When resolving snapshotIDs in FindFilteredSnapshots either
FindLatestSnapshot or FindSnapshot is called. Both operations issue a
list operation to the backend. When for example passing a long list of
snapshot ids to `forget` this could lead to a large number of list
operations.
These commands filter the snapshots according to some criteria which
essentially requires loading the index before filtering the snapshots.
Thus create a copy of the snapshots list beforehand and use it later on.
Create a temporary file with a sufficiently random name to essentially
avoid any chance of conflicts. Once the upload has finished remove the
temporary suffix. Interrupted upload thus will be ignored by restic.
The missing eof with http2 when a response included a content-length
header but no data, has been fixed in golang 1.17.3/1.16.10. Therefore
just drop the canary test and schedule it for removal once go 1.18 is
required as minimum version by restic.
When deleting a file, B2 sometimes returns a "500 Service Unavailable"
error but nevertheless correctly deletes the file. Due to retries in
the B2 library blazer, we sometimes also see a "400 File not present"
error. The retries of restic for the delete request then fail with
"404 File with such name does not exist.".
As we have to rely on request retries in a distributed system to handle
temporary errors, also consider a delete request to be successful if the
file is reported as not existing. This should be safe as B2 claims to
provide a strongly consistent bucket listing and thus a missing file
shouldn't mysteriously show up again later on.
The rest config normally uses prepareURL to sanitize URLs and ensures
that the URL ends with a slash. However, the test used an URL without a
trailing slash, which after the rest server changes causes test
failures.
For files below 256MB this uses the md5 hash calculated while assembling
the pack file. For larger files the hash for each 100MB part is
calculated on the fly. That hash is also reused as temporary filename.
As restic only uploads encrypted data which includes among others a
random initialization vector, the file hash shouldn't be susceptible to
md5 collision attacks (even though the algorithm is broken).
This enables the backends to request the calculation of a
backend-specific hash. For the currently supported backends this will
always be MD5. The hash calculation happens as early as possible, for
pack files this is during assembly of the pack file. That way the hash
would even capture corruptions of the temporary pack file on disk.
This can be used to check how large a backup is or validate exclusions.
It does not actually write any data to the underlying backend. This is
implemented as a simple overlay backend that accepts writes without
forwarding them, passes through reads, and generally does the minimal
necessary to pretend that progress is actually happening.
Fixes#1542
Example usage:
$ restic -vv --dry-run . | grep add
new /changelog/unreleased/issue-1542, saved in 0.000s (350 B added)
modified /cmd/restic/cmd_backup.go, saved in 0.000s (16.543 KiB added)
modified /cmd/restic/global.go, saved in 0.000s (0 B added)
new /internal/backend/dry/dry_backend_test.go, saved in 0.000s (3.866 KiB added)
new /internal/backend/dry/dry_backend.go, saved in 0.000s (3.744 KiB added)
modified /internal/backend/test/tests.go, saved in 0.000s (0 B added)
modified /internal/repository/repository.go, saved in 0.000s (20.707 KiB added)
modified /internal/ui/backup.go, saved in 0.000s (9.110 KiB added)
modified /internal/ui/jsonstatus/status.go, saved in 0.001s (11.055 KiB added)
modified /restic, saved in 0.131s (25.542 MiB added)
Would add to the repo: 25.892 MiB
Add comment that the check is based on the stdlib HTTP2 client. Refactor
the checks into a function. Return an error if the value in the
Content-Length header cannot be parsed.
The first test function ensures that the workaround works as expected.
And the second test function is intended to fail as soon as the issue
has been fixed in golang to allow us to eventually remove the
workaround.
The golang http client does not return an error when a HTTP2 reply
includes a non-zero content length but does not return any data at all.
This scenario can occur e.g. when using rclone when a file stored in a
backend seems to be accessible but then fails to download.
* Stop prepending the operation name: it's already part of os.PathError,
leading to repetitive errors like "Chmod: chmod /foo/bar: operation not
permitted".
* Use errors.Is to check for specific errors.
Since the fileInfos are returned in a []interface, they're already
allocated on the heap. Making them pointers explicitly means the
compiler doesn't need to generate fileInfo and *fileInfo versions of the
methods on this type. The binary becomes about 7KiB smaller on
Linux/amd64.
The error returned when finishing the upload of an object was dropped.
This could cause silent upload failures and thus data loss in certain
cases. When a MD5 hash for the uploaded blob is specified, a wrong
hash/damaged upload would return its error via the Close() whose error
was dropped.
The azureAdapter was used directly without a pointer, but the Len()
method was only defined with a pointer receiver (which means Len() is
not present on a azureAdapter{}, only on a pointer to it).
Bugs in the error handling while uploading a file to the backend could
cause incomplete files, e.g. https://github.com/golang/go/issues/42400
which could affect the local backend.
Proactively add sanity checks which will treat an upload as failed if
the reported upload size does not match the actual file size.
Depending on the used backend, operations started with a canceled
context may fail or not. For example the local backend still works in
large parts when called with a canceled context. Backends transfering
data via http don't work. It is also not possible to retry failed
operations in that state as the RetryBackend will abort with a 'context
canceled' error.
Ensure uniform behavior of all backends by checking for a canceled
context by checking for a canceled context as a first step in the
RetryBackend. This ensures uniform behavior across all backends, as
backends are always wrapped in a RetryBackend.
This adds support for the following environment variables, which were
previously missing:
OS_USER_ID User ID for keystone v3 authentication
OS_USER_DOMAIN_ID User domain ID for keystone v3 authentication
OS_PROJECT_DOMAIN_ID Project domain ID for keystone v3 authentication
OS_TRUST_ID Trust ID for keystone v3 authentication
This code is more strict in what it expects to find in the backend:
depending on the layout, either a directory full of files or a directory
full of such directories.
a gs service account may only have object permissions on an existing
bucket but no bucket create/get permissions.
these service accounts currently are blocked from initialization a
restic repository because restic can not determine if the bucket exists.
this PR updates the logic to assume the bucket exists when the bucket
attribute request results in a permissions denied error.
this way, restic can still initialize a repository if the service
account does have object permissions
fixes: https://github.com/restic/restic/issues/3100
Due to the return if !isFile, the IsDir branch in List was never taken
and subdirectories were traversed recursively.
Also replaced isFile by an IsRegular check, which has been equivalent
since Go 1.12 (golang/go@a2a3dd00c9).
The restic security model includes full trust of the local machine, so
this should not fix any actual security problems, but it's better to be
safe than sorry.
Fixes#2192.