neoneo-go/pkg/core/storage/memory_store.go
Roman Khimov 920d7c610c core: remove blockCache, use MemoryStore, redesign persist()
Commit 578ac414d4 was wrong in that it saved
only a part of the block, so depending on how you use blockchain, you may
still see that the block was not really processed properly. To really fix it
this commit introduces intermediate storage layer in form of memStore, which
actually is a MemoryStore that supports full Store API (thus easily fitting
into the existing code) and one extension that allows it to flush its data to
some other Store.

It also changes AddBlock() semantics in that it only accepts now successive
blocks, but when it does it guarantees that they're properly added into the
Blockchain and can be referred to in any way. Pending block queing is now
moved into the server (see 8c0c055ac657813fe3ed10257bce199e9527d5ed).

So the only thing done with persist() now is just a move from memStore to
Store which probably should've always been the case (notice also that
previously headers and some other metadata was written into the Store
bypassing caching/batching mechanism thus leading to some inefficiency).
2019-09-27 15:42:35 +03:00

118 lines
2.4 KiB
Go

package storage
import (
"encoding/hex"
"strings"
"sync"
)
// MemoryStore is an in-memory implementation of a Store, mainly
// used for testing. Do not use MemoryStore in production.
type MemoryStore struct {
*sync.RWMutex
mem map[string][]byte
}
// MemoryBatch a in-memory batch compatible with MemoryStore.
type MemoryBatch struct {
m map[*[]byte][]byte
}
// Put implements the Batch interface.
func (b *MemoryBatch) Put(k, v []byte) {
key := &k
b.m[key] = v
}
// Len implements the Batch interface.
func (b *MemoryBatch) Len() int {
return len(b.m)
}
// NewMemoryStore creates a new MemoryStore object.
func NewMemoryStore() *MemoryStore {
return &MemoryStore{
RWMutex: new(sync.RWMutex),
mem: make(map[string][]byte),
}
}
// Get implements the Store interface.
func (s *MemoryStore) Get(key []byte) ([]byte, error) {
s.RLock()
defer s.RUnlock()
if val, ok := s.mem[makeKey(key)]; ok {
return val, nil
}
return nil, ErrKeyNotFound
}
// Put implements the Store interface.
func (s *MemoryStore) Put(key, value []byte) error {
s.Lock()
s.mem[makeKey(key)] = value
s.Unlock()
return nil
}
// PutBatch implements the Store interface.
func (s *MemoryStore) PutBatch(batch Batch) error {
b := batch.(*MemoryBatch)
for k, v := range b.m {
if err := s.Put(*k, v); err != nil {
return err
}
}
return nil
}
// Seek implements the Store interface.
func (s *MemoryStore) Seek(key []byte, f func(k, v []byte)) {
for k, v := range s.mem {
if strings.Contains(k, hex.EncodeToString(key)) {
decodeString, _ := hex.DecodeString(k)
f(decodeString, v)
}
}
}
// Batch implements the Batch interface and returns a compatible Batch.
func (s *MemoryStore) Batch() Batch {
return &MemoryBatch{
m: make(map[*[]byte][]byte),
}
}
// Persist flushes all the MemoryStore contents into the (supposedly) persistent
// store provided via parameter.
func (s *MemoryStore) Persist(ps Store) (int, error) {
s.Lock()
defer s.Unlock()
batch := ps.Batch()
keys := 0
for k, v := range s.mem {
kb, _ := hex.DecodeString(k)
batch.Put(kb, v)
keys++
}
var err error
if keys != 0 {
err = ps.PutBatch(batch)
}
if err == nil {
s.mem = make(map[string][]byte)
}
return keys, err
}
// Close implements Store interface and clears up memory.
func (s *MemoryStore) Close() error {
s.Lock()
s.mem = nil
s.Unlock()
return nil
}
func makeKey(k []byte) string {
return hex.EncodeToString(k)
}