestamp = errors.New("block is not newer than the previous one")
ErrHdrStateRootSetting = errors.New("state root setting mismatch")
ErrHdrInvalidStateRoot = errors.New("state root for previous block is invalid")
)
func (bc *Blockchain) verifyHeader(currHeader, prevHeader *block.Header) error {
if bc.config.StateRootInHeader {
if bc.stateRoot.CurrentLocalHeight() == prevHeader.Index {
if sr := bc.stateRoot.CurrentLocalStateRoot(); currHeader.PrevStateRoot != sr {
return fmt.Errorf("%w: %s != %s",
ErrHdrInvalidStateRoot, currHeader.PrevStateRoot.StringLE(), sr.StringLE())
}
}
}
if prevHeader.Hash() != currHeader.PrevHash {
return ErrHdrHashMismatch
}
if prevHeader.Index+1 != currHeader.Index {
return ErrHdrIndexMismatch
}
if prevHeader.Timestamp >= currHeader.Timestamp {
return ErrHdrInvalidTimestamp
}
return bc.verifyHeaderWitnesses(currHeader, prevHeader)
}
// Various errors that could be returned upon verification.
var (
ErrTxExpired = errors.New("transaction has expired")
ErrInsufficientFunds = errors.New("insufficient funds")
ErrTxSmallNetworkFee = errors.New("too small network fee")
ErrTxTooBig = errors.New("too big transaction")
ErrMemPoolConflict = errors.New("invalid transaction due to conflicts with the memory pool")
ErrInvalidScript = errors.New("invalid script")
ErrInvalidAttribute = errors.New("invalid attribute")
)
// verifyAndPoolTx verifies whether a transaction is bonafide or not and tries
// to add it to the mempool given.
func (bc *Blockchain) verifyAndPoolTx(t *transaction.Transaction, pool *mempool.Pool, feer mempool.Feer, data ...interface{}) error {
// This code can technically be moved out of here, because it doesn't
// really require a chain lock.
err := vm.IsScriptCorrect(t.Script, nil)
if err != nil {
return fmt.Errorf("%w: %v", ErrInvalidScript, err)
}
height := bc.BlockHeight()
isPartialTx := data != nil
if t.ValidUntilBlock <= height || !isPartialTx && t.ValidUntilBlock > height+bc.config.MaxValidUntilBlockIncrement {
return fmt.Errorf("%w: ValidUntilBlock = %d, current height = %d", ErrTxExpired, t.ValidUntilBlock, height)
}
// Policying.
if err := bc.contracts.Policy.CheckPolicy(bc.dao, t); err != nil {
// Only one %w can be used.
return fmt.Errorf("%w: %v", ErrPolicy, err)
}
size := t.Size()
if size > transaction.MaxTransactionSize {
return fmt.Errorf("%w: (%d > MaxTransactionSize %d)", ErrTxTooBig, size, transaction.MaxTransactionSize)
}
needNetworkFee := int64(size) * bc.FeePerByte()
if bc.P2PSigExtensionsEnabled() {
attrs := t.GetAttributes(transaction.NotaryAssistedT)
if len(attrs) != 0 {
na := attrs[0].Value.(*transaction.NotaryAssisted)
needNetworkFee += (int64(na.NKeys) + 1) * transaction.NotaryServiceFeePerKey
}
}
netFee := t.NetworkFee - needNetworkFee
if netFee < 0 {
return fmt.Errorf("%w: net fee is %v, need %v", ErrTxSmallNetworkFee, t.NetworkFee, needNetworkFee)
}
// check that current tx wasn't included in the conflicts attributes of some other transaction which is already in the chain
if err := bc.dao.HasTransaction(t.Hash()); err != nil {
switch {
case errors.Is(err, dao.ErrAlreadyExists):
return fmt.Errorf("blockchain: %w", ErrAlreadyExists)
case errors.Is(err, dao.ErrHasConflicts):
return fmt.Errorf("blockchain: %w", ErrHasConflicts)
default:
return err
}
}
err = bc.verifyTxWitnesses(t, nil, isPartialTx)
if err != nil {
return err
}
if err := bc.verifyTxAttributes(t, isPartialTx); err != nil {
return err
}
err = pool.Add(t, feer, data...)
if err != nil {
switch {
case errors.Is(err, mempool.ErrConflict):
return ErrMemPoolConflict
case errors.Is(err, mempool.ErrDup):
return fmt.Errorf("mempool: %w", ErrAlreadyExists)
case errors.Is(err, mempool.ErrInsufficientFunds):
return ErrInsufficientFunds
case errors.Is(err, mempool.ErrOOM):
return ErrOOM
case errors.Is(err, mempool.ErrConflictsAttribute):
return fmt.Errorf("mempool: %w: %s", ErrHasConflicts, err)
default:
return err
}
}
return nil
}
func (bc *Blockchain) verifyTxAttributes(tx *transaction.Transaction, isPartialTx bool) error {
for i := range tx.Attributes {
switch attrType := tx.Attributes[i].Type; attrType {
case transaction.HighPriority:
h := bc.contracts.NEO.GetCommitteeAddress()
if !tx.HasSigner(h) {
return fmt.Errorf("%w: high priority tx is not signed by committee", ErrInvalidAttribute)
}
case transaction.OracleResponseT:
h, err := bc.contracts.Oracle.GetScriptHash(bc.dao)
if err != nil || h.Equals(util.Uint160{}) {
return fmt.Errorf("%w: %v", ErrInvalidAttribute, err)
}
hasOracle := false
for i := range tx.Signers {
if tx.Signers[i].Scopes != transaction.None {
return fmt.Errorf("%w: oracle tx has invalid signer scope", ErrInvalidAttribute)
}
if tx.Signers[i].Account.Equals(h) {
hasOracle = true
}
}
if !hasOracle {
return fmt.Errorf("%w: oracle tx is not signed by oracle nodes", ErrInvalidAttribute)
}
if !bytes.Equal(tx.Script, bc.contracts.Oracle.GetOracleResponseScript()) {
return fmt.Errorf("%w: oracle tx has invalid script", ErrInvalidAttribute)
}
resp := tx.Attributes[i].Value.(*transaction.OracleResponse)
req, err := bc.contracts.Oracle.GetRequestInternal(bc.dao, resp.ID)
if err != nil {
return fmt.Errorf("%w: oracle tx points to invalid request: %v", ErrInvalidAttribute, err)
}
if uint64(tx.NetworkFee+tx.SystemFee) < req.GasForResponse {
return fmt.Errorf("%w: oracle tx has insufficient gas", ErrInvalidAttribute)
}
case transaction.NotValidBeforeT:
if !bc.config.P2PSigExtensions {
return fmt.Errorf("%w: NotValidBefore attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute)
}
nvb := tx.Attributes[i].Value.(*transaction.NotValidBefore).Height
if isPartialTx {
maxNVBDelta := bc.contracts.Notary.GetMaxNotValidBeforeDelta(bc.dao)
if bc.BlockHeight()+maxNVBDelta < nvb {
return fmt.Errorf("%w: partially-filled transaction should become valid not less then %d blocks after current chain's height %d", ErrInvalidAttribute, maxNVBDelta, bc.BlockHeight())
}
if nvb+maxNVBDelta < tx.ValidUntilBlock {
return fmt.Errorf("%w: partially-filled transaction should be valid during less than %d blocks", ErrInvalidAttribute, maxNVBDelta)
}
} else {
if height := bc.BlockHeight(); height < nvb {
return fmt.Errorf("%w: transaction is not yet valid: NotValidBefore = %d, current height = %d", ErrInvalidAttribute, nvb, height)
}
}
case transaction.ConflictsT:
if !bc.config.P2PSigExtensions {
return fmt.Errorf("%w: Conflicts attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute)
}
conflicts := tx.Attributes[i].Value.(*transaction.Conflicts)
if err := bc.dao.HasTransaction(conflicts.Hash); errors.Is(err, dao.ErrAlreadyExists) {
return fmt.Errorf("%w: conflicting transaction %s is already on chain", ErrInvalidAttribute, conflicts.Hash.StringLE())
}
case transaction.NotaryAssistedT:
if !bc.config.P2PSigExtensions {
return fmt.Errorf("%w: NotaryAssisted attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute)
}
if !tx.HasSigner(bc.contracts.Notary.Hash) {
return fmt.Errorf("%w: NotaryAssisted attribute was found, but transaction is not signed by the Notary native contract", ErrInvalidAttribute)
}
default:
if !bc.config.ReservedAttributes && attrType >= transaction.ReservedLowerBound && attrType <= transaction.ReservedUpperBound {
return fmt.Errorf("%w: attribute of reserved type was found, but ReservedAttributes are disabled", ErrInvalidAttribute)
}
}
}
return nil
}
// IsTxStillRelevant is a callback for mempool transaction filtering after the
// new block addition. It returns false for transactions added by the new block
// (passed via txpool) and does witness reverification for non-standard
// contracts. It operates under the assumption that full transaction verification
// was already done so we don't need to check basic things like size, input/output
// correctness, presence in blocks before the new one, etc.
func (bc *Blockchain) IsTxStillRelevant(t *transaction.Transaction, txpool *mempool.Pool, isPartialTx bool) bool {
var recheckWitness bool
var curheight = bc.BlockHeight()
if t.ValidUntilBlock <= curheight {
return false
}
if txpool == nil {
if bc.dao.HasTransaction(t.Hash()) != nil {
return false
}
} else if txpool.HasConflicts(t, bc) {
return false
}
if err := bc.verifyTxAttributes(t, isPartialTx); err != nil {
return false
}
for i := range t.Scripts {
if !vm.IsStandardContract(t.Scripts[i].VerificationScript) {
recheckWitness = true
break
}
}
if recheckWitness {
return bc.verifyTxWitnesses(t, nil, isPartialTx) == nil
}
return true
}
// VerifyTx verifies whether transaction is bonafide or not relative to the
// current blockchain state. Note that this verification is completely isolated
// from the main node's mempool.
func (bc *Blockchain) VerifyTx(t *transaction.Transaction) error {
var mp = mempool.New(1, 0, false)
bc.lock.RLock()
defer bc.lock.RUnlock()
return bc.verifyAndPoolTx(t, mp, bc)
}
// PoolTx verifies and tries to add given transaction into the mempool. If not
// given, the default mempool is used. Passing multiple pools is not supported.
func (bc *Blockchain) PoolTx(t *transaction.Transaction, pools ...*mempool.Pool) error {
var pool = bc.memPool
bc.lock.RLock()
defer bc.lock.RUnlock()
// Programmer error.
if len(pools) > 1 {
panic("too many pools given")
}
if len(pools) == 1 {
pool = pools[0]
}
return bc.verifyAndPoolTx(t, pool, bc)
}
// PoolTxWithData verifies and tries to add given transaction with additional data into the mempool.
func (bc *Blockchain) PoolTxWithData(t *transaction.Transaction, data interface{}, mp *mempool.Pool, feer mempool.Feer, verificationFunction func(tx *transaction.Transaction, data interface{}) error) error {
bc.lock.RLock()
defer bc.lock.RUnlock()
if verificationFunction != nil {
err := verificationFunction(t, data)
if err != nil {
return err
}
}
return bc.verifyAndPoolTx(t, mp, feer, data)
}
// GetStandByValidators returns validators from the configuration.
func (bc *Blockchain) GetStandByValidators() keys.PublicKeys {
return bc.sbCommittee[:bc.config.ValidatorsCount].Copy()
}
// GetStandByCommittee returns standby committee from the configuration.
func (bc *Blockchain) GetStandByCommittee() keys.PublicKeys {
return bc.sbCommittee.Copy()
}
// GetCommittee returns the sorted list of public keys of nodes in committee.
func (bc *Blockchain) GetCommittee() (keys.PublicKeys, error) {
pubs := bc.contracts.NEO.GetCommitteeMembers()
sort.Sort(pubs)
return pubs, nil
}
// GetValidators returns current validators.
func (bc *Blockchain) GetValidators() ([]*keys.PublicKey, error) {
return bc.contracts.NEO.ComputeNextBlockValidators(bc, bc.dao)
}
// GetNextBlockValidators returns next block validators.
func (bc *Blockchain) GetNextBlockValidators() ([]*keys.PublicKey, error) {
return bc.contracts.NEO.GetNextBlockValidatorsInternal(), nil
}
// GetEnrollments returns all registered validators.
func (bc *Blockchain) GetEnrollments() ([]state.Validator, error) {
return bc.contracts.NEO.GetCandidates(bc.dao)
}
// GetTestVM returns an interop context with VM set up for a test run.
func (bc *Blockchain) GetTestVM(t trigger.Type, tx *transaction.Transaction, b *block.Block) *interop.Context {
d := bc.dao.GetWrapped().(*dao.Simple)
systemInterop := bc.newInteropContext(t, d, b, tx)
vm := systemInterop.SpawnVM()
vm.SetPriceGetter(systemInterop.GetPrice)
vm.LoadToken = contract.LoadToken(systemInterop)
return systemInterop
}
// Various witness verification errors.
var (
ErrWitnessHashMismatch = errors.New("witness hash mismatch")
ErrNativeContractWitness = errors.New("native contract witness must have empty verification script")
ErrVerificationFailed = errors.New("signature check failed")
ErrInvalidInvocation = errors.New("invalid invocation script")
ErrInvalidSignature = fmt.Errorf("%w: invalid signature", ErrVerificationFailed)
ErrInvalidVerification = errors.New("invalid verification script")
ErrUnknownVerificationContract = errors.New("unknown verification contract")
ErrInvalidVerificationContract = errors.New("verification contract is missing `verify` method")
)
// InitVerificationContext initializes context for witness check.
func (bc *Blockchain) InitVerificationContext(ic *interop.Context, hash util.Uint160, witness *transaction.Witness) error {
if len(witness.VerificationScript) != 0 {
if witness.ScriptHash() != hash {
return ErrWitnessHashMismatch
}
if bc.contracts.ByHash(hash) != nil {
return ErrNativeContractWitness
}
err := vm.IsScriptCorrect(witness.VerificationScript, nil)
if err != nil {
return fmt.Errorf("%w: %v", ErrInvalidVerification, err)
}
ic.VM.LoadScriptWithHash(witness.VerificationScript, hash, callflag.ReadOnly)
} else {
cs, err := ic.GetContract(hash)
if err != nil {
return ErrUnknownVerificationContract
}
md := cs.Manifest.ABI.GetMethod(manifest.MethodVerify, -1)
if md == nil || md.ReturnType != smartcontract.BoolType {
return ErrInvalidVerificationContract
}
verifyOffset := md.Offset
initOffset := -1
md = cs.Manifest.ABI.GetMethod(manifest.MethodInit, 0)
if md != nil {
initOffset = md.Offset
}
ic.Invocations[cs.Hash]++
ic.VM.LoadNEFMethod(&cs.NEF, util.Uint160{}, hash, callflag.ReadOnly,
true, verifyOffset, initOffset)
}
if len(witness.InvocationScript) != 0 {
err := vm.IsScriptCorrect(witness.InvocationScript, nil)
if err != nil {
return fmt.Errorf("%w: %v", ErrInvalidInvocation, err)
}
ic.VM.LoadScript(witness.InvocationScript)
}
return nil
}
// VerifyWitness checks that w is a correct witness for c signed by h. It returns
// the amount of GAS consumed during verification and an error.
func (bc *Blockchain) VerifyWitness(h util.Uint160, c hash.Hashable, w *transaction.Witness, gas int64) (int64, error) {
ic := bc.newInteropContext(trigger.Verification, bc.dao, nil, nil)
ic.Container = c
return bc.verifyHashAgainstScript(h, w, ic, gas)
}
// verifyHashAgainstScript verifies given hash against the given witness and returns the amount of GAS consumed.
func (bc *Blockchain) verifyHashAgainstScript(hash util.Uint160, witness *transaction.Witness, interopCtx *interop.Context, gas int64) (int64, error) {
gasPolicy := bc.contracts.Policy.GetMaxVerificationGas(interopCtx.DAO)
if gas > gasPolicy {
gas = gasPolicy
}
vm := interopCtx.SpawnVM()
vm.SetPriceGetter(interopCtx.GetPrice)
vm.LoadToken = contract.LoadToken(interopCtx)
vm.GasLimit = gas
if err := bc.InitVerificationContext(interopCtx, hash, witness); err != nil {
return 0, err
}
err := interopCtx.Exec()
if vm.HasFailed() {
return 0, fmt.Errorf("%w: vm execution has failed: %v", ErrVerificationFailed, err)
}
estack := vm.Estack()
if estack.Len() > 0 {
resEl := estack.Pop()
res, err := resEl.Item().TryBool()
if err != nil {
return 0, fmt.Errorf("%w: invalid return value", ErrVerificationFailed)
}
if vm.Estack().Len() != 0 {
return 0, fmt.Errorf("%w: expected exactly one returned value", ErrVerificationFailed)
}
if !res {
return vm.GasConsumed(), ErrInvalidSignature
}
} else {
return 0, fmt.Errorf("%w: no result returned from the script", ErrVerificationFailed)
}
return vm.GasConsumed(), nil
}
// verifyTxWitnesses verifies the scripts (witnesses) that come with a given
// transaction. It can reorder them by ScriptHash, because that's required to
// match a slice of script hashes from the Blockchain. Block parameter
// is used for easy interop access and can be omitted for transactions that are
// not yet added into any block.
// Golang implementation of VerifyWitnesses method in C# (https://github.com/neo-project/neo/blob/master/neo/SmartContract/Helper.cs#L87).
func (bc *Blockchain) verifyTxWitnesses(t *transaction.Transaction, block *block.Block, isPartialTx bool) error {
interopCtx := bc.newInteropContext(trigger.Verification, bc.dao, block, t)
gasLimit := t.NetworkFee - int64(t.Size())*bc.FeePerByte()
if bc.P2PSigExtensionsEnabled() {
attrs := t.GetAttributes(transaction.NotaryAssistedT)
if len(attrs) != 0 {
na := attrs[0].Value.(*transaction.NotaryAssisted)
gasLimit -= (int64(na.NKeys) + 1) * transaction.NotaryServiceFeePerKey
}
}
for i := range t.Signers {
gasConsumed, err := bc.verifyHashAgainstScript(t.Signers[i].Account, &t.Scripts[i], interopCtx, gasLimit)
if err != nil &&
!(i == 0 && isPartialTx && errors.Is(err, ErrInvalidSignature)) { // it's OK for partially-filled transaction with dummy first witness.
return fmt.Errorf("witness #%d: %w", i, err)
}
gasLimit -= gasConsumed
}
return nil
}
// verifyHeaderWitnesses is a block-specific implementation of VerifyWitnesses logic.
func (bc *Blockchain) verifyHeaderWitnesses(currHeader, prevHeader *block.Header) error {
var hash util.Uint160
if prevHeader == nil && currHeader.PrevHash.Equals(util.Uint256{}) {
hash = currHeader.Script.ScriptHash()
} else {
hash = prevHeader.NextConsensus
}
_, err := bc.VerifyWitness(hash, currHeader, &currHeader.Script, HeaderVerificationGasLimit)
return err
}
// GoverningTokenHash returns the governing token (NEO) native contract hash.
func (bc *Blockchain) GoverningTokenHash() util.Uint160 {
return bc.contracts.NEO.Hash
}
// UtilityTokenHash returns the utility token (GAS) native contract hash.
func (bc *Blockchain) UtilityTokenHash() util.Uint160 {
return bc.contracts.GAS.Hash
}
// ManagementContractHash returns management contract's hash.
func (bc *Blockchain) ManagementContractHash() util.Uint160 {
return bc.contracts.Management.Hash
}
func hashAndIndexToBytes(h util.Uint256, index uint32) []byte {
buf := io.NewBufBinWriter()
buf.WriteBytes(h.BytesLE())
buf.WriteU32LE(index)
return buf.Bytes()
}
func (bc *Blockchain) newInteropContext(trigger trigger.Type, d dao.DAO, block *block.Block, tx *transaction.Transaction) *interop.Context {
ic := interop.NewContext(trigger, bc, d, bc.contracts.Management.GetContract, bc.contracts.Contracts, block, tx, bc.log)
ic.Functions = systemInterops
switch {
case tx != nil:
ic.Container = tx
case block != nil:
ic.Container = block
}
ic.InitNonceData()
return ic
}
// P2PSigExtensionsEnabled defines whether P2P signature extensions are enabled.
func (bc *Blockchain) P2PSigExtensionsEnabled() bool {
return bc.config.P2PSigExtensions
}
// RegisterPostBlock appends provided function to the list of functions which should be run after new block
// is stored.
func (bc *Blockchain) RegisterPostBlock(f func(func(*transaction.Transaction, *mempool.Pool, bool) bool, *mempool.Pool, *block.Block)) {
bc.postBlock = append(bc.postBlock, f)
}
// GetBaseExecFee return execution price for `NOP`.
func (bc *Blockchain) GetBaseExecFee() int64 {
return bc.contracts.Policy.GetExecFeeFactorInternal(bc.dao)
}
// GetMaxVerificationGAS returns maximum verification GAS Policy limit.
func (bc *Blockchain) GetMaxVerificationGAS() int64 {
return bc.contracts.Policy.GetMaxVerificationGas(bc.dao)
}
// GetStoragePrice returns current storage price.
func (bc *Blockchain) GetStoragePrice() int64 {
if bc.BlockHeight() == 0 {
return native.DefaultStoragePrice
}
return bc.contracts.Policy.GetStoragePriceInternal(bc.dao)
}