distribution/registry.go

73 lines
2.6 KiB
Go
Raw Permalink Normal View History

package distribution
Initial implementation of registry LayerService This change contains the initial implementation of the LayerService to power layer push and pulls on the storagedriver. The interfaces presented in this package will be used by the http application to drive most features around efficient pulls and resumable pushes. The file storage/layer.go defines the interface interactions. LayerService is the root type and supports methods to access Layer and LayerUpload objects. Pull operations are supported with LayerService.Fetch and push operations are supported with LayerService.Upload and LayerService.Resume. Reads and writes of layers are split between Layer and LayerUpload, respectively. LayerService is implemented internally with the layerStore object, which takes a storagedriver.StorageDriver and a pathMapper instance. LayerUploadState is currently exported and will likely continue to be as the interaction between it and layerUploadStore are better understood. Likely, the layerUploadStore lifecycle and implementation will be deferred to the application. Image pushes pulls will be implemented in a similar manner without the discrete, persistent upload. Much of this change is in place to get something running and working. Caveats of this change include the following: 1. Layer upload state storage is implemented on the local filesystem, separate from the storage driver. This must be replaced with using the proper backend and other state storage. This can be removed when we implement resumable hashing and tarsum calculations to avoid backend roundtrips. 2. Error handling is rather bespoke at this time. The http API implementation should really dictate the error return structure for the future, so we intend to refactor this heavily to support these errors. We'd also like to collect production data to understand how failures happen in the system as a while before moving to a particular edict around error handling. 3. The layerUploadStore, which manages layer upload storage and state is not currently exported. This will likely end up being split, with the file management portion being pointed at the storagedriver and the state storage elsewhere. 4. Access Control provisions are nearly completely missing from this change. There are details around how layerindex lookup works that are related with access controls. As the auth portions of the new API take shape, these provisions will become more clear. Please see TODOs for details and individual recommendations.
2014-11-18 00:29:42 +00:00
import (
Refactor Blob Service API This PR refactors the blob service API to be oriented around blob descriptors. Identified by digests, blobs become an abstract entity that can be read and written using a descriptor as a handle. This allows blobs to take many forms, such as a ReadSeekCloser or a simple byte buffer, allowing blob oriented operations to better integrate with blob agnostic APIs (such as the `io` package). The error definitions are now better organized to reflect conditions that can only be seen when interacting with the blob API. The main benefit of this is to separate the much smaller metadata from large file storage. Many benefits also follow from this. Reading and writing has been separated into discrete services. Backend implementation is also simplified, by reducing the amount of metadata that needs to be picked up to simply serve a read. This also improves cacheability. "Opening" a blob simply consists of an access check (Stat) and a path calculation. Caching is greatly simplified and we've made the mapping of provisional to canonical hashes a first-class concept. BlobDescriptorService and BlobProvider can be combined in different ways to achieve varying effects. Recommend Review Approach ------------------------- This is a very large patch. While apologies are in order, we are getting a considerable amount of refactoring. Most changes follow from the changes to the root package (distribution), so start there. From there, the main changes are in storage. Looking at (*repository).Blobs will help to understand the how the linkedBlobStore is wired. One can explore the internals within and also branch out into understanding the changes to the caching layer. Following the descriptions below will also help to guide you. To reduce the chances for regressions, it was critical that major changes to unit tests were avoided. Where possible, they are left untouched and where not, the spirit is hopefully captured. Pay particular attention to where behavior may have changed. Storage ------- The primary changes to the `storage` package, other than the interface updates, were to merge the layerstore and blobstore. Blob access is now layered even further. The first layer, blobStore, exposes a global `BlobStatter` and `BlobProvider`. Operations here provide a fast path for most read operations that don't take access control into account. The `linkedBlobStore` layers on top of the `blobStore`, providing repository- scoped blob link management in the backend. The `linkedBlobStore` implements the full `BlobStore` suite, providing access-controlled, repository-local blob writers. The abstraction between the two is slightly broken in that `linkedBlobStore` is the only channel under which one can write into the global blob store. The `linkedBlobStore` also provides flexibility in that it can act over different link sets depending on configuration. This allows us to use the same code for signature links, manifest links and blob links. Eventually, we will fully consolidate this storage. The improved cache flow comes from the `linkedBlobStatter` component of `linkedBlobStore`. Using a `cachedBlobStatter`, these combine together to provide a simple cache hierarchy that should streamline access checks on read and write operations, or at least provide a single path to optimize. The metrics have been changed in a slightly incompatible way since the former operations, Fetch and Exists, are no longer relevant. The fileWriter and fileReader have been slightly modified to support the rest of the changes. The most interesting is the removal of the `Stat` call from `newFileReader`. This was the source of unnecessary round trips that were only present to look up the size of the resulting reader. Now, one must simply pass in the size, requiring the caller to decide whether or not the `Stat` call is appropriate. In several cases, it turned out the caller already had the size already. The `WriterAt` implementation has been removed from `fileWriter`, since it is no longer required for `BlobWriter`, reducing the number of paths which writes may take. Cache ----- Unfortunately, the `cache` package required a near full rewrite. It was pretty mechanical in that the cache is oriented around the `BlobDescriptorService` slightly modified to include the ability to set the values for individual digests. While the implementation is oriented towards caching, it can act as a primary store. Provisions are in place to have repository local metadata, in addition to global metadata. Fallback is implemented as a part of the storage package to maintain this flexibility. One unfortunate side-effect is that caching is now repository-scoped, rather than global. This should have little effect on performance but may increase memory usage. Handlers -------- The `handlers` package has been updated to leverage the new API. For the most part, the changes are superficial or mechanical based on the API changes. This did expose a bug in the handling of provisional vs canonical digests that was fixed in the unit tests. Configuration ------------- One user-facing change has been made to the configuration and is updated in the associated documentation. The `layerinfo` cache parameter has been deprecated by the `blobdescriptor` cache parameter. Both are equivalent and configuration files should be backward compatible. Notifications ------------- Changes the `notification` package are simply to support the interface changes. Context ------- A small change has been made to the tracing log-level. Traces have been moved from "info" to "debug" level to reduce output when not needed. Signed-off-by: Stephen J Day <stephen.day@docker.com>
2015-05-12 07:10:29 +00:00
"github.com/docker/distribution/context"
"github.com/docker/distribution/reference"
Initial implementation of registry LayerService This change contains the initial implementation of the LayerService to power layer push and pulls on the storagedriver. The interfaces presented in this package will be used by the http application to drive most features around efficient pulls and resumable pushes. The file storage/layer.go defines the interface interactions. LayerService is the root type and supports methods to access Layer and LayerUpload objects. Pull operations are supported with LayerService.Fetch and push operations are supported with LayerService.Upload and LayerService.Resume. Reads and writes of layers are split between Layer and LayerUpload, respectively. LayerService is implemented internally with the layerStore object, which takes a storagedriver.StorageDriver and a pathMapper instance. LayerUploadState is currently exported and will likely continue to be as the interaction between it and layerUploadStore are better understood. Likely, the layerUploadStore lifecycle and implementation will be deferred to the application. Image pushes pulls will be implemented in a similar manner without the discrete, persistent upload. Much of this change is in place to get something running and working. Caveats of this change include the following: 1. Layer upload state storage is implemented on the local filesystem, separate from the storage driver. This must be replaced with using the proper backend and other state storage. This can be removed when we implement resumable hashing and tarsum calculations to avoid backend roundtrips. 2. Error handling is rather bespoke at this time. The http API implementation should really dictate the error return structure for the future, so we intend to refactor this heavily to support these errors. We'd also like to collect production data to understand how failures happen in the system as a while before moving to a particular edict around error handling. 3. The layerUploadStore, which manages layer upload storage and state is not currently exported. This will likely end up being split, with the file management portion being pointed at the storagedriver and the state storage elsewhere. 4. Access Control provisions are nearly completely missing from this change. There are details around how layerindex lookup works that are related with access controls. As the auth portions of the new API take shape, these provisions will become more clear. Please see TODOs for details and individual recommendations.
2014-11-18 00:29:42 +00:00
)
// Scope defines the set of items that match a namespace.
type Scope interface {
// Contains returns true if the name belongs to the namespace.
Contains(name string) bool
}
type fullScope struct{}
func (f fullScope) Contains(string) bool {
return true
}
// GlobalScope represents the full namespace scope which contains
// all other scopes.
var GlobalScope = Scope(fullScope{})
// Namespace represents a collection of repositories, addressable by name.
// Generally, a namespace is backed by a set of one or more services,
// providing facilities such as registry access, trust, and indexing.
type Namespace interface {
// Scope describes the names that can be used with this Namespace. The
// global namespace will have a scope that matches all names. The scope
// effectively provides an identity for the namespace.
Scope() Scope
// Repository should return a reference to the named repository. The
// registry may or may not have the repository but should always return a
// reference.
Repository(ctx context.Context, name reference.Named) (Repository, error)
// Repositories fills 'repos' with a lexigraphically sorted catalog of repositories
// up to the size of 'repos' and returns the value 'n' for the number of entries
// which were filled. 'last' contains an offset in the catalog, and 'err' will be
// set to io.EOF if there are no more entries to obtain.
Repositories(ctx context.Context, repos []string, last string) (n int, err error)
Initial implementation of registry LayerService This change contains the initial implementation of the LayerService to power layer push and pulls on the storagedriver. The interfaces presented in this package will be used by the http application to drive most features around efficient pulls and resumable pushes. The file storage/layer.go defines the interface interactions. LayerService is the root type and supports methods to access Layer and LayerUpload objects. Pull operations are supported with LayerService.Fetch and push operations are supported with LayerService.Upload and LayerService.Resume. Reads and writes of layers are split between Layer and LayerUpload, respectively. LayerService is implemented internally with the layerStore object, which takes a storagedriver.StorageDriver and a pathMapper instance. LayerUploadState is currently exported and will likely continue to be as the interaction between it and layerUploadStore are better understood. Likely, the layerUploadStore lifecycle and implementation will be deferred to the application. Image pushes pulls will be implemented in a similar manner without the discrete, persistent upload. Much of this change is in place to get something running and working. Caveats of this change include the following: 1. Layer upload state storage is implemented on the local filesystem, separate from the storage driver. This must be replaced with using the proper backend and other state storage. This can be removed when we implement resumable hashing and tarsum calculations to avoid backend roundtrips. 2. Error handling is rather bespoke at this time. The http API implementation should really dictate the error return structure for the future, so we intend to refactor this heavily to support these errors. We'd also like to collect production data to understand how failures happen in the system as a while before moving to a particular edict around error handling. 3. The layerUploadStore, which manages layer upload storage and state is not currently exported. This will likely end up being split, with the file management portion being pointed at the storagedriver and the state storage elsewhere. 4. Access Control provisions are nearly completely missing from this change. There are details around how layerindex lookup works that are related with access controls. As the auth portions of the new API take shape, these provisions will become more clear. Please see TODOs for details and individual recommendations.
2014-11-18 00:29:42 +00:00
}
// ManifestServiceOption is a function argument for Manifest Service methods
Implementation of the Manifest Service API refactor. Add a generic Manifest interface to represent manifests in the registry and remove references to schema specific manifests. Add a ManifestBuilder to construct Manifest objects. Concrete manifest builders will exist for each manifest type and implementations will contain manifest specific data used to build a manifest. Remove Signatures() from Repository interface. Signatures are relevant only to schema1 manifests. Move access to the signature store inside the schema1 manifestStore. Add some API tests to verify signature roundtripping. schema1 ------- Change the way data is stored in schema1.Manifest to enable Payload() to be used to return complete Manifest JSON from the HTTP handler without knowledge of the schema1 protocol. tags ---- Move tag functionality to a seperate TagService and update ManifestService to use the new interfaces. Implement a driver based tagService to be backward compatible with the current tag service. Add a proxyTagService to enable the registry to get a digest for remote manifests from a tag. manifest store -------------- Remove revision store and move all signing functionality into the signed manifeststore. manifest registration --------------------- Add a mechanism to register manifest media types and to allow different manifest types to be Unmarshalled correctly. client ------ Add ManifestServiceOptions to client functions to allow tags to be passed into Put and Get for building correct registry URLs. Change functional arguments to be an interface type to allow passing data without mutating shared state. Signed-off-by: Richard Scothern <richard.scothern@gmail.com> Signed-off-by: Richard Scothern <richard.scothern@docker.com>
2015-08-21 04:50:15 +00:00
type ManifestServiceOption interface {
Apply(ManifestService) error
}
// Repository is a named collection of manifests and layers.
type Repository interface {
// Name returns the name of the repository.
Name() reference.Named
// Manifests returns a reference to this repository's manifest service.
// with the supplied options applied.
Manifests(ctx context.Context, options ...ManifestServiceOption) (ManifestService, error)
Refactor Blob Service API This PR refactors the blob service API to be oriented around blob descriptors. Identified by digests, blobs become an abstract entity that can be read and written using a descriptor as a handle. This allows blobs to take many forms, such as a ReadSeekCloser or a simple byte buffer, allowing blob oriented operations to better integrate with blob agnostic APIs (such as the `io` package). The error definitions are now better organized to reflect conditions that can only be seen when interacting with the blob API. The main benefit of this is to separate the much smaller metadata from large file storage. Many benefits also follow from this. Reading and writing has been separated into discrete services. Backend implementation is also simplified, by reducing the amount of metadata that needs to be picked up to simply serve a read. This also improves cacheability. "Opening" a blob simply consists of an access check (Stat) and a path calculation. Caching is greatly simplified and we've made the mapping of provisional to canonical hashes a first-class concept. BlobDescriptorService and BlobProvider can be combined in different ways to achieve varying effects. Recommend Review Approach ------------------------- This is a very large patch. While apologies are in order, we are getting a considerable amount of refactoring. Most changes follow from the changes to the root package (distribution), so start there. From there, the main changes are in storage. Looking at (*repository).Blobs will help to understand the how the linkedBlobStore is wired. One can explore the internals within and also branch out into understanding the changes to the caching layer. Following the descriptions below will also help to guide you. To reduce the chances for regressions, it was critical that major changes to unit tests were avoided. Where possible, they are left untouched and where not, the spirit is hopefully captured. Pay particular attention to where behavior may have changed. Storage ------- The primary changes to the `storage` package, other than the interface updates, were to merge the layerstore and blobstore. Blob access is now layered even further. The first layer, blobStore, exposes a global `BlobStatter` and `BlobProvider`. Operations here provide a fast path for most read operations that don't take access control into account. The `linkedBlobStore` layers on top of the `blobStore`, providing repository- scoped blob link management in the backend. The `linkedBlobStore` implements the full `BlobStore` suite, providing access-controlled, repository-local blob writers. The abstraction between the two is slightly broken in that `linkedBlobStore` is the only channel under which one can write into the global blob store. The `linkedBlobStore` also provides flexibility in that it can act over different link sets depending on configuration. This allows us to use the same code for signature links, manifest links and blob links. Eventually, we will fully consolidate this storage. The improved cache flow comes from the `linkedBlobStatter` component of `linkedBlobStore`. Using a `cachedBlobStatter`, these combine together to provide a simple cache hierarchy that should streamline access checks on read and write operations, or at least provide a single path to optimize. The metrics have been changed in a slightly incompatible way since the former operations, Fetch and Exists, are no longer relevant. The fileWriter and fileReader have been slightly modified to support the rest of the changes. The most interesting is the removal of the `Stat` call from `newFileReader`. This was the source of unnecessary round trips that were only present to look up the size of the resulting reader. Now, one must simply pass in the size, requiring the caller to decide whether or not the `Stat` call is appropriate. In several cases, it turned out the caller already had the size already. The `WriterAt` implementation has been removed from `fileWriter`, since it is no longer required for `BlobWriter`, reducing the number of paths which writes may take. Cache ----- Unfortunately, the `cache` package required a near full rewrite. It was pretty mechanical in that the cache is oriented around the `BlobDescriptorService` slightly modified to include the ability to set the values for individual digests. While the implementation is oriented towards caching, it can act as a primary store. Provisions are in place to have repository local metadata, in addition to global metadata. Fallback is implemented as a part of the storage package to maintain this flexibility. One unfortunate side-effect is that caching is now repository-scoped, rather than global. This should have little effect on performance but may increase memory usage. Handlers -------- The `handlers` package has been updated to leverage the new API. For the most part, the changes are superficial or mechanical based on the API changes. This did expose a bug in the handling of provisional vs canonical digests that was fixed in the unit tests. Configuration ------------- One user-facing change has been made to the configuration and is updated in the associated documentation. The `layerinfo` cache parameter has been deprecated by the `blobdescriptor` cache parameter. Both are equivalent and configuration files should be backward compatible. Notifications ------------- Changes the `notification` package are simply to support the interface changes. Context ------- A small change has been made to the tracing log-level. Traces have been moved from "info" to "debug" level to reduce output when not needed. Signed-off-by: Stephen J Day <stephen.day@docker.com>
2015-05-12 07:10:29 +00:00
// Blobs returns a reference to this repository's blob service.
Blobs(ctx context.Context) BlobStore
// TODO(stevvooe): The above BlobStore return can probably be relaxed to
// be a BlobService for use with clients. This will allow such
// implementations to avoid implementing ServeBlob.
Implementation of the Manifest Service API refactor. Add a generic Manifest interface to represent manifests in the registry and remove references to schema specific manifests. Add a ManifestBuilder to construct Manifest objects. Concrete manifest builders will exist for each manifest type and implementations will contain manifest specific data used to build a manifest. Remove Signatures() from Repository interface. Signatures are relevant only to schema1 manifests. Move access to the signature store inside the schema1 manifestStore. Add some API tests to verify signature roundtripping. schema1 ------- Change the way data is stored in schema1.Manifest to enable Payload() to be used to return complete Manifest JSON from the HTTP handler without knowledge of the schema1 protocol. tags ---- Move tag functionality to a seperate TagService and update ManifestService to use the new interfaces. Implement a driver based tagService to be backward compatible with the current tag service. Add a proxyTagService to enable the registry to get a digest for remote manifests from a tag. manifest store -------------- Remove revision store and move all signing functionality into the signed manifeststore. manifest registration --------------------- Add a mechanism to register manifest media types and to allow different manifest types to be Unmarshalled correctly. client ------ Add ManifestServiceOptions to client functions to allow tags to be passed into Put and Get for building correct registry URLs. Change functional arguments to be an interface type to allow passing data without mutating shared state. Signed-off-by: Richard Scothern <richard.scothern@gmail.com> Signed-off-by: Richard Scothern <richard.scothern@docker.com>
2015-08-21 04:50:15 +00:00
// Tags returns a reference to this repositories tag service
Tags(ctx context.Context) TagService
}
// TODO(stevvooe): Must add close methods to all these. May want to change the
// way instances are created to better reflect internal dependency
// relationships.