forked from TrueCloudLab/neoneo-go
1e2b438b55
Replace native CryptoLib's verifyWithECDsa `curve` parameter by `curveHash` parameter which is a enum over supported pairs of named curves and hash functions. Even though this change is a compatible extension of the protocol, it changes the genesis state due to parameter renaming. But we're going to resync chain in 3.7 release anyway, so it's not a big deal. Also, we need to check mainnet and testnet compatibility in case if anyone has ever called verifyWithECDsa with 24 or 25 `curve` value. Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
87 lines
2.3 KiB
Go
87 lines
2.3 KiB
Go
package hash
|
|
|
|
import (
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
|
|
"github.com/nspcc-dev/neo-go/pkg/util"
|
|
"golang.org/x/crypto/ripemd160" //nolint:staticcheck // SA1019: package golang.org/x/crypto/ripemd160 is deprecated
|
|
"golang.org/x/crypto/sha3"
|
|
)
|
|
|
|
// Hashable represents an object which can be hashed. Usually, these objects
|
|
// are io.Serializable and signable. They tend to cache the hash inside for
|
|
// effectiveness, providing this accessor method. Anything that can be
|
|
// identified with a hash can then be signed and verified.
|
|
type Hashable interface {
|
|
Hash() util.Uint256
|
|
}
|
|
|
|
func getSignedData(net uint32, hh Hashable) []byte {
|
|
var b = make([]byte, 4+util.Uint256Size)
|
|
binary.LittleEndian.PutUint32(b, net)
|
|
h := hh.Hash()
|
|
copy(b[4:], h[:])
|
|
return b
|
|
}
|
|
|
|
// NetSha256 calculates a network-specific hash of the Hashable item that can then
|
|
// be signed/verified.
|
|
func NetSha256(net uint32, hh Hashable) util.Uint256 {
|
|
return Sha256(getSignedData(net, hh))
|
|
}
|
|
|
|
// Sha256 hashes the incoming byte slice
|
|
// using the sha256 algorithm.
|
|
func Sha256(data []byte) util.Uint256 {
|
|
hash := sha256.Sum256(data)
|
|
return hash
|
|
}
|
|
|
|
// DoubleSha256 performs sha256 twice on the given data.
|
|
func DoubleSha256(data []byte) util.Uint256 {
|
|
var hash util.Uint256
|
|
|
|
h1 := Sha256(data)
|
|
hash = Sha256(h1.BytesBE())
|
|
return hash
|
|
}
|
|
|
|
// Keccak256 hashes the incoming byte slice using the
|
|
// keccak256 algorithm.
|
|
func Keccak256(data []byte) util.Uint256 {
|
|
var hash util.Uint256
|
|
hasher := sha3.NewLegacyKeccak256() // TODO: @roman-khimov, can we allow to replace it with New256? I don't think we ever need non-standard padding support.
|
|
_, _ = hasher.Write(data)
|
|
|
|
hasher.Sum(hash[:0])
|
|
return hash
|
|
}
|
|
|
|
// RipeMD160 performs the RIPEMD160 hash algorithm
|
|
// on the given data.
|
|
func RipeMD160(data []byte) util.Uint160 {
|
|
var hash util.Uint160
|
|
hasher := ripemd160.New()
|
|
_, _ = hasher.Write(data)
|
|
|
|
hasher.Sum(hash[:0])
|
|
return hash
|
|
}
|
|
|
|
// Hash160 performs sha256 and then ripemd160
|
|
// on the given data.
|
|
func Hash160(data []byte) util.Uint160 {
|
|
h1 := Sha256(data)
|
|
h2 := RipeMD160(h1.BytesBE())
|
|
|
|
return h2
|
|
}
|
|
|
|
// Checksum returns the checksum for a given piece of data
|
|
// using DoubleSha256 as the hash algorithm. It returns the
|
|
// first 4 bytes of the resulting slice.
|
|
func Checksum(data []byte) []byte {
|
|
hash := DoubleSha256(data)
|
|
return hash[:4]
|
|
}
|