forked from TrueCloudLab/distribution
a685e3fc98
Vndr has a simpler configuration and allows pointing to forked packages. Additionally other docker projects are now using vndr making vendoring in distribution more consistent. Updates letsencrypt to use fork. No longer uses sub-vendored packages. Signed-off-by: Derek McGowan <derek@mcgstyle.net> (github: dmcgowan)
85 lines
2.7 KiB
Go
85 lines
2.7 KiB
Go
package dns
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/dsa"
|
|
"crypto/ecdsa"
|
|
"crypto/rsa"
|
|
"math/big"
|
|
"strconv"
|
|
)
|
|
|
|
const format = "Private-key-format: v1.3\n"
|
|
|
|
// PrivateKeyString converts a PrivateKey to a string. This string has the same
|
|
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
|
|
// It needs some info from the key (the algorithm), so its a method of the DNSKEY
|
|
// It supports rsa.PrivateKey, ecdsa.PrivateKey and dsa.PrivateKey
|
|
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
|
|
algorithm := strconv.Itoa(int(r.Algorithm))
|
|
algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
|
|
|
|
switch p := p.(type) {
|
|
case *rsa.PrivateKey:
|
|
modulus := toBase64(p.PublicKey.N.Bytes())
|
|
e := big.NewInt(int64(p.PublicKey.E))
|
|
publicExponent := toBase64(e.Bytes())
|
|
privateExponent := toBase64(p.D.Bytes())
|
|
prime1 := toBase64(p.Primes[0].Bytes())
|
|
prime2 := toBase64(p.Primes[1].Bytes())
|
|
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
|
|
// and from: http://code.google.com/p/go/issues/detail?id=987
|
|
one := big.NewInt(1)
|
|
p1 := big.NewInt(0).Sub(p.Primes[0], one)
|
|
q1 := big.NewInt(0).Sub(p.Primes[1], one)
|
|
exp1 := big.NewInt(0).Mod(p.D, p1)
|
|
exp2 := big.NewInt(0).Mod(p.D, q1)
|
|
coeff := big.NewInt(0).ModInverse(p.Primes[1], p.Primes[0])
|
|
|
|
exponent1 := toBase64(exp1.Bytes())
|
|
exponent2 := toBase64(exp2.Bytes())
|
|
coefficient := toBase64(coeff.Bytes())
|
|
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"Modulus: " + modulus + "\n" +
|
|
"PublicExponent: " + publicExponent + "\n" +
|
|
"PrivateExponent: " + privateExponent + "\n" +
|
|
"Prime1: " + prime1 + "\n" +
|
|
"Prime2: " + prime2 + "\n" +
|
|
"Exponent1: " + exponent1 + "\n" +
|
|
"Exponent2: " + exponent2 + "\n" +
|
|
"Coefficient: " + coefficient + "\n"
|
|
|
|
case *ecdsa.PrivateKey:
|
|
var intlen int
|
|
switch r.Algorithm {
|
|
case ECDSAP256SHA256:
|
|
intlen = 32
|
|
case ECDSAP384SHA384:
|
|
intlen = 48
|
|
}
|
|
private := toBase64(intToBytes(p.D, intlen))
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"PrivateKey: " + private + "\n"
|
|
|
|
case *dsa.PrivateKey:
|
|
T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8)
|
|
prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8))
|
|
subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20))
|
|
base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8))
|
|
priv := toBase64(intToBytes(p.X, 20))
|
|
pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8))
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"Prime(p): " + prime + "\n" +
|
|
"Subprime(q): " + subprime + "\n" +
|
|
"Base(g): " + base + "\n" +
|
|
"Private_value(x): " + priv + "\n" +
|
|
"Public_value(y): " + pub + "\n"
|
|
|
|
default:
|
|
return ""
|
|
}
|
|
}
|