neoneo-go/pkg/core/storage/memory_store.go
Roman Khimov ad606101c7 storage: add SeekGC interface for GC
It's very special, single-purpose thing, but it improves cumulative time spent
in GC by ~10% for LevelDB and by ~36% for BoltDB during 1050K mainnet chain
processing. While the overall chain import time doesn't change in any
noticeable way (~1%), I think it's still worth it, for machines with slower
disks the difference might be more noticeable.
2022-02-14 17:29:21 +03:00

190 lines
4.6 KiB
Go

package storage
import (
"bytes"
"sort"
"strings"
"sync"
"github.com/nspcc-dev/neo-go/pkg/util/slice"
)
// MemoryStore is an in-memory implementation of a Store, mainly
// used for testing. Do not use MemoryStore in production.
type MemoryStore struct {
mut sync.RWMutex
mem map[string][]byte
}
// MemoryBatch is an in-memory batch compatible with MemoryStore.
type MemoryBatch struct {
MemoryStore
}
// Put implements the Batch interface.
func (b *MemoryBatch) Put(k, v []byte) {
b.MemoryStore.put(string(k), slice.Copy(v))
}
// Delete implements Batch interface.
func (b *MemoryBatch) Delete(k []byte) {
b.MemoryStore.drop(string(k))
}
// NewMemoryStore creates a new MemoryStore object.
func NewMemoryStore() *MemoryStore {
return &MemoryStore{
mem: make(map[string][]byte),
}
}
// Get implements the Store interface.
func (s *MemoryStore) Get(key []byte) ([]byte, error) {
s.mut.RLock()
defer s.mut.RUnlock()
if val, ok := s.mem[string(key)]; ok && val != nil {
return val, nil
}
return nil, ErrKeyNotFound
}
// put puts a key-value pair into the store, it's supposed to be called
// with mutex locked.
func (s *MemoryStore) put(key string, value []byte) {
s.mem[key] = value
}
// Put implements the Store interface. Never returns an error.
func (s *MemoryStore) Put(key, value []byte) error {
newKey := string(key)
vcopy := slice.Copy(value)
s.mut.Lock()
s.put(newKey, vcopy)
s.mut.Unlock()
return nil
}
// drop deletes a key-value pair from the store, it's supposed to be called
// with mutex locked.
func (s *MemoryStore) drop(key string) {
s.mem[key] = nil
}
// Delete implements Store interface. Never returns an error.
func (s *MemoryStore) Delete(key []byte) error {
newKey := string(key)
s.mut.Lock()
s.drop(newKey)
s.mut.Unlock()
return nil
}
// PutBatch implements the Store interface. Never returns an error.
func (s *MemoryStore) PutBatch(batch Batch) error {
b := batch.(*MemoryBatch)
return s.PutChangeSet(b.mem)
}
// PutChangeSet implements the Store interface. Never returns an error.
func (s *MemoryStore) PutChangeSet(puts map[string][]byte) error {
s.mut.Lock()
for k := range puts {
s.put(k, puts[k])
}
s.mut.Unlock()
return nil
}
// Seek implements the Store interface.
func (s *MemoryStore) Seek(rng SeekRange, f func(k, v []byte) bool) {
s.mut.RLock()
s.seek(rng, f)
s.mut.RUnlock()
}
// SeekGC implements the Store interface.
func (s *MemoryStore) SeekGC(rng SeekRange, keep func(k, v []byte) bool) error {
s.mut.Lock()
// We still need to perform normal seek, some GC operations can be
// sensitive to the order of KV pairs.
s.seek(rng, func(k, v []byte) bool {
if !keep(k, v) {
s.drop(string(k))
}
return true
})
s.mut.Unlock()
return nil
}
// SeekAll is like seek but also iterates over deleted items.
func (s *MemoryStore) SeekAll(key []byte, f func(k, v []byte)) {
s.mut.RLock()
defer s.mut.RUnlock()
sk := string(key)
for k, v := range s.mem {
if strings.HasPrefix(k, sk) {
f([]byte(k), v)
}
}
}
// seek is an internal unlocked implementation of Seek. `start` denotes whether
// seeking starting from the provided prefix should be performed. Backwards
// seeking from some point is supported with corresponding SeekRange field set.
func (s *MemoryStore) seek(rng SeekRange, f func(k, v []byte) bool) {
sPrefix := string(rng.Prefix)
lPrefix := len(sPrefix)
sStart := string(rng.Start)
lStart := len(sStart)
var memList []KeyValue
isKeyOK := func(key string) bool {
return strings.HasPrefix(key, sPrefix) && (lStart == 0 || strings.Compare(key[lPrefix:], sStart) >= 0)
}
if rng.Backwards {
isKeyOK = func(key string) bool {
return strings.HasPrefix(key, sPrefix) && (lStart == 0 || strings.Compare(key[lPrefix:], sStart) <= 0)
}
}
less := func(k1, k2 []byte) bool {
res := bytes.Compare(k1, k2)
return res != 0 && rng.Backwards == (res > 0)
}
for k, v := range s.mem {
if v != nil && isKeyOK(k) {
memList = append(memList, KeyValue{
Key: []byte(k),
Value: v,
})
}
}
sort.Slice(memList, func(i, j int) bool {
return less(memList[i].Key, memList[j].Key)
})
for _, kv := range memList {
if !f(kv.Key, kv.Value) {
break
}
}
}
// Batch implements the Batch interface and returns a compatible Batch.
func (s *MemoryStore) Batch() Batch {
return newMemoryBatch()
}
// newMemoryBatch returns new memory batch.
func newMemoryBatch() *MemoryBatch {
return &MemoryBatch{MemoryStore: *NewMemoryStore()}
}
// Close implements Store interface and clears up memory. Never returns an
// error.
func (s *MemoryStore) Close() error {
s.mut.Lock()
s.mem = nil
s.mut.Unlock()
return nil
}