neoneo-go/pkg/core/dao/dao.go
Roman Khimov 97193cf337 golangci: add predeclared linter
These can be confusing.
2022-09-02 18:36:26 +03:00

951 lines
28 KiB
Go

package dao
import (
"bytes"
"context"
"encoding/binary"
"errors"
"fmt"
iocore "io"
"math/big"
"sync"
"github.com/nspcc-dev/neo-go/pkg/config/limits"
"github.com/nspcc-dev/neo-go/pkg/core/block"
"github.com/nspcc-dev/neo-go/pkg/core/state"
"github.com/nspcc-dev/neo-go/pkg/core/storage"
"github.com/nspcc-dev/neo-go/pkg/core/transaction"
"github.com/nspcc-dev/neo-go/pkg/encoding/bigint"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/trigger"
"github.com/nspcc-dev/neo-go/pkg/util"
"github.com/nspcc-dev/neo-go/pkg/util/slice"
"github.com/nspcc-dev/neo-go/pkg/vm/stackitem"
)
// HasTransaction errors.
var (
// ErrAlreadyExists is returned when the transaction exists in dao.
ErrAlreadyExists = errors.New("transaction already exists")
// ErrHasConflicts is returned when the transaction is in the list of conflicting
// transactions which are already in dao.
ErrHasConflicts = errors.New("transaction has conflicts")
// ErrInternalDBInconsistency is returned when the format of the retrieved DAO
// record is unexpected.
ErrInternalDBInconsistency = errors.New("internal DB inconsistency")
)
// Simple is memCached wrapper around DB, simple DAO implementation.
type Simple struct {
Version Version
Store *storage.MemCachedStore
nativeCacheLock sync.RWMutex
nativeCache map[int32]NativeContractCache
// nativeCachePS is the backend store that provides functionality to store
// and retrieve multi-tier native contract cache. The lowest Simple has its
// nativeCachePS set to nil.
nativeCachePS *Simple
private bool
serCtx *stackitem.SerializationContext
keyBuf []byte
dataBuf *io.BufBinWriter
}
// NativeContractCache is an interface representing cache for a native contract.
// Cache can be copied to create a wrapper around current DAO layer. Wrapped cache
// can be persisted to the underlying DAO native cache.
type NativeContractCache interface {
// Copy returns a copy of native cache item that can safely be changed within
// the subsequent DAO operations.
Copy() NativeContractCache
}
// NewSimple creates a new simple dao using the provided backend store.
func NewSimple(backend storage.Store, stateRootInHeader bool, p2pSigExtensions bool) *Simple {
st := storage.NewMemCachedStore(backend)
return newSimple(st, stateRootInHeader, p2pSigExtensions)
}
func newSimple(st *storage.MemCachedStore, stateRootInHeader bool, p2pSigExtensions bool) *Simple {
return &Simple{
Version: Version{
StoragePrefix: storage.STStorage,
StateRootInHeader: stateRootInHeader,
P2PSigExtensions: p2pSigExtensions,
},
Store: st,
nativeCache: make(map[int32]NativeContractCache),
}
}
// GetBatch returns the currently accumulated DB changeset.
func (dao *Simple) GetBatch() *storage.MemBatch {
return dao.Store.GetBatch()
}
// GetWrapped returns a new DAO instance with another layer of wrapped
// MemCachedStore around the current DAO Store.
func (dao *Simple) GetWrapped() *Simple {
d := NewSimple(dao.Store, dao.Version.StateRootInHeader, dao.Version.P2PSigExtensions)
d.Version = dao.Version
d.nativeCachePS = dao
return d
}
// GetPrivate returns a new DAO instance with another layer of private
// MemCachedStore around the current DAO Store.
func (dao *Simple) GetPrivate() *Simple {
d := &Simple{
Version: dao.Version,
keyBuf: dao.keyBuf,
dataBuf: dao.dataBuf,
serCtx: dao.serCtx,
} // Inherit everything...
d.Store = storage.NewPrivateMemCachedStore(dao.Store) // except storage, wrap another layer.
d.private = true
d.nativeCachePS = dao
// Do not inherit cache from nativeCachePS; instead should create clear map:
// GetRWCache and GetROCache will retrieve cache from the underlying
// nativeCache if requested. The lowest underlying DAO MUST have its native
// cache initialized before access it, otherwise GetROCache and GetRWCache
// won't work properly.
d.nativeCache = make(map[int32]NativeContractCache)
return d
}
// GetAndDecode performs get operation and decoding with serializable structures.
func (dao *Simple) GetAndDecode(entity io.Serializable, key []byte) error {
entityBytes, err := dao.Store.Get(key)
if err != nil {
return err
}
reader := io.NewBinReaderFromBuf(entityBytes)
entity.DecodeBinary(reader)
return reader.Err
}
// putWithBuffer performs put operation using buf as a pre-allocated buffer for serialization.
func (dao *Simple) putWithBuffer(entity io.Serializable, key []byte, buf *io.BufBinWriter) error {
entity.EncodeBinary(buf.BinWriter)
if buf.Err != nil {
return buf.Err
}
dao.Store.Put(key, buf.Bytes())
return nil
}
func (dao *Simple) makeContractIDKey(id int32) []byte {
key := dao.getKeyBuf(5)
key[0] = byte(storage.STContractID)
binary.BigEndian.PutUint32(key[1:], uint32(id))
return key
}
// DeleteContractID deletes contract's id to hash mapping.
func (dao *Simple) DeleteContractID(id int32) {
dao.Store.Delete(dao.makeContractIDKey(id))
}
// PutContractID adds a mapping from a contract's ID to its hash.
func (dao *Simple) PutContractID(id int32, hash util.Uint160) {
dao.Store.Put(dao.makeContractIDKey(id), hash.BytesBE())
}
// GetContractScriptHash retrieves the contract's hash given its ID.
func (dao *Simple) GetContractScriptHash(id int32) (util.Uint160, error) {
var data = new(util.Uint160)
if err := dao.GetAndDecode(data, dao.makeContractIDKey(id)); err != nil {
return *data, err
}
return *data, nil
}
// -- start NEP-17 transfer info.
func (dao *Simple) makeTTIKey(acc util.Uint160) []byte {
key := dao.getKeyBuf(1 + util.Uint160Size)
key[0] = byte(storage.STTokenTransferInfo)
copy(key[1:], acc.BytesBE())
return key
}
// GetTokenTransferInfo retrieves NEP-17 transfer info from the cache.
func (dao *Simple) GetTokenTransferInfo(acc util.Uint160) (*state.TokenTransferInfo, error) {
key := dao.makeTTIKey(acc)
bs := state.NewTokenTransferInfo()
err := dao.GetAndDecode(bs, key)
if err != nil && !errors.Is(err, storage.ErrKeyNotFound) {
return nil, err
}
return bs, nil
}
// PutTokenTransferInfo saves NEP-17 transfer info in the cache.
func (dao *Simple) PutTokenTransferInfo(acc util.Uint160, bs *state.TokenTransferInfo) error {
return dao.putTokenTransferInfo(acc, bs, dao.getDataBuf())
}
func (dao *Simple) putTokenTransferInfo(acc util.Uint160, bs *state.TokenTransferInfo, buf *io.BufBinWriter) error {
return dao.putWithBuffer(bs, dao.makeTTIKey(acc), buf)
}
// -- end NEP-17 transfer info.
// -- start transfer log.
func (dao *Simple) getTokenTransferLogKey(acc util.Uint160, newestTimestamp uint64, index uint32, isNEP11 bool) []byte {
key := dao.getKeyBuf(1 + util.Uint160Size + 8 + 4)
if isNEP11 {
key[0] = byte(storage.STNEP11Transfers)
} else {
key[0] = byte(storage.STNEP17Transfers)
}
copy(key[1:], acc.BytesBE())
binary.BigEndian.PutUint64(key[1+util.Uint160Size:], newestTimestamp)
binary.BigEndian.PutUint32(key[1+util.Uint160Size+8:], index)
return key
}
// SeekNEP17TransferLog executes f for each NEP-17 transfer in log starting from
// the transfer with the newest timestamp up to the oldest transfer. It continues
// iteration until false is returned from f. The last non-nil error is returned.
func (dao *Simple) SeekNEP17TransferLog(acc util.Uint160, newestTimestamp uint64, f func(*state.NEP17Transfer) (bool, error)) error {
key := dao.getTokenTransferLogKey(acc, newestTimestamp, 0, false)
prefixLen := 1 + util.Uint160Size
var seekErr error
dao.Store.Seek(storage.SeekRange{
Prefix: key[:prefixLen],
Start: key[prefixLen : prefixLen+8],
Backwards: true,
}, func(k, v []byte) bool {
lg := &state.TokenTransferLog{Raw: v}
cont, err := lg.ForEachNEP17(f)
if err != nil {
seekErr = err
}
return cont
})
return seekErr
}
// SeekNEP11TransferLog executes f for each NEP-11 transfer in log starting from
// the transfer with the newest timestamp up to the oldest transfer. It continues
// iteration until false is returned from f. The last non-nil error is returned.
func (dao *Simple) SeekNEP11TransferLog(acc util.Uint160, newestTimestamp uint64, f func(*state.NEP11Transfer) (bool, error)) error {
key := dao.getTokenTransferLogKey(acc, newestTimestamp, 0, true)
prefixLen := 1 + util.Uint160Size
var seekErr error
dao.Store.Seek(storage.SeekRange{
Prefix: key[:prefixLen],
Start: key[prefixLen : prefixLen+8],
Backwards: true,
}, func(k, v []byte) bool {
lg := &state.TokenTransferLog{Raw: v}
cont, err := lg.ForEachNEP11(f)
if err != nil {
seekErr = err
}
return cont
})
return seekErr
}
// GetTokenTransferLog retrieves transfer log from the cache.
func (dao *Simple) GetTokenTransferLog(acc util.Uint160, newestTimestamp uint64, index uint32, isNEP11 bool) (*state.TokenTransferLog, error) {
key := dao.getTokenTransferLogKey(acc, newestTimestamp, index, isNEP11)
value, err := dao.Store.Get(key)
if err != nil {
if errors.Is(err, storage.ErrKeyNotFound) {
return new(state.TokenTransferLog), nil
}
return nil, err
}
return &state.TokenTransferLog{Raw: value}, nil
}
// PutTokenTransferLog saves the given transfer log in the cache.
func (dao *Simple) PutTokenTransferLog(acc util.Uint160, start uint64, index uint32, isNEP11 bool, lg *state.TokenTransferLog) {
key := dao.getTokenTransferLogKey(acc, start, index, isNEP11)
dao.Store.Put(key, lg.Raw)
}
// -- end transfer log.
// -- start notification event.
func (dao *Simple) makeExecutableKey(hash util.Uint256) []byte {
key := dao.getKeyBuf(1 + util.Uint256Size)
key[0] = byte(storage.DataExecutable)
copy(key[1:], hash.BytesBE())
return key
}
// GetAppExecResults gets application execution results with the specified trigger from the
// given store.
func (dao *Simple) GetAppExecResults(hash util.Uint256, trig trigger.Type) ([]state.AppExecResult, error) {
key := dao.makeExecutableKey(hash)
bs, err := dao.Store.Get(key)
if err != nil {
return nil, err
}
if len(bs) == 0 {
return nil, fmt.Errorf("%w: empty execution log", ErrInternalDBInconsistency)
}
switch bs[0] {
case storage.ExecBlock:
r := io.NewBinReaderFromBuf(bs)
_ = r.ReadB()
_, err = block.NewTrimmedFromReader(dao.Version.StateRootInHeader, r)
if err != nil {
return nil, err
}
result := make([]state.AppExecResult, 0, 2)
for {
aer := new(state.AppExecResult)
aer.DecodeBinary(r)
if r.Err != nil {
if errors.Is(r.Err, iocore.EOF) {
break
}
return nil, r.Err
}
if aer.Trigger&trig != 0 {
result = append(result, *aer)
}
}
return result, nil
case storage.ExecTransaction:
_, _, aer, err := decodeTxAndExecResult(bs)
if err != nil {
return nil, err
}
if aer.Trigger&trig != 0 {
return []state.AppExecResult{*aer}, nil
}
return nil, nil
default:
return nil, fmt.Errorf("%w: unexpected executable prefix %d", ErrInternalDBInconsistency, bs[0])
}
}
// GetTxExecResult gets application execution result of the specified transaction
// and returns the transaction itself, its height and its AppExecResult.
func (dao *Simple) GetTxExecResult(hash util.Uint256) (uint32, *transaction.Transaction, *state.AppExecResult, error) {
key := dao.makeExecutableKey(hash)
bs, err := dao.Store.Get(key)
if err != nil {
return 0, nil, nil, err
}
if len(bs) == 0 {
return 0, nil, nil, fmt.Errorf("%w: empty execution log", ErrInternalDBInconsistency)
}
if bs[0] != storage.ExecTransaction {
return 0, nil, nil, storage.ErrKeyNotFound
}
return decodeTxAndExecResult(bs)
}
// decodeTxAndExecResult decodes transaction, its height and execution result from
// the given executable bytes. It performs no executable prefix check.
func decodeTxAndExecResult(buf []byte) (uint32, *transaction.Transaction, *state.AppExecResult, error) {
if len(buf) >= 6 && buf[5] == transaction.DummyVersion {
return 0, nil, nil, storage.ErrKeyNotFound
}
r := io.NewBinReaderFromBuf(buf)
_ = r.ReadB()
h := r.ReadU32LE()
tx := &transaction.Transaction{}
tx.DecodeBinary(r)
if r.Err != nil {
return 0, nil, nil, r.Err
}
aer := new(state.AppExecResult)
aer.DecodeBinary(r)
if r.Err != nil {
return 0, nil, nil, r.Err
}
return h, tx, aer, nil
}
// -- end notification event.
// -- start storage item.
// GetStorageItem returns StorageItem if it exists in the given store.
func (dao *Simple) GetStorageItem(id int32, key []byte) state.StorageItem {
b, err := dao.Store.Get(dao.makeStorageItemKey(id, key))
if err != nil {
return nil
}
return b
}
// PutStorageItem puts the given StorageItem for the given id with the given
// key into the given store.
func (dao *Simple) PutStorageItem(id int32, key []byte, si state.StorageItem) {
stKey := dao.makeStorageItemKey(id, key)
dao.Store.Put(stKey, si)
}
// PutBigInt serializaed and puts the given integer for the given id with the given
// key into the given store.
func (dao *Simple) PutBigInt(id int32, key []byte, n *big.Int) {
var buf [bigint.MaxBytesLen]byte
stData := bigint.ToPreallocatedBytes(n, buf[:])
dao.PutStorageItem(id, key, stData)
}
// DeleteStorageItem drops a storage item for the given id with the
// given key from the store.
func (dao *Simple) DeleteStorageItem(id int32, key []byte) {
stKey := dao.makeStorageItemKey(id, key)
dao.Store.Delete(stKey)
}
// Seek executes f for all storage items matching the given `rng` (matching the given prefix and
// starting from the point specified). If the key or the value is to be used outside of f, they
// may not be copied. Seek continues iterating until false is returned from f.
func (dao *Simple) Seek(id int32, rng storage.SeekRange, f func(k, v []byte) bool) {
rng.Prefix = slice.Copy(dao.makeStorageItemKey(id, rng.Prefix)) // f() can use dao too.
dao.Store.Seek(rng, func(k, v []byte) bool {
return f(k[len(rng.Prefix):], v)
})
}
// SeekAsync sends all storage items matching the given `rng` (matching the given prefix and
// starting from the point specified) to a channel and returns the channel.
// Resulting keys and values may not be copied.
func (dao *Simple) SeekAsync(ctx context.Context, id int32, rng storage.SeekRange) chan storage.KeyValue {
rng.Prefix = slice.Copy(dao.makeStorageItemKey(id, rng.Prefix))
return dao.Store.SeekAsync(ctx, rng, true)
}
// makeStorageItemKey returns the key used to store the StorageItem in the DB.
func (dao *Simple) makeStorageItemKey(id int32, key []byte) []byte {
// 1 for prefix + 4 for Uint32 + len(key) for key
buf := dao.getKeyBuf(5 + len(key))
buf[0] = byte(dao.Version.StoragePrefix)
binary.LittleEndian.PutUint32(buf[1:], uint32(id))
copy(buf[5:], key)
return buf
}
// -- end storage item.
// -- other.
// GetBlock returns Block by the given hash if it exists in the store.
func (dao *Simple) GetBlock(hash util.Uint256) (*block.Block, error) {
return dao.getBlock(dao.makeExecutableKey(hash))
}
func (dao *Simple) getBlock(key []byte) (*block.Block, error) {
b, err := dao.Store.Get(key)
if err != nil {
return nil, err
}
r := io.NewBinReaderFromBuf(b)
if r.ReadB() != storage.ExecBlock {
// It may be a transaction.
return nil, storage.ErrKeyNotFound
}
block, err := block.NewTrimmedFromReader(dao.Version.StateRootInHeader, r)
if err != nil {
return nil, err
}
return block, nil
}
// Version represents the current dao version.
type Version struct {
StoragePrefix storage.KeyPrefix
StateRootInHeader bool
P2PSigExtensions bool
P2PStateExchangeExtensions bool
KeepOnlyLatestState bool
Value string
}
const (
stateRootInHeaderBit = 1 << iota
p2pSigExtensionsBit
p2pStateExchangeExtensionsBit
keepOnlyLatestStateBit
)
// FromBytes decodes v from a byte-slice.
func (v *Version) FromBytes(data []byte) error {
if len(data) == 0 {
return errors.New("missing version")
}
i := 0
for ; i < len(data) && data[i] != '\x00'; i++ {
}
if i == len(data) {
v.Value = string(data)
return nil
}
if len(data) != i+3 {
return errors.New("version is invalid")
}
v.Value = string(data[:i])
v.StoragePrefix = storage.KeyPrefix(data[i+1])
v.StateRootInHeader = data[i+2]&stateRootInHeaderBit != 0
v.P2PSigExtensions = data[i+2]&p2pSigExtensionsBit != 0
v.P2PStateExchangeExtensions = data[i+2]&p2pStateExchangeExtensionsBit != 0
v.KeepOnlyLatestState = data[i+2]&keepOnlyLatestStateBit != 0
return nil
}
// Bytes encodes v to a byte-slice.
func (v *Version) Bytes() []byte {
var mask byte
if v.StateRootInHeader {
mask |= stateRootInHeaderBit
}
if v.P2PSigExtensions {
mask |= p2pSigExtensionsBit
}
if v.P2PStateExchangeExtensions {
mask |= p2pStateExchangeExtensionsBit
}
if v.KeepOnlyLatestState {
mask |= keepOnlyLatestStateBit
}
return append([]byte(v.Value), '\x00', byte(v.StoragePrefix), mask)
}
func (dao *Simple) mkKeyPrefix(k storage.KeyPrefix) []byte {
b := dao.getKeyBuf(1)
b[0] = byte(k)
return b
}
// GetVersion attempts to get the current version stored in the
// underlying store.
func (dao *Simple) GetVersion() (Version, error) {
var version Version
data, err := dao.Store.Get(dao.mkKeyPrefix(storage.SYSVersion))
if err == nil {
err = version.FromBytes(data)
}
return version, err
}
// GetCurrentBlockHeight returns the current block height found in the
// underlying store.
func (dao *Simple) GetCurrentBlockHeight() (uint32, error) {
b, err := dao.Store.Get(dao.mkKeyPrefix(storage.SYSCurrentBlock))
if err != nil {
return 0, err
}
return binary.LittleEndian.Uint32(b[32:36]), nil
}
// GetCurrentHeaderHeight returns the current header height and hash from
// the underlying store.
func (dao *Simple) GetCurrentHeaderHeight() (i uint32, h util.Uint256, err error) {
var b []byte
b, err = dao.Store.Get(dao.mkKeyPrefix(storage.SYSCurrentHeader))
if err != nil {
return
}
i = binary.LittleEndian.Uint32(b[32:36])
h, err = util.Uint256DecodeBytesLE(b[:32])
return
}
// GetStateSyncPoint returns current state synchronization point P.
func (dao *Simple) GetStateSyncPoint() (uint32, error) {
b, err := dao.Store.Get(dao.mkKeyPrefix(storage.SYSStateSyncPoint))
if err != nil {
return 0, err
}
return binary.LittleEndian.Uint32(b), nil
}
// GetStateSyncCurrentBlockHeight returns the current block height stored during state
// synchronization process.
func (dao *Simple) GetStateSyncCurrentBlockHeight() (uint32, error) {
b, err := dao.Store.Get(dao.mkKeyPrefix(storage.SYSStateSyncCurrentBlockHeight))
if err != nil {
return 0, err
}
return binary.LittleEndian.Uint32(b), nil
}
// GetHeaderHashes returns a sorted list of header hashes retrieved from
// the given underlying store.
func (dao *Simple) GetHeaderHashes() ([]util.Uint256, error) {
var hashes = make([]util.Uint256, 0)
var seekErr error
dao.Store.Seek(storage.SeekRange{
Prefix: dao.mkKeyPrefix(storage.IXHeaderHashList),
}, func(k, v []byte) bool {
newHashes, err := read2000Uint256Hashes(v)
if err != nil {
seekErr = fmt.Errorf("failed to read batch of 2000 header hashes: %w", err)
return false
}
hashes = append(hashes, newHashes...)
return true
})
return hashes, seekErr
}
// GetTransaction returns Transaction and its height by the given hash
// if it exists in the store. It does not return dummy transactions.
func (dao *Simple) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) {
key := dao.makeExecutableKey(hash)
b, err := dao.Store.Get(key)
if err != nil {
return nil, 0, err
}
if len(b) < 6 {
return nil, 0, errors.New("bad transaction bytes")
}
if b[0] != storage.ExecTransaction {
// It may be a block.
return nil, 0, storage.ErrKeyNotFound
}
if b[5] == transaction.DummyVersion {
return nil, 0, storage.ErrKeyNotFound
}
r := io.NewBinReaderFromBuf(b)
_ = r.ReadB()
var height = r.ReadU32LE()
tx := &transaction.Transaction{}
tx.DecodeBinary(r)
if r.Err != nil {
return nil, 0, r.Err
}
return tx, height, nil
}
// PutVersion stores the given version in the underlying store.
func (dao *Simple) PutVersion(v Version) {
dao.Version = v
dao.Store.Put(dao.mkKeyPrefix(storage.SYSVersion), v.Bytes())
}
// PutCurrentHeader stores the current header.
func (dao *Simple) PutCurrentHeader(h util.Uint256, index uint32) {
buf := dao.getDataBuf()
buf.WriteBytes(h.BytesLE())
buf.WriteU32LE(index)
dao.Store.Put(dao.mkKeyPrefix(storage.SYSCurrentHeader), buf.Bytes())
}
// PutStateSyncPoint stores the current state synchronization point P.
func (dao *Simple) PutStateSyncPoint(p uint32) {
buf := dao.getDataBuf()
buf.WriteU32LE(p)
dao.Store.Put(dao.mkKeyPrefix(storage.SYSStateSyncPoint), buf.Bytes())
}
// PutStateSyncCurrentBlockHeight stores the current block height during state synchronization process.
func (dao *Simple) PutStateSyncCurrentBlockHeight(h uint32) {
buf := dao.getDataBuf()
buf.WriteU32LE(h)
dao.Store.Put(dao.mkKeyPrefix(storage.SYSStateSyncCurrentBlockHeight), buf.Bytes())
}
// read2000Uint256Hashes attempts to read 2000 Uint256 hashes from
// the given byte array.
func read2000Uint256Hashes(b []byte) ([]util.Uint256, error) {
r := bytes.NewReader(b)
br := io.NewBinReaderFromIO(r)
hashes := make([]util.Uint256, 0)
br.ReadArray(&hashes)
if br.Err != nil {
return nil, br.Err
}
return hashes, nil
}
func (dao *Simple) mkHeaderHashKey(h uint32) []byte {
b := dao.getKeyBuf(1 + 4)
b[0] = byte(storage.IXHeaderHashList)
binary.BigEndian.PutUint32(b[1:], h)
return b
}
// StoreHeaderHashes pushes a batch of header hashes into the store.
func (dao *Simple) StoreHeaderHashes(hashes []util.Uint256, height uint32) error {
key := dao.mkHeaderHashKey(height)
buf := dao.getDataBuf()
buf.WriteArray(hashes)
if buf.Err != nil {
return buf.Err
}
dao.Store.Put(key, buf.Bytes())
return nil
}
// HasTransaction returns nil if the given store does not contain the given
// Transaction hash. It returns an error in case the transaction is in chain
// or in the list of conflicting transactions.
func (dao *Simple) HasTransaction(hash util.Uint256) error {
key := dao.makeExecutableKey(hash)
bytes, err := dao.Store.Get(key)
if err != nil {
return nil
}
if len(bytes) < 6 {
return nil
}
if bytes[5] == transaction.DummyVersion {
return ErrHasConflicts
}
return ErrAlreadyExists
}
// StoreAsBlock stores given block as DataBlock. It can reuse given buffer for
// the purpose of value serialization.
func (dao *Simple) StoreAsBlock(block *block.Block, aer1 *state.AppExecResult, aer2 *state.AppExecResult) error {
var (
key = dao.makeExecutableKey(block.Hash())
buf = dao.getDataBuf()
)
buf.WriteB(storage.ExecBlock)
block.EncodeTrimmed(buf.BinWriter)
if aer1 != nil {
aer1.EncodeBinaryWithContext(buf.BinWriter, dao.GetItemCtx())
}
if aer2 != nil {
aer2.EncodeBinaryWithContext(buf.BinWriter, dao.GetItemCtx())
}
if buf.Err != nil {
return buf.Err
}
dao.Store.Put(key, buf.Bytes())
return nil
}
// DeleteBlock removes the block from dao. It's not atomic, so make sure you're
// using private MemCached instance here.
func (dao *Simple) DeleteBlock(h util.Uint256) error {
key := dao.makeExecutableKey(h)
b, err := dao.getBlock(key)
if err != nil {
return err
}
err = dao.storeHeader(key, &b.Header)
if err != nil {
return err
}
for _, tx := range b.Transactions {
copy(key[1:], tx.Hash().BytesBE())
dao.Store.Delete(key)
if dao.Version.P2PSigExtensions {
for _, attr := range tx.GetAttributes(transaction.ConflictsT) {
hash := attr.Value.(*transaction.Conflicts).Hash
copy(key[1:], hash.BytesBE())
dao.Store.Delete(key)
}
}
}
return nil
}
// StoreHeader saves the block header into the store.
func (dao *Simple) StoreHeader(h *block.Header) error {
return dao.storeHeader(dao.makeExecutableKey(h.Hash()), h)
}
func (dao *Simple) storeHeader(key []byte, h *block.Header) error {
buf := dao.getDataBuf()
buf.WriteB(storage.ExecBlock)
h.EncodeBinary(buf.BinWriter)
buf.BinWriter.WriteB(0)
if buf.Err != nil {
return buf.Err
}
dao.Store.Put(key, buf.Bytes())
return nil
}
// StoreAsCurrentBlock stores the hash of the given block with prefix
// SYSCurrentBlock.
func (dao *Simple) StoreAsCurrentBlock(block *block.Block) {
buf := dao.getDataBuf()
h := block.Hash()
h.EncodeBinary(buf.BinWriter)
buf.WriteU32LE(block.Index)
dao.Store.Put(dao.mkKeyPrefix(storage.SYSCurrentBlock), buf.Bytes())
}
// StoreAsTransaction stores the given TX as DataTransaction. It also stores transactions
// the given tx has conflicts with as DataTransaction with dummy version. It can reuse the given
// buffer for the purpose of value serialization.
func (dao *Simple) StoreAsTransaction(tx *transaction.Transaction, index uint32, aer *state.AppExecResult) error {
key := dao.makeExecutableKey(tx.Hash())
buf := dao.getDataBuf()
buf.WriteB(storage.ExecTransaction)
buf.WriteU32LE(index)
tx.EncodeBinary(buf.BinWriter)
if aer != nil {
aer.EncodeBinaryWithContext(buf.BinWriter, dao.GetItemCtx())
}
if buf.Err != nil {
return buf.Err
}
dao.Store.Put(key, buf.Bytes())
if dao.Version.P2PSigExtensions {
var value []byte
for _, attr := range tx.GetAttributes(transaction.ConflictsT) {
hash := attr.Value.(*transaction.Conflicts).Hash
copy(key[1:], hash.BytesBE())
if value == nil {
buf.Reset()
buf.WriteB(storage.ExecTransaction)
buf.WriteU32LE(index)
buf.BinWriter.WriteB(transaction.DummyVersion)
value = buf.Bytes()
}
dao.Store.Put(key, value)
}
}
return nil
}
func (dao *Simple) getKeyBuf(l int) []byte {
if dao.private {
if dao.keyBuf == nil {
dao.keyBuf = make([]byte, 0, 1+4+limits.MaxStorageKeyLen) // Prefix, uint32, key.
}
return dao.keyBuf[:l] // Should have enough capacity.
}
return make([]byte, l)
}
func (dao *Simple) getDataBuf() *io.BufBinWriter {
if dao.private {
if dao.dataBuf == nil {
dao.dataBuf = io.NewBufBinWriter()
}
dao.dataBuf.Reset()
return dao.dataBuf
}
return io.NewBufBinWriter()
}
func (dao *Simple) GetItemCtx() *stackitem.SerializationContext {
if dao.private {
if dao.serCtx == nil {
dao.serCtx = stackitem.NewSerializationContext()
}
return dao.serCtx
}
return stackitem.NewSerializationContext()
}
// Persist flushes all the changes made into the (supposedly) persistent
// underlying store. It doesn't block accesses to DAO from other threads.
func (dao *Simple) Persist() (int, error) {
if dao.nativeCachePS != nil {
dao.nativeCacheLock.Lock()
dao.nativeCachePS.nativeCacheLock.Lock()
defer func() {
dao.nativeCachePS.nativeCacheLock.Unlock()
dao.nativeCacheLock.Unlock()
}()
dao.persistNativeCache()
}
return dao.Store.Persist()
}
// PersistSync flushes all the changes made into the (supposedly) persistent
// underlying store. It's a synchronous version of Persist that doesn't allow
// other threads to work with DAO while flushing the Store.
func (dao *Simple) PersistSync() (int, error) {
if dao.nativeCachePS != nil {
dao.nativeCacheLock.Lock()
dao.nativeCachePS.nativeCacheLock.Lock()
defer func() {
dao.nativeCachePS.nativeCacheLock.Unlock()
dao.nativeCacheLock.Unlock()
}()
dao.persistNativeCache()
}
return dao.Store.PersistSync()
}
// persistNativeCache is internal unprotected method for native cache persisting.
// It does NO checks for nativeCachePS is not nil.
func (dao *Simple) persistNativeCache() {
lower := dao.nativeCachePS
for id, nativeCache := range dao.nativeCache {
lower.nativeCache[id] = nativeCache
}
dao.nativeCache = nil
}
// GetROCache returns native contact cache. The cache CAN NOT be modified by
// the caller. It's the caller's duty to keep it unmodified.
func (dao *Simple) GetROCache(id int32) NativeContractCache {
dao.nativeCacheLock.RLock()
defer dao.nativeCacheLock.RUnlock()
return dao.getCache(id, true)
}
// GetRWCache returns native contact cache. The cache CAN BE safely modified
// by the caller.
func (dao *Simple) GetRWCache(id int32) NativeContractCache {
dao.nativeCacheLock.Lock()
defer dao.nativeCacheLock.Unlock()
return dao.getCache(id, false)
}
// getCache is an internal unlocked representation of GetROCache and GetRWCache.
func (dao *Simple) getCache(k int32, ro bool) NativeContractCache {
if itm, ok := dao.nativeCache[k]; ok {
// Don't need to create itm copy, because its value was already copied
// the first time it was retrieved from loser ps.
return itm
}
if dao.nativeCachePS != nil {
if ro {
return dao.nativeCachePS.GetROCache(k)
}
v := dao.nativeCachePS.GetRWCache(k)
if v != nil {
// Create a copy here in order not to modify the existing cache.
cp := v.Copy()
dao.nativeCache[k] = cp
return cp
}
}
return nil
}
// SetCache adds native contract cache to the cache map.
func (dao *Simple) SetCache(id int32, v NativeContractCache) {
dao.nativeCacheLock.Lock()
defer dao.nativeCacheLock.Unlock()
dao.nativeCache[id] = v
}