package crypto import ( "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/sha512" "crypto/x509" "fmt" "math/big" "github.com/TrueCloudLab/frostfs-crypto/internal" ) const ( // ErrEmptyPublicKey when PK passed to Verify method is nil. ErrEmptyPublicKey = internal.Error("empty public key") // ErrInvalidSignature when signature passed to Verify method is mismatch. ErrInvalidSignature = internal.Error("invalid signature") // ErrCannotUnmarshal when signature ([]byte) passed to Verify method has wrong format // and cannot be parsed. ErrCannotUnmarshal = internal.Error("could not unmarshal signature") // PrivateKeyCompressedSize is constant with compressed size of private key (SK). // D coordinate stored, recover PK by formula x, y = curve.ScalarBaseMul(d,bytes). PrivateKeyCompressedSize = 32 // PublicKeyCompressedSize is constant with compressed size of public key (PK). PublicKeyCompressedSize = 33 // PublicKeyUncompressedSize is constant with uncompressed size of public key (PK). // First byte always should be 0x4 other 64 bytes is X and Y (32 bytes per coordinate). // 2 * 32 + 1 PublicKeyUncompressedSize = 65 ) // P256 is base elliptic curve. var curve = elliptic.P256() // marshalXY converts points into the uncompressed form specified in section 4.3.6 of ANSI X9.62. // It is also used to marshal signature, for backwards compatibility. func marshalXY(curve elliptic.Curve, x, y *big.Int) []byte { params := curve.Params() curveOrderByteSize := params.P.BitLen() / 8 buf := make([]byte, 1+curveOrderByteSize*2) // r and s are not on curve at all, leave for backwards compatibility buf[0] = 4 _ = x.FillBytes(buf[1 : 1+curveOrderByteSize]) _ = y.FillBytes(buf[1+curveOrderByteSize:]) return buf } // unmarshalXY converts a point, serialized by Marshal, into an x, y pair. // It is an error if the point is not in uncompressed form. // On error, x,y = nil. // Unlike the original version of the code, we ignore that x or y not on the curve // -------------- // It's copy-paste elliptic.Unmarshal(curve, data) stdlib function, without last line // of code. // Link - https://golang.org/pkg/crypto/elliptic/#Unmarshal func unmarshalXY(data []byte) (x *big.Int, y *big.Int) { if len(data) != PublicKeyUncompressedSize { return } else if data[0] != 4 { // uncompressed form return } p := curve.Params().P x = new(big.Int).SetBytes(data[1:PublicKeyCompressedSize]) y = new(big.Int).SetBytes(data[PublicKeyCompressedSize:]) if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 { x, y = nil, nil } return } // MarshalPublicKey to bytes. func MarshalPublicKey(key *ecdsa.PublicKey) []byte { if key == nil || key.X == nil || key.Y == nil { return nil } return elliptic.MarshalCompressed(curve, key.X, key.Y) } // UnmarshalPublicKey from bytes. func UnmarshalPublicKey(data []byte) *ecdsa.PublicKey { if x, y := decodePoint(data); x != nil && y != nil { return &ecdsa.PublicKey{ Curve: curve, X: x, Y: y, } } return nil } func decodePoint(data []byte) (x *big.Int, y *big.Int) { // empty data if len(data) == 0 { return } // tries to unmarshal compressed form // returns (nil, nil) when: // - wrong len(data) // - data[0] != 2 && data[0] != 3 if x, y = elliptic.UnmarshalCompressed(curve, data); x != nil && y != nil { return x, y } // tries to unmarshal uncompressed form and check that points on curve if x, y = unmarshalXY(data); x == nil || y == nil || !curve.IsOnCurve(x, y) { x, y = nil, nil } return x, y } // UnmarshalPrivateKey from bytes. // It is similar to `ecdsa.Generate()` but uses pre-defined big.Int and // curve for NEO Blockchain (elliptic.P256) // Link - https://golang.org/pkg/crypto/ecdsa/#GenerateKey func UnmarshalPrivateKey(data []byte) (*ecdsa.PrivateKey, error) { if len(data) == PrivateKeyCompressedSize { // todo: consider using only NEO blockchain private keys d := new(big.Int).SetBytes(data) priv := new(ecdsa.PrivateKey) priv.PublicKey.Curve = curve priv.D = d priv.PublicKey.X, priv.PublicKey.Y = curve.ScalarBaseMult(data) return priv, nil } return x509.ParseECPrivateKey(data) } // MarshalPrivateKey to bytes. func MarshalPrivateKey(key *ecdsa.PrivateKey) []byte { return key.D.Bytes() } // hashBytes returns the sha512 sum. func hashBytes(data []byte) []byte { buf := sha512.Sum512(data) return buf[:] } // Verify verifies the signature of msg using the public key pub. It returns // nil only if signature is valid. func Verify(pub *ecdsa.PublicKey, msg, sig []byte) error { return VerifyHash(pub, hashBytes(msg), sig) } // VerifyHash verifies the signature of msg using it's hash the public key pub. // It returns nil only if signature is valid. func VerifyHash(pub *ecdsa.PublicKey, msgHash, sig []byte) error { if pub == nil { return ErrEmptyPublicKey } else if r, s := unmarshalXY(sig); r == nil || s == nil { return ErrCannotUnmarshal } else if !ecdsa.Verify(pub, msgHash, r, s) { return fmt.Errorf("%w: %0x : %0x", ErrInvalidSignature, r, s) } return nil } // Sign signs a message using the private key. If the sha512 hash of msg // is longer than the bit-length of the private key's curve order, the hash // will be truncated to that length. It returns the signature as slice bytes. // The security of the private key depends on the entropy of rand. func Sign(key *ecdsa.PrivateKey, msg []byte) ([]byte, error) { return SignHash(key, hashBytes(msg)) } // SignHash signs message using it's hash and private key. func SignHash(key *ecdsa.PrivateKey, msgHash []byte) ([]byte, error) { x, y, err := ecdsa.Sign(rand.Reader, key, msgHash) if err != nil { return nil, err } return marshalXY(key.Curve, x, y), nil }