neoneo-go/pkg/network/server.go
Roman Khimov 462022bbdd consensus: remove OnNewBlock(), use Blockchain subscription
Get new blocks directly from the Blockchain. It may lead to some duplications
(as we'll also receive our own blocks), but at the same time it's more
correct, because technically we can also get blocks via other means besides
network server like RPC (submitblock call). And it simplifies network server
at the same time.
2020-05-25 00:27:39 +03:00

906 lines
24 KiB
Go

package network
import (
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"net"
"strconv"
"sync"
"time"
"github.com/nspcc-dev/neo-go/pkg/consensus"
"github.com/nspcc-dev/neo-go/pkg/core"
"github.com/nspcc-dev/neo-go/pkg/core/block"
"github.com/nspcc-dev/neo-go/pkg/core/blockchainer"
"github.com/nspcc-dev/neo-go/pkg/core/transaction"
"github.com/nspcc-dev/neo-go/pkg/network/payload"
"github.com/nspcc-dev/neo-go/pkg/util"
"go.uber.org/atomic"
"go.uber.org/zap"
)
const (
// peer numbers are arbitrary at the moment.
defaultMinPeers = 5
defaultAttemptConnPeers = 20
defaultMaxPeers = 100
maxBlockBatch = 200
maxAddrsToSend = 200
minPoolCount = 30
)
var (
errAlreadyConnected = errors.New("already connected")
errIdenticalID = errors.New("identical node id")
errInvalidHandshake = errors.New("invalid handshake")
errInvalidNetwork = errors.New("invalid network")
errMaxPeers = errors.New("max peers reached")
errServerShutdown = errors.New("server shutdown")
errInvalidInvType = errors.New("invalid inventory type")
errInvalidHashStart = errors.New("invalid requested HashStart")
)
type (
// Server represents the local Node in the network. Its transport could
// be of any kind.
Server struct {
// ServerConfig holds the Server configuration.
ServerConfig
// id also known as the nonce of the server.
id uint32
transport Transporter
discovery Discoverer
chain blockchainer.Blockchainer
bQueue *blockQueue
consensus consensus.Service
lock sync.RWMutex
peers map[Peer]bool
register chan Peer
unregister chan peerDrop
quit chan struct{}
transactions chan *transaction.Transaction
consensusStarted *atomic.Bool
log *zap.Logger
}
peerDrop struct {
peer Peer
reason error
}
)
func randomID() uint32 {
buf := make([]byte, 4)
_, _ = rand.Read(buf)
return binary.BigEndian.Uint32(buf)
}
// NewServer returns a new Server, initialized with the given configuration.
func NewServer(config ServerConfig, chain blockchainer.Blockchainer, log *zap.Logger) (*Server, error) {
if log == nil {
return nil, errors.New("logger is a required parameter")
}
s := &Server{
ServerConfig: config,
chain: chain,
id: randomID(),
quit: make(chan struct{}),
register: make(chan Peer),
unregister: make(chan peerDrop),
peers: make(map[Peer]bool),
consensusStarted: atomic.NewBool(false),
log: log,
transactions: make(chan *transaction.Transaction, 64),
}
s.bQueue = newBlockQueue(maxBlockBatch, chain, log, func(b *block.Block) {
if !s.consensusStarted.Load() {
s.tryStartConsensus()
}
s.relayBlock(b)
})
srv, err := consensus.NewService(consensus.Config{
Logger: log,
Broadcast: s.handleNewPayload,
RelayBlock: s.relayBlock,
Chain: chain,
RequestTx: s.requestTx,
Wallet: config.Wallet,
TimePerBlock: config.TimePerBlock,
})
if err != nil {
return nil, err
}
s.consensus = srv
if s.MinPeers < 0 {
s.log.Info("bad MinPeers configured, using the default value",
zap.Int("configured", s.MinPeers),
zap.Int("actual", defaultMinPeers))
s.MinPeers = defaultMinPeers
}
if s.MaxPeers <= 0 {
s.log.Info("bad MaxPeers configured, using the default value",
zap.Int("configured", s.MaxPeers),
zap.Int("actual", defaultMaxPeers))
s.MaxPeers = defaultMaxPeers
}
if s.AttemptConnPeers <= 0 {
s.log.Info("bad AttemptConnPeers configured, using the default value",
zap.Int("configured", s.AttemptConnPeers),
zap.Int("actual", defaultAttemptConnPeers))
s.AttemptConnPeers = defaultAttemptConnPeers
}
s.transport = NewTCPTransport(s, fmt.Sprintf("%s:%d", config.Address, config.Port), s.log)
s.discovery = NewDefaultDiscovery(
s.DialTimeout,
s.transport,
)
return s, nil
}
// ID returns the servers ID.
func (s *Server) ID() uint32 {
return s.id
}
// Start will start the server and its underlying transport.
func (s *Server) Start(errChan chan error) {
s.log.Info("node started",
zap.Uint32("blockHeight", s.chain.BlockHeight()),
zap.Uint32("headerHeight", s.chain.HeaderHeight()))
s.tryStartConsensus()
s.discovery.BackFill(s.Seeds...)
go s.broadcastTxLoop()
go s.bQueue.run()
go s.transport.Accept()
setServerAndNodeVersions(s.UserAgent, strconv.FormatUint(uint64(s.id), 10))
s.run()
}
// Shutdown disconnects all peers and stops listening.
func (s *Server) Shutdown() {
s.log.Info("shutting down server", zap.Int("peers", s.PeerCount()))
s.transport.Close()
s.discovery.Close()
for p := range s.peers {
p.Disconnect(errServerShutdown)
}
s.bQueue.discard()
close(s.quit)
}
// UnconnectedPeers returns a list of peers that are in the discovery peer list
// but are not connected to the server.
func (s *Server) UnconnectedPeers() []string {
return s.discovery.UnconnectedPeers()
}
// BadPeers returns a list of peers the are flagged as "bad" peers.
func (s *Server) BadPeers() []string {
return s.discovery.BadPeers()
}
// ConnectedPeers returns a list of currently connected peers.
func (s *Server) ConnectedPeers() []string {
s.lock.RLock()
defer s.lock.RUnlock()
peers := make([]string, 0, len(s.peers))
for k := range s.peers {
peers = append(peers, k.PeerAddr().String())
}
return peers
}
// run is a goroutine that starts another goroutine to manage protocol specifics
// while itself dealing with peers management (handling connects/disconnects).
func (s *Server) run() {
go s.runProto()
for {
if s.PeerCount() < s.MinPeers {
s.discovery.RequestRemote(s.AttemptConnPeers)
}
if s.discovery.PoolCount() < minPoolCount {
s.broadcastHPMessage(NewMessage(CMDGetAddr, payload.NewNullPayload()))
}
select {
case <-s.quit:
return
case p := <-s.register:
s.lock.Lock()
s.peers[p] = true
s.lock.Unlock()
peerCount := s.PeerCount()
s.log.Info("new peer connected", zap.Stringer("addr", p.RemoteAddr()), zap.Int("peerCount", peerCount))
if peerCount > s.MaxPeers {
s.lock.RLock()
// Pick a random peer and drop connection to it.
for peer := range s.peers {
// It will send us unregister signal.
go peer.Disconnect(errMaxPeers)
break
}
s.lock.RUnlock()
}
updatePeersConnectedMetric(s.PeerCount())
case drop := <-s.unregister:
s.lock.Lock()
if s.peers[drop.peer] {
delete(s.peers, drop.peer)
s.lock.Unlock()
s.log.Warn("peer disconnected",
zap.Stringer("addr", drop.peer.RemoteAddr()),
zap.String("reason", drop.reason.Error()),
zap.Int("peerCount", s.PeerCount()))
addr := drop.peer.PeerAddr().String()
if drop.reason == errIdenticalID {
s.discovery.RegisterBadAddr(addr)
} else if drop.reason != errAlreadyConnected {
s.discovery.UnregisterConnectedAddr(addr)
s.discovery.BackFill(addr)
}
updatePeersConnectedMetric(s.PeerCount())
} else {
// else the peer is already gone, which can happen
// because we have two goroutines sending signals here
s.lock.Unlock()
}
}
}
}
// runProto is a goroutine that manages server-wide protocol events.
func (s *Server) runProto() {
pingTimer := time.NewTimer(s.PingInterval)
for {
prevHeight := s.chain.BlockHeight()
select {
case <-s.quit:
return
case <-pingTimer.C:
if s.chain.BlockHeight() == prevHeight {
// Get a copy of s.peers to avoid holding a lock while sending.
for peer := range s.Peers() {
_ = peer.SendPing(NewMessage(CMDPing, payload.NewPing(s.id, s.chain.HeaderHeight())))
}
}
pingTimer.Reset(s.PingInterval)
}
}
}
func (s *Server) tryStartConsensus() {
if s.Wallet == nil || s.consensusStarted.Load() {
return
}
if s.IsInSync() {
s.log.Info("node reached synchronized state, starting consensus")
if s.consensusStarted.CAS(false, true) {
s.consensus.Start()
}
}
}
// Peers returns the current list of peers connected to
// the server.
func (s *Server) Peers() map[Peer]bool {
s.lock.RLock()
defer s.lock.RUnlock()
peers := make(map[Peer]bool, len(s.peers))
for k, v := range s.peers {
peers[k] = v
}
return peers
}
// PeerCount returns the number of current connected peers.
func (s *Server) PeerCount() int {
s.lock.RLock()
defer s.lock.RUnlock()
return len(s.peers)
}
// HandshakedPeersCount returns the number of connected peers
// which have already performed handshake.
func (s *Server) HandshakedPeersCount() int {
s.lock.RLock()
defer s.lock.RUnlock()
var count int
for p := range s.peers {
if p.Handshaked() {
count++
}
}
return count
}
// getVersionMsg returns current version message.
func (s *Server) getVersionMsg() *Message {
payload := payload.NewVersion(
s.Net,
s.id,
s.Port,
s.UserAgent,
s.chain.BlockHeight(),
s.Relay,
)
return NewMessage(CMDVersion, payload)
}
// IsInSync answers the question of whether the server is in sync with the
// network or not (at least how the server itself sees it). The server operates
// with the data that it has, the number of peers (that has to be more than
// minimum number) and height of these peers (our chain has to be not lower
// than 2/3 of our peers have). Ideally we would check for the highest of the
// peers, but the problem is that they can lie to us and send whatever height
// they want to.
func (s *Server) IsInSync() bool {
var peersNumber int
var notHigher int
if s.MinPeers == 0 {
return true
}
ourLastBlock := s.chain.BlockHeight()
s.lock.RLock()
for p := range s.peers {
if p.Handshaked() {
peersNumber++
if ourLastBlock >= p.LastBlockIndex() {
notHigher++
}
}
}
s.lock.RUnlock()
// Checking bQueue would also be nice, but it can be filled with garbage
// easily at the moment.
return peersNumber >= s.MinPeers && (3*notHigher > 2*peersNumber) // && s.bQueue.length() == 0
}
// When a peer sends out his version we reply with verack after validating
// the version.
func (s *Server) handleVersionCmd(p Peer, version *payload.Version) error {
err := p.HandleVersion(version)
if err != nil {
return err
}
if s.id == version.Nonce {
return errIdenticalID
}
// Make sure both server and peer are operating on
// the same network.
if s.Net != version.Magic {
return errInvalidNetwork
}
peerAddr := p.PeerAddr().String()
s.discovery.RegisterConnectedAddr(peerAddr)
s.lock.RLock()
for peer := range s.peers {
if p == peer {
continue
}
ver := peer.Version()
// Already connected, drop this connection.
if ver != nil && ver.Nonce == version.Nonce && peer.PeerAddr().String() == peerAddr {
s.lock.RUnlock()
return errAlreadyConnected
}
}
s.lock.RUnlock()
return p.SendVersionAck(NewMessage(CMDVerack, nil))
}
// handleHeadersCmd processes the headers received from its peer.
// If the headerHeight of the blockchain still smaller then the peer
// the server will request more headers.
// This method could best be called in a separate routine.
func (s *Server) handleHeadersCmd(p Peer, headers *payload.Headers) {
if err := s.chain.AddHeaders(headers.Hdrs...); err != nil {
s.log.Warn("failed processing headers", zap.Error(err))
return
}
// The peer will respond with a maximum of 2000 headers in one batch.
// We will ask one more batch here if needed. Eventually we will get synced
// due to the startProtocol routine that will ask headers every protoTick.
if s.chain.HeaderHeight() < p.LastBlockIndex() {
s.requestHeaders(p)
}
}
// handleBlockCmd processes the received block received from its peer.
func (s *Server) handleBlockCmd(p Peer, block *block.Block) error {
return s.bQueue.putBlock(block)
}
// handlePing processes ping request.
func (s *Server) handlePing(p Peer, ping *payload.Ping) error {
return p.EnqueueP2PMessage(NewMessage(CMDPong, payload.NewPing(s.chain.BlockHeight(), s.id)))
}
// handlePing processes pong request.
func (s *Server) handlePong(p Peer, pong *payload.Ping) error {
err := p.HandlePong(pong)
if err != nil {
return err
}
if s.chain.HeaderHeight() < pong.LastBlockIndex {
return s.requestHeaders(p)
}
return nil
}
// handleInvCmd processes the received inventory.
func (s *Server) handleInvCmd(p Peer, inv *payload.Inventory) error {
reqHashes := make([]util.Uint256, 0)
var typExists = map[payload.InventoryType]func(util.Uint256) bool{
payload.TXType: s.chain.HasTransaction,
payload.BlockType: s.chain.HasBlock,
payload.ConsensusType: func(h util.Uint256) bool {
cp := s.consensus.GetPayload(h)
return cp != nil
},
}
if exists := typExists[inv.Type]; exists != nil {
for _, hash := range inv.Hashes {
if !exists(hash) {
reqHashes = append(reqHashes, hash)
}
}
}
if len(reqHashes) > 0 {
msg := NewMessage(CMDGetData, payload.NewInventory(inv.Type, reqHashes))
pkt, err := msg.Bytes()
if err != nil {
return err
}
if inv.Type == payload.ConsensusType {
return p.EnqueueHPPacket(pkt)
}
return p.EnqueueP2PPacket(pkt)
}
return nil
}
// handleInvCmd processes the received inventory.
func (s *Server) handleGetDataCmd(p Peer, inv *payload.Inventory) error {
for _, hash := range inv.Hashes {
var msg *Message
switch inv.Type {
case payload.TXType:
tx, _, err := s.chain.GetTransaction(hash)
if err == nil {
msg = NewMessage(CMDTX, tx)
}
case payload.BlockType:
b, err := s.chain.GetBlock(hash)
if err == nil {
msg = NewMessage(CMDBlock, b)
}
case payload.ConsensusType:
if cp := s.consensus.GetPayload(hash); cp != nil {
msg = NewMessage(CMDConsensus, cp)
}
}
if msg != nil {
pkt, err := msg.Bytes()
if err == nil {
if inv.Type == payload.ConsensusType {
err = p.EnqueueHPPacket(pkt)
} else {
err = p.EnqueueP2PPacket(pkt)
}
}
if err != nil {
return err
}
}
}
return nil
}
// handleGetBlocksCmd processes the getblocks request.
func (s *Server) handleGetBlocksCmd(p Peer, gb *payload.GetBlocks) error {
count := gb.Count
if gb.Count < 0 || gb.Count > payload.MaxHashesCount {
count = payload.MaxHashesCount
}
start, err := s.chain.GetHeader(gb.HashStart)
if err != nil {
return err
}
blockHashes := make([]util.Uint256, 0)
for i := start.Index + 1; i < start.Index+uint32(count); i++ {
hash := s.chain.GetHeaderHash(int(i))
if hash.Equals(util.Uint256{}) {
break
}
blockHashes = append(blockHashes, hash)
}
if len(blockHashes) == 0 {
return nil
}
payload := payload.NewInventory(payload.BlockType, blockHashes)
msg := NewMessage(CMDInv, payload)
return p.EnqueueP2PMessage(msg)
}
// handleGetBlockDataCmd processes the getblockdata request.
func (s *Server) handleGetBlockDataCmd(p Peer, gbd *payload.GetBlockData) error {
for i := gbd.IndexStart; i < gbd.IndexStart+uint32(gbd.Count); i++ {
b, err := s.chain.GetBlock(s.chain.GetHeaderHash(int(i)))
if err != nil {
return err
}
msg := NewMessage(CMDBlock, b)
return p.EnqueueP2PMessage(msg)
}
return nil
}
// handleGetHeadersCmd processes the getheaders request.
func (s *Server) handleGetHeadersCmd(p Peer, gh *payload.GetBlocks) error {
count := gh.Count
if gh.Count < 0 || gh.Count > payload.MaxHashesCount {
count = payload.MaxHashesCount
}
start, err := s.chain.GetHeader(gh.HashStart)
if err != nil {
return err
}
resp := payload.Headers{}
resp.Hdrs = make([]*block.Header, 0, payload.MaxHeadersAllowed)
for i := start.Index + 1; i < start.Index+uint32(count); i++ {
hash := s.chain.GetHeaderHash(int(i))
if hash.Equals(util.Uint256{}) {
break
}
header, err := s.chain.GetHeader(hash)
if err != nil {
break
}
resp.Hdrs = append(resp.Hdrs, header)
}
if len(resp.Hdrs) == 0 {
return nil
}
msg := NewMessage(CMDHeaders, &resp)
return p.EnqueueP2PMessage(msg)
}
// handleConsensusCmd processes received consensus payload.
// It never returns an error.
func (s *Server) handleConsensusCmd(cp *consensus.Payload) error {
s.consensus.OnPayload(cp)
return nil
}
// handleTxCmd processes received transaction.
// It never returns an error.
func (s *Server) handleTxCmd(tx *transaction.Transaction) error {
// It's OK for it to fail for various reasons like tx already existing
// in the pool.
if s.verifyAndPoolTX(tx) == RelaySucceed {
s.consensus.OnTransaction(tx)
s.broadcastTX(tx)
}
return nil
}
// handleAddrCmd will process received addresses.
func (s *Server) handleAddrCmd(p Peer, addrs *payload.AddressList) error {
for _, a := range addrs.Addrs {
s.discovery.BackFill(a.IPPortString())
}
return nil
}
// handleGetAddrCmd sends to the peer some good addresses that we know of.
func (s *Server) handleGetAddrCmd(p Peer) error {
addrs := s.discovery.GoodPeers()
if len(addrs) > maxAddrsToSend {
addrs = addrs[:maxAddrsToSend]
}
alist := payload.NewAddressList(len(addrs))
ts := time.Now()
for i, addr := range addrs {
// we know it's a good address, so it can't fail
netaddr, _ := net.ResolveTCPAddr("tcp", addr)
alist.Addrs[i] = payload.NewAddressAndTime(netaddr, ts)
}
return p.EnqueueP2PMessage(NewMessage(CMDAddr, alist))
}
// requestHeaders sends a getheaders message to the peer.
// The peer will respond with headers op to a count of 500.
func (s *Server) requestHeaders(p Peer) error {
payload := payload.NewGetBlocks(s.chain.CurrentHeaderHash(), -1)
return p.EnqueueP2PMessage(NewMessage(CMDGetHeaders, payload))
}
// requestBlocks sends a getdata message to the peer
// to sync up in blocks. A maximum of maxBlockBatch will
// send at once.
func (s *Server) requestBlocks(p Peer) error {
var (
hashes []util.Uint256
hashStart = s.chain.BlockHeight() + 1
headerHeight = s.chain.HeaderHeight()
)
for hashStart <= headerHeight && len(hashes) < maxBlockBatch {
hash := s.chain.GetHeaderHash(int(hashStart))
hashes = append(hashes, hash)
hashStart++
}
if len(hashes) > 0 {
payload := payload.NewInventory(payload.BlockType, hashes)
return p.EnqueueP2PMessage(NewMessage(CMDGetData, payload))
} else if s.chain.HeaderHeight() < p.LastBlockIndex() {
return s.requestHeaders(p)
}
return nil
}
// handleMessage processes the given message.
func (s *Server) handleMessage(peer Peer, msg *Message) error {
s.log.Debug("got msg",
zap.Stringer("addr", peer.RemoteAddr()),
zap.String("type", msg.Command.String()))
if peer.Handshaked() {
if inv, ok := msg.Payload.(*payload.Inventory); ok {
if !inv.Type.Valid() || len(inv.Hashes) == 0 {
return errInvalidInvType
}
}
switch msg.Command {
case CMDAddr:
addrs := msg.Payload.(*payload.AddressList)
return s.handleAddrCmd(peer, addrs)
case CMDGetAddr:
// it has no payload
return s.handleGetAddrCmd(peer)
case CMDGetBlocks:
gb := msg.Payload.(*payload.GetBlocks)
return s.handleGetBlocksCmd(peer, gb)
case CMDGetBlockData:
gbd := msg.Payload.(*payload.GetBlockData)
return s.handleGetBlockDataCmd(peer, gbd)
case CMDGetData:
inv := msg.Payload.(*payload.Inventory)
return s.handleGetDataCmd(peer, inv)
case CMDGetHeaders:
gh := msg.Payload.(*payload.GetBlocks)
return s.handleGetHeadersCmd(peer, gh)
case CMDHeaders:
headers := msg.Payload.(*payload.Headers)
go s.handleHeadersCmd(peer, headers)
case CMDInv:
inventory := msg.Payload.(*payload.Inventory)
return s.handleInvCmd(peer, inventory)
case CMDBlock:
block := msg.Payload.(*block.Block)
return s.handleBlockCmd(peer, block)
case CMDConsensus:
cp := msg.Payload.(*consensus.Payload)
return s.handleConsensusCmd(cp)
case CMDTX:
tx := msg.Payload.(*transaction.Transaction)
return s.handleTxCmd(tx)
case CMDPing:
ping := msg.Payload.(*payload.Ping)
return s.handlePing(peer, ping)
case CMDPong:
pong := msg.Payload.(*payload.Ping)
return s.handlePong(peer, pong)
case CMDVersion, CMDVerack:
return fmt.Errorf("received '%s' after the handshake", msg.Command.String())
}
} else {
switch msg.Command {
case CMDVersion:
version := msg.Payload.(*payload.Version)
return s.handleVersionCmd(peer, version)
case CMDVerack:
err := peer.HandleVersionAck()
if err != nil {
return err
}
go peer.StartProtocol()
s.tryStartConsensus()
default:
return fmt.Errorf("received '%s' during handshake", msg.Command.String())
}
}
return nil
}
func (s *Server) handleNewPayload(p *consensus.Payload) {
msg := NewMessage(CMDInv, payload.NewInventory(payload.ConsensusType, []util.Uint256{p.Hash()}))
// It's high priority because it directly affects consensus process,
// even though it's just an inv.
s.broadcastHPMessage(msg)
}
func (s *Server) requestTx(hashes ...util.Uint256) {
if len(hashes) == 0 {
return
}
msg := NewMessage(CMDGetData, payload.NewInventory(payload.TXType, hashes))
// It's high priority because it directly affects consensus process,
// even though it's getdata.
s.broadcastHPMessage(msg)
}
// iteratePeersWithSendMsg sends given message to all peers using two functions
// passed, one is to send the message and the other is to filtrate peers (the
// peer is considered invalid if it returns false).
func (s *Server) iteratePeersWithSendMsg(msg *Message, send func(Peer, []byte) error, peerOK func(Peer) bool) {
pkt, err := msg.Bytes()
if err != nil {
return
}
// Get a copy of s.peers to avoid holding a lock while sending.
for peer := range s.Peers() {
if peerOK != nil && !peerOK(peer) {
continue
}
// Who cares about these messages anyway?
_ = send(peer, pkt)
}
}
// broadcastMessage sends the message to all available peers.
func (s *Server) broadcastMessage(msg *Message) {
s.iteratePeersWithSendMsg(msg, Peer.EnqueuePacket, nil)
}
// broadcastHPMessage sends the high-priority message to all available peers.
func (s *Server) broadcastHPMessage(msg *Message) {
s.iteratePeersWithSendMsg(msg, Peer.EnqueueHPPacket, nil)
}
// relayBlock tells all the other connected nodes about the given block.
func (s *Server) relayBlock(b *block.Block) {
msg := NewMessage(CMDInv, payload.NewInventory(payload.BlockType, []util.Uint256{b.Hash()}))
// Filter out nodes that are more current (avoid spamming the network
// during initial sync).
s.iteratePeersWithSendMsg(msg, Peer.EnqueuePacket, func(p Peer) bool {
return p.Handshaked() && p.LastBlockIndex() < b.Index
})
}
// verifyAndPoolTX verifies the TX and adds it to the local mempool.
func (s *Server) verifyAndPoolTX(t *transaction.Transaction) RelayReason {
if err := s.chain.PoolTx(t); err != nil {
switch err {
case core.ErrAlreadyExists:
return RelayAlreadyExists
case core.ErrOOM:
return RelayOutOfMemory
case core.ErrPolicy:
return RelayPolicyFail
default:
return RelayInvalid
}
}
return RelaySucceed
}
// RelayTxn a new transaction to the local node and the connected peers.
// Reference: the method OnRelay in C#: https://github.com/neo-project/neo/blob/master/neo/Network/P2P/LocalNode.cs#L159
func (s *Server) RelayTxn(t *transaction.Transaction) RelayReason {
ret := s.verifyAndPoolTX(t)
if ret == RelaySucceed {
s.broadcastTX(t)
}
return ret
}
// broadcastTX broadcasts an inventory message about new transaction.
func (s *Server) broadcastTX(t *transaction.Transaction) {
select {
case s.transactions <- t:
case <-s.quit:
}
}
func (s *Server) broadcastTxHashes(hs []util.Uint256) {
msg := NewMessage(CMDInv, payload.NewInventory(payload.TXType, hs))
// We need to filter out non-relaying nodes, so plain broadcast
// functions don't fit here.
s.iteratePeersWithSendMsg(msg, Peer.EnqueuePacket, func(p Peer) bool {
return p.Handshaked() && p.Version().Relay
})
}
// broadcastTxLoop is a loop for batching and sending
// transactions hashes in an INV payload.
func (s *Server) broadcastTxLoop() {
const (
batchTime = time.Millisecond * 50
batchSize = 32
)
txs := make([]util.Uint256, 0, batchSize)
var timer *time.Timer
timerCh := func() <-chan time.Time {
if timer == nil {
return nil
}
return timer.C
}
broadcast := func() {
s.broadcastTxHashes(txs)
txs = txs[:0]
if timer != nil {
timer.Stop()
}
}
for {
select {
case <-s.quit:
loop:
for {
select {
case <-s.transactions:
default:
break loop
}
}
return
case <-timerCh():
if len(txs) > 0 {
broadcast()
}
case tx := <-s.transactions:
if len(txs) == 0 {
timer = time.NewTimer(batchTime)
}
txs = append(txs, tx.Hash())
if len(txs) == batchSize {
broadcast()
}
}
}
}