import pytest import random import string import re import json from botocore.exceptions import ClientError from botocore.exceptions import EventStreamError import uuid from . import ( configfile, setup_teardown, get_client, get_new_bucket_name ) import logging logging.basicConfig(level=logging.INFO) import collections collections.Callable = collections.abc.Callable region_name = '' # recurssion function for generating arithmetical expression def random_expr(depth): # depth is the complexity of expression if depth==1 : return str(int(random.random() * 100) + 1)+".0" return '(' + random_expr(depth-1) + random.choice(['+','-','*','/']) + random_expr(depth-1) + ')' def generate_s3select_where_clause(bucket_name,obj_name): a=random_expr(4) b=random_expr(4) s=random.choice([ '<','>','=','<=','>=','!=' ]) try: eval( a ) eval( b ) except ZeroDivisionError: return # generate s3select statement using generated randome expression # upon count(0)>0 it means true for the where clause expression # the python-engine {eval( conditional expression )} should return same boolean result. s3select_stmt = "select count(0) from s3object where " + a + s + b + ";" res = remove_xml_tags_from_result( run_s3select(bucket_name,obj_name,s3select_stmt) ).replace(",","") if s == '=': s = '==' s3select_assert_result(int(res)>0 , eval( a + s + b )) def generate_s3select_expression_projection(bucket_name,obj_name): # generate s3select statement using generated randome expression # statement return an arithmetical result for the generated expression. # the same expression is evaluated by python-engine, result should be close enough(Epsilon) e = random_expr( 4 ) try: eval( e ) except ZeroDivisionError: return if eval( e ) == 0: return res = remove_xml_tags_from_result( run_s3select(bucket_name,obj_name,"select " + e + " from s3object;",) ).replace(",","") # accuracy level epsilon = float(0.00001) # both results should be close (epsilon) assert( abs(float(res.split("\n")[0]) - eval(e)) < epsilon ) @pytest.mark.s3select def get_random_string(): return uuid.uuid4().hex[:6].upper() @pytest.mark.s3select def test_generate_where_clause(): # create small csv file for testing the random expressions single_line_csv = create_random_csv_object(1,1) bucket_name = get_new_bucket_name() obj_name = get_random_string() #"single_line_csv.csv" upload_object(bucket_name,obj_name,single_line_csv) for _ in range(100): generate_s3select_where_clause(bucket_name,obj_name) @pytest.mark.s3select def test_generate_projection(): # create small csv file for testing the random expressions single_line_csv = create_random_csv_object(1,1) bucket_name = get_new_bucket_name() obj_name = get_random_string() #"single_line_csv.csv" upload_object(bucket_name,obj_name,single_line_csv) for _ in range(100): generate_s3select_expression_projection(bucket_name,obj_name) def s3select_assert_result(a,b): if type(a) == str: a_strip = a.strip() b_strip = b.strip() assert a_strip != "" assert b_strip != "" else: assert a != "" assert b != "" assert a == b def create_csv_object_for_datetime(rows,columns): result = "" for _ in range(rows): row = "" for _ in range(columns): row = row + "{}{:02d}{:02d}T{:02d}{:02d}{:02d}Z,".format(random.randint(0,100)+1900,random.randint(1,12),random.randint(1,28),random.randint(0,23),random.randint(0,59),random.randint(0,59),) result += row + "\n" return result def create_random_csv_object(rows,columns,col_delim=",",record_delim="\n",csv_schema=""): result = "" if len(csv_schema)>0 : result = csv_schema + record_delim for _ in range(rows): row = "" for _ in range(columns): row = row + "{}{}".format(random.randint(0,1000),col_delim) result += row + record_delim return result def create_random_csv_object_string(rows,columns,col_delim=",",record_delim="\n",csv_schema=""): result = "" if len(csv_schema)>0 : result = csv_schema + record_delim for _ in range(rows): row = "" for _ in range(columns): if random.randint(0,9) == 5: row = row + "{}{}".format(''.join(random.choice(string.ascii_letters) for m in range(10)) + "aeiou",col_delim) else: row = row + "{}{}".format(''.join("cbcd" + random.choice(string.ascii_letters) for m in range(10)) + "vwxyzzvwxyz" ,col_delim) result += row + record_delim return result def create_random_csv_object_trim(rows,columns,col_delim=",",record_delim="\n",csv_schema=""): result = "" if len(csv_schema)>0 : result = csv_schema + record_delim for _ in range(rows): row = "" for _ in range(columns): if random.randint(0,5) == 2: row = row + "{}{}".format(''.join(" aeiou ") ,col_delim) else: row = row + "{}{}".format(''.join("abcd") ,col_delim) result += row + record_delim return result def create_random_csv_object_escape(rows,columns,col_delim=",",record_delim="\n",csv_schema=""): result = "" if len(csv_schema)>0 : result = csv_schema + record_delim for _ in range(rows): row = "" for _ in range(columns): if random.randint(0,9) == 5: row = row + "{}{}".format(''.join("_ar") ,col_delim) else: row = row + "{}{}".format(''.join("aeio_") ,col_delim) result += row + record_delim return result def create_random_csv_object_null(rows,columns,col_delim=",",record_delim="\n",csv_schema=""): result = "" if len(csv_schema)>0 : result = csv_schema + record_delim for _ in range(rows): row = "" for _ in range(columns): if random.randint(0,5) == 2: row = row + "{}{}".format(''.join("") ,col_delim) else: row = row + "{}{}".format(''.join("abc") ,col_delim) result += row + record_delim return result def create_random_json_object(rows,columns,col_delim=",",record_delim="\n",csv_schema=""): result = "{\"root\" : [" result += record_delim if len(csv_schema)>0 : result = csv_schema + record_delim for _ in range(rows): row = "" num = 0 row += "{" for _ in range(columns): num += 1 row = row + "\"c" + str(num) + "\"" + ": " "{}{}".format(random.randint(0,1000),col_delim) row = row[:-1] row += "}" row += "," result += row + record_delim result = result[:-2] result += record_delim result += "]" + "}" return result def csv_to_json(obj, field_split=",",row_split="\n",csv_schema=""): result = "{\"root\" : [" result += row_split if len(csv_schema)>0 : result = csv_schema + row_split for rec in obj.split(row_split): row = "" num = 0 row += "{" for col in rec.split(field_split): if col == "": break num += 1 row = row + "\"c" + str(num) + "\"" + ": " "{}{}".format(col,field_split) row = row[:-1] row += "}" row += "," result += row + row_split result = result[:-5] result += row_split result += "]" + "}" return result def upload_object(bucket_name,new_key,obj): client = get_client() client.create_bucket(Bucket=bucket_name) client.put_object(Bucket=bucket_name, Key=new_key, Body=obj) # validate uploaded object c2 = get_client() response = c2.get_object(Bucket=bucket_name, Key=new_key) assert response['Body'].read().decode('utf-8') == obj, 's3select error[ downloaded object not equal to uploaded objecy' def run_s3select(bucket,key,query,column_delim=",",row_delim="\n",quot_char='"',esc_char='\\',csv_header_info="NONE", progress = False): s3 = get_client() result = "" result_status = {} try: r = s3.select_object_content( Bucket=bucket, Key=key, ExpressionType='SQL', InputSerialization = {"CSV": {"RecordDelimiter" : row_delim, "FieldDelimiter" : column_delim,"QuoteEscapeCharacter": esc_char, "QuoteCharacter": quot_char, "FileHeaderInfo": csv_header_info}, "CompressionType": "NONE"}, OutputSerialization = {"CSV": {}}, Expression=query, RequestProgress = {"Enabled": progress}) except ClientError as c: result += str(c) return result if progress == False: try: for event in r['Payload']: if 'Records' in event: records = event['Records']['Payload'].decode('utf-8') result += records except EventStreamError as c: result = str(c) return result else: result = [] max_progress_scanned = 0 for event in r['Payload']: if 'Records' in event: records = event['Records'] result.append(records.copy()) if 'Progress' in event: if(event['Progress']['Details']['BytesScanned'] > max_progress_scanned): max_progress_scanned = event['Progress']['Details']['BytesScanned'] result_status['Progress'] = event['Progress'] if 'Stats' in event: result_status['Stats'] = event['Stats'] if 'End' in event: result_status['End'] = event['End'] if progress == False: return result else: return result,result_status def run_s3select_output(bucket,key,query, quot_field, op_column_delim = ",", op_row_delim = "\n", column_delim=",", op_quot_char = '"', op_esc_char = '\\', row_delim="\n",quot_char='"',esc_char='\\',csv_header_info="NONE"): s3 = get_client() r = s3.select_object_content( Bucket=bucket, Key=key, ExpressionType='SQL', InputSerialization = {"CSV": {"RecordDelimiter" : row_delim, "FieldDelimiter" : column_delim,"QuoteEscapeCharacter": esc_char, "QuoteCharacter": quot_char, "FileHeaderInfo": csv_header_info}, "CompressionType": "NONE"}, OutputSerialization = {"CSV": {"RecordDelimiter" : op_row_delim, "FieldDelimiter" : op_column_delim, "QuoteCharacter" : op_quot_char, "QuoteEscapeCharacter" : op_esc_char, "QuoteFields" : quot_field}}, Expression=query,) result = "" for event in r['Payload']: if 'Records' in event: records = event['Records']['Payload'].decode('utf-8') result += records return result def run_s3select_json(bucket,key,query, op_row_delim = "\n"): s3 = get_client() r = s3.select_object_content( Bucket=bucket, Key=key, ExpressionType='SQL', InputSerialization = {"JSON": {"Type": "DOCUMENT"}}, OutputSerialization = {"JSON": {}}, Expression=query,) #Record delimiter optional in output serialization result = "" for event in r['Payload']: if 'Records' in event: records = event['Records']['Payload'].decode('utf-8') result += records return result def remove_xml_tags_from_result(obj): result = "" for rec in obj.split("\n"): if(rec.find("Payload")>0 or rec.find("Records")>0): continue result += rec + "\n" # remove by split result_strip= result.strip() x = bool(re.search("^failure.*$", result_strip)) if x: logging.info(result) assert x == False return result def create_list_of_int(column_pos,obj,field_split=",",row_split="\n"): list_of_int = [] for rec in obj.split(row_split): col_num = 1 if ( len(rec) == 0): continue for col in rec.split(field_split): if (col_num == column_pos): list_of_int.append(int(col)) col_num+=1 return list_of_int @pytest.mark.s3select def test_count_operation(): csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() num_of_rows = 1234 obj_to_load = create_random_csv_object(num_of_rows,10) upload_object(bucket_name,csv_obj_name,obj_to_load) res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object;") ).replace(",","") s3select_assert_result( num_of_rows, int( res )) @pytest.mark.s3select def test_count_json_operation(): json_obj_name = get_random_string() bucket_name = get_new_bucket_name() num_of_rows = 1 obj_to_load = create_random_json_object(num_of_rows,10) upload_object(bucket_name,json_obj_name,obj_to_load) res = remove_xml_tags_from_result(run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*];")) s3select_assert_result( 1, int(res)) res = remove_xml_tags_from_result(run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root;")) s3select_assert_result( 1, int(res)) obj_to_load = create_random_json_object(3,10) upload_object(bucket_name,json_obj_name,obj_to_load) res = remove_xml_tags_from_result(run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root;")) s3select_assert_result( 3, int(res)) @pytest.mark.s3select def test_json_column_sum_min_max(): csv_obj = create_random_csv_object(10000,10) json_obj = csv_to_json(csv_obj); json_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,json_obj_name,json_obj) json_obj_name_2 = get_random_string() bucket_name_2 = "testbuck2" upload_object(bucket_name_2,json_obj_name_2,json_obj) res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select min(_1.c1) from s3object[*].root;") ).replace(",","") list_int = create_list_of_int( 1 , csv_obj ) res_target = min( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select min(_1.c4) from s3object[*].root;") ).replace(",","") list_int = create_list_of_int( 4 , csv_obj ) res_target = min( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select avg(_1.c6) from s3object[*].root;") ).replace(",","") list_int = create_list_of_int( 6 , csv_obj ) res_target = float(sum(list_int ))/10000 s3select_assert_result( float(res_s3select), float(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select max(_1.c4) from s3object[*].root;") ).replace(",","") list_int = create_list_of_int( 4 , csv_obj ) res_target = max( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select max(_1.c7) from s3object[*].root;") ).replace(",","") list_int = create_list_of_int( 7 , csv_obj ) res_target = max( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select sum(_1.c4) from s3object[*].root;") ).replace(",","") list_int = create_list_of_int( 4 , csv_obj ) res_target = sum( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select sum(_1.c7) from s3object[*].root;") ).replace(",","") list_int = create_list_of_int( 7 , csv_obj ) res_target = sum( list_int ) s3select_assert_result( int(res_s3select) , int(res_target) ) # the following queries, validates on *random* input an *accurate* relation between condition result,sum operation and count operation. res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name_2,json_obj_name_2,"select count(0),sum(_1.c1),sum(_1.c2) from s3object[*].root where (_1.c1-_1.c2) = 2;" ) ) count,sum1,sum2 = res_s3select.split(",") s3select_assert_result( int(count)*2 , int(sum1)-int(sum2 ) ) res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0),sum(_1.c1),sum(_1.c2) from s3object[*].root where (_1.c1-_1.c2) = 4;" ) ) count,sum1,sum2 = res_s3select.split(",") s3select_assert_result( int(count)*4 , int(sum1)-int(sum2) ) @pytest.mark.s3select def test_json_nullif_expressions(): json_obj = create_random_json_object(10000,10) json_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,json_obj_name,json_obj) res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where nullif(_1.c1,_1.c2) is null ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 = _1.c2 ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select (nullif(_1.c1,_1.c2) is null) from s3object[*].root ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select (_1.c1 = _1.c2) from s3object[*].root ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where not nullif(_1.c1,_1.c2) is null ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 != _1.c2 ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select (nullif(_1.c1,_1.c2) is not null) from s3object[*].root ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select (_1.c1 != _1.c2) from s3object[*].root ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where nullif(_1.c1,_1.c2) = _1.c1 ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select_json(bucket_name,json_obj_name,"select count(0) from s3object[*].root where _1.c1 != _1.c2 ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) @pytest.mark.s3select def test_column_sum_min_max(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) csv_obj_name_2 = get_random_string() bucket_name_2 = "testbuck2" upload_object(bucket_name_2,csv_obj_name_2,csv_obj) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)) from s3object;") ).replace(",","") list_int = create_list_of_int( 1 , csv_obj ) res_target = min( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_4)) from s3object;") ).replace(",","") list_int = create_list_of_int( 4 , csv_obj ) res_target = min( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select avg(int(_6)) from s3object;") ).replace(",","") list_int = create_list_of_int( 6 , csv_obj ) res_target = float(sum(list_int ))/10000 s3select_assert_result( float(res_s3select), float(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select max(int(_4)) from s3object;") ).replace(",","") list_int = create_list_of_int( 4 , csv_obj ) res_target = max( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select max(int(_7)) from s3object;") ).replace(",","") list_int = create_list_of_int( 7 , csv_obj ) res_target = max( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select sum(int(_4)) from s3object;") ).replace(",","") list_int = create_list_of_int( 4 , csv_obj ) res_target = sum( list_int ) s3select_assert_result( int(res_s3select), int(res_target)) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select sum(int(_7)) from s3object;") ).replace(",","") list_int = create_list_of_int( 7 , csv_obj ) res_target = sum( list_int ) s3select_assert_result( int(res_s3select) , int(res_target) ) # the following queries, validates on *random* input an *accurate* relation between condition result,sum operation and count operation. res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name_2,csv_obj_name_2,"select count(0),sum(int(_1)),sum(int(_2)) from s3object where (int(_1)-int(_2)) = 2;" ) ) count,sum1,sum2 = res_s3select.split(",") s3select_assert_result( int(count)*2 , int(sum1)-int(sum2 ) ) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0),sum(int(_1)),sum(int(_2)) from s3object where (int(_1)-int(_2)) = 4;" ) ) count,sum1,sum2 = res_s3select.split(",") s3select_assert_result( int(count)*4 , int(sum1)-int(sum2) ) @pytest.mark.s3select def test_nullif_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where nullif(_1,_2) is null ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 = _2 ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (nullif(_1,_2) is null) from s3object ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (_1 = _2) from s3object ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where not nullif(_1,_2) is null ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 != _2 ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (nullif(_1,_2) is not null) from s3object ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (_1 != _2) from s3object ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where nullif(_1,_2) = _1 ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 != _2 ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) csv_obj = create_random_csv_object_null(10000,10) upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where nullif(_1,null) is null;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where _1 is null;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (nullif(_1,null) is null) from s3object;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select (_1 is null) from s3object;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) @pytest.mark.s3select def test_nulliftrue_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where (nullif(_1,_2) is null) = true ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 = _2 ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where not (nullif(_1,_2) is null) = true ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 != _2 ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where (nullif(_1,_2) = _1 = true) ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object where _1 != _2 ;") ).replace("\n","") s3select_assert_result( res_s3select_nullif, res_s3select) @pytest.mark.s3select def test_is_not_null_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_null = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where nullif(_1,_2) is not null ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where _1 != _2 ;") ).replace("\n","") s3select_assert_result( res_s3select_null, res_s3select) res_s3select_null = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where (nullif(_1,_1) and _1 = _2) is not null ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(*) from s3object where _1 != _2 ;") ).replace("\n","") s3select_assert_result( res_s3select_null, res_s3select) @pytest.mark.s3select def test_lowerupper_expressions(): csv_obj = create_random_csv_object(1,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select lower("AB12cd$$") from s3object ;') ).replace("\n","") s3select_assert_result( res_s3select, "ab12cd$$") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select upper("ab12CD$$") from s3object ;') ).replace("\n","") s3select_assert_result( res_s3select, "AB12CD$$") @pytest.mark.s3select def test_in_expressions(): # purpose of test: engine is process correctly several projections containing aggregation-functions csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) in(1);')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = 1;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) in(1)) from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) = 1) from s3object;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) in(1,0);')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = 1 or int(_1) = 0;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) in(1,0)) from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) = 1 or int(_1) = 0) from s3object;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2) in(1,0,2);')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2) = 1 or int(_2) = 0 or int(_2) = 2;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_2) in(1,0,2)) from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_2) = 1 or int(_2) = 0 or int(_2) = 2) from s3object;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2)*2 in(int(_3)*2,int(_4)*3,int(_5)*5);')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2)*2 = int(_3)*2 or int(_2)*2 = int(_4)*3 or int(_2)*2 = int(_5)*5;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_2)*2 in(int(_3)*2,int(_4)*3,int(_5)*5)) from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_2)*2 = int(_3)*2 or int(_2)*2 = int(_4)*3 or int(_2)*2 = int(_5)*5) from s3object;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where character_length(_1) = 2 and substring(_1,2,1) in ("3");')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where _1 like "_3";')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (character_length(_1) = 2 and substring(_1,2,1) in ("3")) from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_1 like "_3") from s3object;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) @pytest.mark.s3select def test_true_false_in_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(1)) = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = 1;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(1,0)) = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = 1 or int(_1) = 0;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where (int(_2) in(1,0,2)) = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2) = 1 or int(_2) = 0 or int(_2) = 2;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where (int(_2)*2 in(int(_3)*2,int(_4)*3,int(_5)*5)) = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from s3object where int(_2)*2 = int(_3)*2 or int(_2)*2 = int(_4)*3 or int(_2)*2 = int(_5)*5;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where (character_length(_1) = 2) = true and (substring(_1,2,1) in ("3")) = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where _1 like "_3";')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (int(_1) in (1,2,0)) as a1 from s3object where a1 = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select \"true\"from s3object where (int(_1) in (1,0,2)) ;')).replace("\n","") s3select_assert_result( res_s3select_in, res_s3select ) @pytest.mark.s3select def test_like_expressions(): csv_obj = create_random_csv_object_string(1000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _1 like "%aeio%";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,11,4) = "aeio" ;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_1 like "%aeio%") from s3object ;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_1,11,4) = "aeio") from s3object ;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _1 like "cbcd%";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,1,4) = "cbcd";')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _1 like "%aeio%" like;')).replace("\n","") find_like = res_s3select_like.find("UnsupportedSyntax") assert int(find_like) >= 0 res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_1 like "cbcd%") from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_1,1,4) = "cbcd") from s3object;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _3 like "%y[y-z]";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_3,char_length(_3),1) between "y" and "z" and substring(_3,char_length(_3)-1,1) = "y";')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_3 like "%y[y-z]") from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_3,char_length(_3),1) between "y" and "z" and substring(_3,char_length(_3)-1,1) = "y") from s3object;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _2 like "%yz";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_2,char_length(_2),1) = "z" and substring(_2,char_length(_2)-1,1) = "y";')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_2 like "%yz") from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_2,char_length(_2),1) = "z" and substring(_2,char_length(_2)-1,1) = "y") from s3object;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _3 like "c%z";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_3,char_length(_3),1) = "z" and substring(_3,1,1) = "c";')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_3 like "c%z") from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_3,char_length(_3),1) = "z" and substring(_3,1,1) = "c") from s3object;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _2 like "%xy_";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_2,char_length(_2)-1,1) = "y" and substring(_2,char_length(_2)-2,1) = "x";')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select (_2 like "%xy_") from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select (substring(_2,char_length(_2)-1,1) = "y" and substring(_2,char_length(_2)-2,1) = "x") from s3object;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) @pytest.mark.s3select def test_truefalselike_expressions(): csv_obj = create_random_csv_object_string(1000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_1 like "%aeio%") = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,11,4) = "aeio" ;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_1 like "cbcd%") = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,1,4) = "cbcd";')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_3 like "%y[y-z]") = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where (substring(_3,char_length(_3),1) between "y" and "z") = true and (substring(_3,char_length(_3)-1,1) = "y") = true;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_2 like "%yz") = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where (substring(_2,char_length(_2),1) = "z") = true and (substring(_2,char_length(_2)-1,1) = "y") = true;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_3 like "c%z") = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where (substring(_3,char_length(_3),1) = "z") = true and (substring(_3,1,1) = "c") = true;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) res_s3select_like = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where (_2 like "%xy_") = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where (substring(_2,char_length(_2)-1,1) = "y") = true and (substring(_2,char_length(_2)-2,1) = "x") = true;')).replace("\n","") s3select_assert_result( res_s3select_like, res_s3select ) @pytest.mark.s3select def test_nullif_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where nullif(_1,_2) is null ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where _1 = _2 ;") ).replace("\n","") assert res_s3select_nullif == res_s3select res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where not nullif(_1,_2) is null ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where _1 != _2 ;") ).replace("\n","") assert res_s3select_nullif == res_s3select res_s3select_nullif = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where nullif(_1,_2) = _1 ;") ).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from stdin where _1 != _2 ;") ).replace("\n","") assert res_s3select_nullif == res_s3select @pytest.mark.s3select def test_lowerupper_expressions(): csv_obj = create_random_csv_object(1,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select lower("AB12cd$$") from stdin ;') ).replace("\n","") assert res_s3select == "ab12cd$$" res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select upper("ab12CD$$") from stdin ;') ).replace("\n","") assert res_s3select == "AB12CD$$" @pytest.mark.s3select def test_in_expressions(): # purpose of test: engine is process correctly several projections containing aggregation-functions csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where int(_1) in(1);')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where int(_1) = 1;')).replace("\n","") assert res_s3select_in == res_s3select res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where int(_1) in(1,0);')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where int(_1) = 1 or int(_1) = 0;')).replace("\n","") assert res_s3select_in == res_s3select res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from stdin where int(_2) in(1,0,2);')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from stdin where int(_2) = 1 or int(_2) = 0 or int(_2) = 2;')).replace("\n","") assert res_s3select_in == res_s3select res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from stdin where int(_2)*2 in(int(_3)*2,int(_4)*3,int(_5)*5);')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_2) from stdin where int(_2)*2 = int(_3)*2 or int(_2)*2 = int(_4)*3 or int(_2)*2 = int(_5)*5;')).replace("\n","") assert res_s3select_in == res_s3select res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where character_length(_1) = 2 and substring(_1,2,1) in ("3");')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from stdin where _1 like "_3";')).replace("\n","") assert res_s3select_in == res_s3select @pytest.mark.s3select def test_like_expressions(): csv_obj = create_random_csv_object_string(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _1 like "%aeio%";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_1,11,4) = "aeio" ;')).replace("\n","") assert res_s3select_in == res_s3select res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _1 like "cbcd%";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_1,1,4) = "cbcd";')).replace("\n","") assert res_s3select_in == res_s3select res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _3 like "%y[y-z]";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_3,character_length(_3),1) between "y" and "z" and substring(_3,character_length(_3)-1,1) = "y";')).replace("\n","") assert res_s3select_in == res_s3select res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _2 like "%yz";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_2,character_length(_2),1) = "z" and substring(_2,character_length(_2)-1,1) = "y";')).replace("\n","") assert res_s3select_in == res_s3select res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _3 like "c%z";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_3,character_length(_3),1) = "z" and substring(_3,1,1) = "c";')).replace("\n","") assert res_s3select_in == res_s3select res_s3select_in = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from stdin where _2 like "%xy_";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from stdin where substring(_2,character_length(_2)-1,1) = "y" and substring(_2,character_length(_2)-2,1) = "x";')).replace("\n","") assert res_s3select_in == res_s3select @pytest.mark.s3select def test_complex_expressions(): # purpose of test: engine is process correctly several projections containing aggregation-functions csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)),max(int(_2)),min(int(_3))+1 from s3object;")).replace("\n","") min_1 = min ( create_list_of_int( 1 , csv_obj ) ) max_2 = max ( create_list_of_int( 2 , csv_obj ) ) min_3 = min ( create_list_of_int( 3 , csv_obj ) ) + 1 __res = "{},{},{}".format(min_1,max_2,min_3) # assert is according to radom-csv function s3select_assert_result( res_s3select, __res ) # purpose of test that all where conditions create the same group of values, thus same result res_s3select_substring = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select min(int(_2)),max(int(_2)) from s3object where substring(_2,1,1) = "1" and char_length(_2) = 3;')).replace("\n","") res_s3select_between_numbers = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select min(int(_2)),max(int(_2)) from s3object where int(_2)>=100 and int(_2)<200;')).replace("\n","") res_s3select_eq_modolu = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select min(int(_2)),max(int(_2)) from s3object where int(_2)/100 = 1 and character_length(_2) = 3;')).replace("\n","") s3select_assert_result( res_s3select_substring, res_s3select_between_numbers) s3select_assert_result( res_s3select_between_numbers, res_s3select_eq_modolu) @pytest.mark.s3select def test_alias(): # purpose: test is comparing result of exactly the same queries , one with alias the other without. # this test is setting alias on 3 projections, the third projection is using other projection alias, also the where clause is using aliases # the test validate that where-clause and projections are executing aliases correctly, bare in mind that each alias has its own cache, # and that cache need to be invalidate per new row. csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(_1) as a1, int(_2) as a2 , (a1+a2) as a3 from s3object where a3>100 and a3<300;") ).replace(",","") res_s3select_no_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(_1),int(_2),int(_1)+int(_2) from s3object where (int(_1)+int(_2))>100 and (int(_1)+int(_2))<300;") ).replace(",","") s3select_assert_result( res_s3select_alias, res_s3select_no_alias) @pytest.mark.s3select def test_alias_cyclic_refernce(): number_of_rows = 10000 # purpose of test is to validate the s3select-engine is able to detect a cyclic reference to alias. csv_obj = create_random_csv_object(number_of_rows,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(_1) as a1,int(_2) as a2, a1+a4 as a3, a5+a1 as a4, int(_3)+a3 as a5 from s3object;") ) find_res = res_s3select_alias.find("number of calls exceed maximum size, probably a cyclic reference to alias") assert int(find_res) >= 0 @pytest.mark.s3select def test_datetime(): # purpose of test is to validate date-time functionality is correct, # by creating same groups with different functions (nested-calls) ,which later produce the same result csv_obj = create_csv_object_for_datetime(10000,1) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where extract(year from to_timestamp(_1)) > 1950 and extract(year from to_timestamp(_1)) < 1960;') ) res_s3select_substring = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where int(substring(_1,1,4))>1950 and int(substring(_1,1,4))<1960;') ) s3select_assert_result( res_s3select_date_time, res_s3select_substring) res_s3select_date_time_to_string = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select cast(to_string(to_timestamp(_1), \'x\') as int) from s3object;') ) res_s3select_date_time_extract = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select extract(timezone_hour from to_timestamp(_1)) from s3object;') ) s3select_assert_result( res_s3select_date_time_to_string, res_s3select_date_time_extract ) res_s3select_date_time_to_timestamp = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select extract(month from to_timestamp(_1)) from s3object where extract(month from to_timestamp(_1)) = 5;') ) res_s3select_substring = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select cast(substring(_1, 5, 2) as int) from s3object where _1 like \'____05%\';') ) s3select_assert_result( res_s3select_date_time_to_timestamp, res_s3select_substring) @pytest.mark.s3select def test_true_false_datetime(): # purpose of test is to validate date-time functionality is correct, # by creating same groups with different functions (nested-calls) ,which later produce the same result csv_obj = create_csv_object_for_datetime(10000,1) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where (extract(year from to_timestamp(_1)) > 1950) = true and (extract(year from to_timestamp(_1)) < 1960) = true;') ) res_s3select_substring = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where int(substring(_1,1,4))>1950 and int(substring(_1,1,4))<1960;') ) s3select_assert_result( res_s3select_date_time, res_s3select_substring) res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where (date_diff(month,to_timestamp(_1),date_add(month,2,to_timestamp(_1)) ) = 2) = true;') ) res_s3select_count = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object;') ) s3select_assert_result( res_s3select_date_time, res_s3select_count) res_s3select_date_time = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where (date_diff(year,to_timestamp(_1),date_add(day, 366 ,to_timestamp(_1))) = 1) = true ;') ) s3select_assert_result( res_s3select_date_time, res_s3select_count) # validate that utcnow is integrate correctly with other date-time functions res_s3select_date_time_utcnow = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(0) from s3object where (date_diff(hour,utcnow(),date_add(day,1,utcnow())) = 24) = true ;') ) s3select_assert_result( res_s3select_date_time_utcnow, res_s3select_count) @pytest.mark.s3select def test_csv_parser(): # purpuse: test default csv values(, \n " \ ), return value may contain meta-char # NOTE: should note that default meta-char for s3select are also for python, thus for one example double \ is mandatory csv_obj = r',first,,,second,third="c31,c32,c33",forth="1,2,3,4",fifth=my_string=\"any_value\" \, my_other_string=\"aaaa\,bbb\" ,' + "\n" csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) # return value contain comma{,} res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _6 from s3object;") ).replace("\n","") s3select_assert_result( res_s3select_alias, 'third=c31,c32,c33') # return value contain comma{,} res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _7 from s3object;") ).replace("\n","") s3select_assert_result( res_s3select_alias, 'forth=1,2,3,4') # return value contain comma{,}{"}, escape-rule{\} by-pass quote{"} , the escape{\} is removed. res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _8 from s3object;") ).replace("\n","") s3select_assert_result( res_s3select_alias, 'fifth=my_string="any_value" , my_other_string="aaaa,bbb" ') # return NULL as first token res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1 from s3object;") ).replace("\n","") s3select_assert_result( res_s3select_alias, 'null') # return NULL in the middle of line res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _3 from s3object;") ).replace("\n","") s3select_assert_result( res_s3select_alias, 'null') # return NULL in the middle of line (successive) res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _4 from s3object;") ).replace("\n","") s3select_assert_result( res_s3select_alias, 'null') # return NULL at the end line res_s3select_alias = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _9 from s3object;") ).replace("\n","") s3select_assert_result( res_s3select_alias, 'null') @pytest.mark.s3select def test_csv_definition(): number_of_rows = 10000 #create object with pipe-sign as field separator and tab as row delimiter. csv_obj = create_random_csv_object(number_of_rows,10,"|","\t") csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) # purpose of tests is to parse correctly input with different csv defintions res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select count(0) from s3object;","|","\t") ).replace(",","") s3select_assert_result( number_of_rows, int(res)) # assert is according to radom-csv function # purpose of test is validate that tokens are processed correctly res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select min(int(_1)),max(int(_2)),min(int(_3))+1 from s3object;","|","\t") ).replace("\n","") min_1 = min ( create_list_of_int( 1 , csv_obj , "|","\t") ) max_2 = max ( create_list_of_int( 2 , csv_obj , "|","\t") ) min_3 = min ( create_list_of_int( 3 , csv_obj , "|","\t") ) + 1 __res = "{},{},{}".format(min_1,max_2,min_3) s3select_assert_result( res_s3select, __res ) @pytest.mark.s3select def test_schema_definition(): number_of_rows = 10000 # purpose of test is to validate functionality using csv header info csv_obj = create_random_csv_object(number_of_rows,10,csv_schema="c1,c2,c3,c4,c5,c6,c7,c8,c9,c10") csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) # ignoring the schema on first line and retrieve using generic column number res_ignore = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1,_3 from s3object;",csv_header_info="IGNORE") ).replace("\n","") # using the scheme on first line, query is using the attach schema res_use = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select c1,c3 from s3object;",csv_header_info="USE") ).replace("\n","") # result of both queries should be the same s3select_assert_result( res_ignore, res_use) # using column-name not exist in schema res_multiple_defintion = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select c1,c10,int(c11) from s3object;",csv_header_info="USE") ).replace("\n","") assert ((res_multiple_defintion.find("alias {c11} or column not exist in schema")) >= 0) #find_processing_error = res_multiple_defintion.find("ProcessingTimeError") assert ((res_multiple_defintion.find("ProcessingTimeError")) >= 0) # alias-name is identical to column-name res_multiple_defintion = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select int(c1)+int(c2) as c4,c4 from s3object;",csv_header_info="USE") ).replace("\n","") assert ((res_multiple_defintion.find("multiple definition of column {c4} as schema-column and alias")) >= 0) @pytest.mark.s3select def test_when_then_else_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select case when cast(_1 as int)>100 and cast(_1 as int)<200 then "(100-200)" when cast(_1 as int)>200 and cast(_1 as int)<300 then "(200-300)" else "NONE" end from s3object;') ).replace("\n","") count1 = res_s3select.count("(100-200)") count2 = res_s3select.count("(200-300)") count3 = res_s3select.count("NONE") res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_1 as int)>100 and cast(_1 as int)<200 ;') ).replace("\n","") res1 = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_1 as int)>200 and cast(_1 as int)<300 ;') ).replace("\n","") res2 = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_1 as int)<=100 or cast(_1 as int)>=300 or cast(_1 as int)=200 ;') ).replace("\n","") s3select_assert_result( str(count1) , res) s3select_assert_result( str(count2) , res1) s3select_assert_result( str(count3) , res2) @pytest.mark.s3select def test_coalesce_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where char_length(_3)>2 and char_length(_4)>2 and cast(substring(_3,1,2) as int) = cast(substring(_4,1,2) as int);') ).replace("\n","") res_null = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_3 as int)>99 and cast(_4 as int)>99 and coalesce(nullif(cast(substring(_3,1,2) as int),cast(substring(_4,1,2) as int)),7) = 7;' ) ).replace("\n","") s3select_assert_result( res_s3select, res_null) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select coalesce(nullif(_5,_5),nullif(_1,_1),_2) from s3object;') ).replace("\n","") res_coalesce = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select coalesce(_2) from s3object;') ).replace("\n","") s3select_assert_result( res_s3select, res_coalesce) @pytest.mark.s3select def test_cast_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_3 as int)>999;') ).replace("\n","") res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where char_length(_3)>3;') ).replace("\n","") s3select_assert_result( res_s3select, res) res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(_3 as int)>99 and cast(_3 as int)<1000;') ).replace("\n","") res = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where char_length(_3)=3;') ).replace("\n","") s3select_assert_result( res_s3select, res) @pytest.mark.s3select def test_version(): return number_of_rows = 1 # purpose of test is to validate functionality using csv header info csv_obj = create_random_csv_object(number_of_rows,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_version = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select version() from s3object;") ).replace("\n","") s3select_assert_result( res_version, "41.a," ) @pytest.mark.s3select def test_trim_expressions(): csv_obj = create_random_csv_object_trim(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(_1) = "aeiou";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1 from 4 for 5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(both from _1) = "aeiou";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(trailing from _1) = " aeiou";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(leading from _1) = "aeiou ";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(trim(leading from _1)) = "aeiou";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) @pytest.mark.s3select def test_truefalse_trim_expressions(): csv_obj = create_random_csv_object_trim(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(_1) = "aeiou" = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1 from 4 for 5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(both from _1) = "aeiou" = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(trailing from _1) = " aeiou" = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(leading from _1) = "aeiou " = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) res_s3select_trim = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where trim(trim(leading from _1)) = "aeiou" = true;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,4,5) = "aeiou";')).replace("\n","") s3select_assert_result( res_s3select_trim, res_s3select ) @pytest.mark.s3select def test_escape_expressions(): csv_obj = create_random_csv_object_escape(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_escape = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _1 like "%_ar" escape "%";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,char_length(_1),1) = "r" and substring(_1,char_length(_1)-1,1) = "a" and substring(_1,char_length(_1)-2,1) = "_";')).replace("\n","") s3select_assert_result( res_s3select_escape, res_s3select ) res_s3select_escape = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where _1 like "%aeio$_" escape "$";')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where substring(_1,1,5) = "aeio_";')).replace("\n","") s3select_assert_result( res_s3select_escape, res_s3select ) @pytest.mark.s3select def test_case_value_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_case = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select case cast(_1 as int) when cast(_2 as int) then "case_1_1" else "case_2_2" end from s3object;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select case when cast(_1 as int) = cast(_2 as int) then "case_1_1" else "case_2_2" end from s3object;')).replace("\n","") s3select_assert_result( res_s3select_case, res_s3select ) @pytest.mark.s3select def test_bool_cast_expressions(): csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_cast = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select count(*) from s3object where cast(int(_1) as bool) = true ;')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name, 'select count(*) from s3object where cast(_1 as int) != 0 ;')).replace("\n","") s3select_assert_result( res_s3select_cast, res_s3select ) @pytest.mark.s3select def test_progress_expressions(): csv_obj = create_random_csv_object(1000000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) obj_size = len(csv_obj.encode('utf-8')) result_status = {} result_size = 0 res_s3select_response,result_status = run_s3select(bucket_name,csv_obj_name,"select sum(int(_1)) from s3object;",progress = True) for rec in res_s3select_response: result_size += len(rec['Payload']) records_payload_size = result_size # To do: Validate bytes processed after supporting compressed data s3select_assert_result(obj_size, result_status['Progress']['Details']['BytesScanned']) s3select_assert_result(records_payload_size, result_status['Progress']['Details']['BytesReturned']) # stats response payload validation s3select_assert_result(obj_size, result_status['Stats']['Details']['BytesScanned']) s3select_assert_result(records_payload_size, result_status['Stats']['Details']['BytesReturned']) # end response s3select_assert_result({}, result_status['End']) @pytest.mark.s3select def test_output_serial_expressions(): return # TODO fix test csv_obj = create_random_csv_object(10000,10) csv_obj_name = get_random_string() bucket_name = get_new_bucket_name() upload_object(bucket_name,csv_obj_name,csv_obj) res_s3select_1 = remove_xml_tags_from_result( run_s3select_output(bucket_name,csv_obj_name,"select _1, _2 from s3object where nullif(_1,_2) is null ;", "ALWAYS") ).replace("\n",",").replace(",","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,"select _1, _2 from s3object where _1 = _2 ;") ).replace("\n",",") res_s3select_list = res_s3select.split(',') res_s3select_list.pop() res_s3select_final = (''.join('"' + item + '"' for item in res_s3select_list)) s3select_assert_result( '""'+res_s3select_1+'""', res_s3select_final) res_s3select_in = remove_xml_tags_from_result( run_s3select_output(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(int(_2)));', "ASNEEDED", '$', '#')).replace("\n","#") ## TODO why \n appears in output? res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = int(_2);')).replace("\n","#") res_s3select_list = res_s3select.split('#') res_s3select_list.pop() res_s3select_final = (''.join(item + '#' for item in res_s3select_list)) s3select_assert_result(res_s3select_in , res_s3select_final ) res_s3select_quot = remove_xml_tags_from_result( run_s3select_output(bucket_name,csv_obj_name,'select int(_1) from s3object where (int(_1) in(int(_2)));', "ALWAYS", '$', '#')).replace("\n","") res_s3select = remove_xml_tags_from_result( run_s3select(bucket_name,csv_obj_name,'select int(_1) from s3object where int(_1) = int(_2);')).replace("\n","#") res_s3select_list = res_s3select.split('#') res_s3select_list.pop() res_s3select_final = (''.join('"' + item + '"' + '#' for item in res_s3select_list)) s3select_assert_result( '""#'+res_s3select_quot+'""#', res_s3select_final )