// Package api implements a SCEP HTTP server. package api import ( "context" "crypto/x509" "encoding/base64" "errors" "fmt" "io" "net/http" "net/url" "strings" "github.com/go-chi/chi" microscep "github.com/micromdm/scep/v2/scep" "go.mozilla.org/pkcs7" "github.com/smallstep/certificates/api" "github.com/smallstep/certificates/api/log" "github.com/smallstep/certificates/authority/provisioner" "github.com/smallstep/certificates/scep" ) const ( opnGetCACert = "GetCACert" opnGetCACaps = "GetCACaps" opnPKIOperation = "PKIOperation" // TODO: add other (more optional) operations and handling ) const maxPayloadSize = 2 << 20 // request is a SCEP server request. type request struct { Operation string Message []byte } // response is a SCEP server response. type response struct { Operation string CACertNum int Data []byte Certificate *x509.Certificate Error error } // handler is the SCEP request handler. type handler struct { auth *scep.Authority } // New returns a new SCEP API router. func New(auth *scep.Authority) api.RouterHandler { return &handler{ auth: auth, } } // Route traffic and implement the Router interface. func (h *handler) Route(r api.Router) { getLink := h.auth.GetLinkExplicit r.MethodFunc(http.MethodGet, getLink("{provisionerName}/*", false, nil), h.lookupProvisioner(h.Get)) r.MethodFunc(http.MethodGet, getLink("{provisionerName}", false, nil), h.lookupProvisioner(h.Get)) r.MethodFunc(http.MethodPost, getLink("{provisionerName}/*", false, nil), h.lookupProvisioner(h.Post)) r.MethodFunc(http.MethodPost, getLink("{provisionerName}", false, nil), h.lookupProvisioner(h.Post)) } // Get handles all SCEP GET requests func (h *handler) Get(w http.ResponseWriter, r *http.Request) { req, err := decodeRequest(r) if err != nil { fail(w, fmt.Errorf("invalid scep get request: %w", err)) return } ctx := r.Context() var res response switch req.Operation { case opnGetCACert: res, err = h.GetCACert(ctx) case opnGetCACaps: res, err = h.GetCACaps(ctx) case opnPKIOperation: // TODO: implement the GET for PKI operation? Default CACAPS doesn't specify this is in use, though default: err = fmt.Errorf("unknown operation: %s", req.Operation) } if err != nil { fail(w, fmt.Errorf("scep get request failed: %w", err)) return } writeResponse(w, res) } // Post handles all SCEP POST requests func (h *handler) Post(w http.ResponseWriter, r *http.Request) { req, err := decodeRequest(r) if err != nil { fail(w, fmt.Errorf("invalid scep post request: %w", err)) return } ctx := r.Context() var res response switch req.Operation { case opnPKIOperation: res, err = h.PKIOperation(ctx, req) default: err = fmt.Errorf("unknown operation: %s", req.Operation) } if err != nil { fail(w, fmt.Errorf("scep post request failed: %w", err)) return } writeResponse(w, res) } func decodeRequest(r *http.Request) (request, error) { defer r.Body.Close() method := r.Method query := r.URL.Query() var operation string if _, ok := query["operation"]; ok { operation = query.Get("operation") } switch method { case http.MethodGet: switch operation { case opnGetCACert, opnGetCACaps: return request{ Operation: operation, Message: []byte{}, }, nil case opnPKIOperation: var message string if _, ok := query["message"]; ok { message = query.Get("message") } // TODO: verify this; it seems like it should be StdEncoding instead of URLEncoding decodedMessage, err := base64.URLEncoding.DecodeString(message) if err != nil { return request{}, err } return request{ Operation: operation, Message: decodedMessage, }, nil default: return request{}, fmt.Errorf("unsupported operation: %s", operation) } case http.MethodPost: body, err := io.ReadAll(io.LimitReader(r.Body, maxPayloadSize)) if err != nil { return request{}, err } return request{ Operation: operation, Message: body, }, nil default: return request{}, fmt.Errorf("unsupported method: %s", method) } } // lookupProvisioner loads the provisioner associated with the request. // Responds 404 if the provisioner does not exist. func (h *handler) lookupProvisioner(next http.HandlerFunc) http.HandlerFunc { return func(w http.ResponseWriter, r *http.Request) { name := chi.URLParam(r, "provisionerName") provisionerName, err := url.PathUnescape(name) if err != nil { fail(w, fmt.Errorf("error url unescaping provisioner name '%s'", name)) return } p, err := h.auth.LoadProvisionerByName(provisionerName) if err != nil { fail(w, err) return } prov, ok := p.(*provisioner.SCEP) if !ok { fail(w, errors.New("provisioner must be of type SCEP")) return } ctx := r.Context() ctx = context.WithValue(ctx, scep.ProvisionerContextKey, scep.Provisioner(prov)) next(w, r.WithContext(ctx)) } } // GetCACert returns the CA certificates in a SCEP response func (h *handler) GetCACert(ctx context.Context) (response, error) { certs, err := h.auth.GetCACertificates(ctx) if err != nil { return response{}, err } if len(certs) == 0 { return response{}, errors.New("missing CA cert") } res := response{ Operation: opnGetCACert, CACertNum: len(certs), } if len(certs) == 1 { res.Data = certs[0].Raw } else { // create degenerate pkcs7 certificate structure, according to // https://tools.ietf.org/html/rfc8894#section-4.2.1.2, because // not signed or encrypted data has to be returned. data, err := microscep.DegenerateCertificates(certs) if err != nil { return response{}, err } res.Data = data } return res, nil } // GetCACaps returns the CA capabilities in a SCEP response func (h *handler) GetCACaps(ctx context.Context) (response, error) { caps := h.auth.GetCACaps(ctx) res := response{ Operation: opnGetCACaps, Data: formatCapabilities(caps), } return res, nil } // PKIOperation performs PKI operations and returns a SCEP response func (h *handler) PKIOperation(ctx context.Context, req request) (response, error) { // parse the message using microscep implementation microMsg, err := microscep.ParsePKIMessage(req.Message) if err != nil { // return the error, because we can't use the msg for creating a CertRep return response{}, err } // this is essentially doing the same as microscep.ParsePKIMessage, but // gives us access to the p7 itself in scep.PKIMessage. Essentially a small // wrapper for the microscep implementation. p7, err := pkcs7.Parse(microMsg.Raw) if err != nil { return response{}, err } // copy over properties to our internal PKIMessage msg := &scep.PKIMessage{ TransactionID: microMsg.TransactionID, MessageType: microMsg.MessageType, SenderNonce: microMsg.SenderNonce, Raw: microMsg.Raw, P7: p7, } if err := h.auth.DecryptPKIEnvelope(ctx, msg); err != nil { return response{}, err } // NOTE: at this point we have sufficient information for returning nicely signed CertReps csr := msg.CSRReqMessage.CSR // NOTE: we're blocking the RenewalReq if the challenge does not match, because otherwise we don't have any authentication. // The macOS SCEP client performs renewals using PKCSreq. The CertNanny SCEP client will use PKCSreq with challenge too, it seems, // even if using the renewal flow as described in the README.md. MicroMDM SCEP client also only does PKCSreq by default, unless // a certificate exists; then it will use RenewalReq. Adding the challenge check here may be a small breaking change for clients. // We'll have to see how it works out. if msg.MessageType == microscep.PKCSReq || msg.MessageType == microscep.RenewalReq { challengeMatches, err := h.auth.MatchChallengePassword(ctx, msg.CSRReqMessage.ChallengePassword) if err != nil { return h.createFailureResponse(ctx, csr, msg, microscep.BadRequest, errors.New("error when checking password")) } if !challengeMatches { // TODO: can this be returned safely to the client? In the end, if the password was correct, that gains a bit of info too. return h.createFailureResponse(ctx, csr, msg, microscep.BadRequest, errors.New("wrong password provided")) } } // TODO: authorize renewal: we can authorize renewals with the challenge password (if reusable secrets are used). // Renewals OPTIONALLY include the challenge if the existing cert is used as authentication, but client SHOULD omit the challenge. // This means that for renewal requests we should check the certificate provided to be signed before by the CA. We could // enforce use of the challenge if we want too. That way we could be more flexible in terms of authentication scheme (i.e. reusing // tokens from other provisioners, calling a webhook, storing multiple secrets, allowing them to be multi-use, etc). // Authentication by the (self-signed) certificate with an optional challenge is required; supporting renewals incl. verification // of the client cert is not. certRep, err := h.auth.SignCSR(ctx, csr, msg) if err != nil { return h.createFailureResponse(ctx, csr, msg, microscep.BadRequest, fmt.Errorf("error when signing new certificate: %w", err)) } res := response{ Operation: opnPKIOperation, Data: certRep.Raw, Certificate: certRep.Certificate, } return res, nil } func formatCapabilities(caps []string) []byte { return []byte(strings.Join(caps, "\r\n")) } // writeResponse writes a SCEP response back to the SCEP client. func writeResponse(w http.ResponseWriter, res response) { if res.Error != nil { log.Error(w, res.Error) } if res.Certificate != nil { api.LogCertificate(w, res.Certificate) } w.Header().Set("Content-Type", contentHeader(res)) _, _ = w.Write(res.Data) } func fail(w http.ResponseWriter, err error) { log.Error(w, err) http.Error(w, err.Error(), http.StatusInternalServerError) } func (h *handler) createFailureResponse(ctx context.Context, csr *x509.CertificateRequest, msg *scep.PKIMessage, info microscep.FailInfo, failError error) (response, error) { certRepMsg, err := h.auth.CreateFailureResponse(ctx, csr, msg, scep.FailInfoName(info), failError.Error()) if err != nil { return response{}, err } return response{ Operation: opnPKIOperation, Data: certRepMsg.Raw, Error: failError, }, nil } func contentHeader(r response) string { switch r.Operation { default: return "text/plain" case opnGetCACert: if r.CACertNum > 1 { return "application/x-x509-ca-ra-cert" } return "application/x-x509-ca-cert" case opnPKIOperation: return "application/x-pki-message" } }