s3-tests/generate_objects.py
Kyle Marsh e5f9783053 dho-qa: disentangle file generation from uploading
Static load test script now provides separate functions for generating a
list of random-file pointers and uploading those files to an S3 store.  When
run as a script it still does both, but you can call each function
individually from a different script after loading the module.
2011-07-08 14:41:41 -07:00

132 lines
4 KiB
Python
Executable file

#! /usr/bin/python
from boto.s3.connection import OrdinaryCallingFormat
from boto.s3.connection import S3Connection
from boto.s3.key import Key
from optparse import OptionParser
from realistic import RandomContentFile
import realistic
import traceback
import random
import common
import yaml
import boto
import sys
def parse_opts():
parser = OptionParser();
parser.add_option('-O' , '--outfile', help='write output to FILE. Defaults to STDOUT', metavar='FILE')
parser.add_option('-b' , '--bucket', dest='bucket', help='push objects to BUCKET', metavar='BUCKET')
parser.add_option('--seed', dest='seed', help='optional seed for the random number generator')
return parser.parse_args()
def connect_s3(host, access_key, secret_key):
conn = S3Connection(
calling_format = OrdinaryCallingFormat(),
is_secure = False,
host = host,
aws_access_key_id = access_key,
aws_secret_access_key = secret_key)
return conn
def get_random_files(quantity, mean, stddev, seed):
"""Create file-like objects with pseudorandom contents.
IN:
number of files to create
mean file size in bytes
standard deviation from mean file size
seed for PRNG
OUT:
list of file handles
"""
file_generator = realistic.files(mean, stddev, seed)
return [file_generator.next() for _ in xrange(quantity)]
def upload_objects(bucket, files, seed):
"""Upload a bunch of files to an S3 bucket
IN:
boto S3 bucket object
list of file handles to upload
seed for PRNG
OUT:
list of boto S3 key objects
"""
keys = []
name_generator = realistic.names(15, 4,seed=seed)
for fp in files:
print >> sys.stderr, 'sending file with size %dB' % fp.size
key = Key(bucket)
key.key = name_generator.next()
key.set_contents_from_file(fp)
keys.append(key)
return keys
def main():
'''To run the static content load test, make sure you've bootstrapped your
test environment and set up your config.yml file, then run the following:
S3TEST_CONF=config.yml virtualenv/bin/python generate_objects.py -O urls.txt --seed 1234
This creates a bucket with your S3 credentials (from config.yml) and
fills it with garbage objects as described in generate_objects.conf.
It writes a list of URLS to those objects to ./urls.txt.
Once you have objcts in your bucket, run the siege benchmarking program:
siege -rc ./siege.conf -r 5
This tells siege to read the ./siege.conf config file which tells it to
use the urls in ./urls.txt and log to ./siege.log. It hits each url in
urls.txt 5 times (-r flag).
Results are printed to the terminal and written in CSV format to
./siege.log
'''
(options, args) = parse_opts();
#SETUP
random.seed(options.seed if options.seed else None)
conn = common.s3.main
if options.outfile:
OUTFILE = open(options.outfile, 'w')
elif common.config.file_generation.url_file:
OUTFILE = open(common.config.file_generation.url_file, 'w')
else:
OUTFILE = sys.stdout
if options.bucket:
bucket = conn.create_bucket(options.bucket)
else:
bucket = common.get_new_bucket()
keys = []
print >> OUTFILE, 'bucket: %s' % bucket.name
print >> sys.stderr, 'setup complete, generating files'
for profile in common.config.file_generation.groups:
seed = random.random()
files = get_random_files(profile[0], profile[1], profile[2], seed)
keys += upload_objects(bucket, files, seed)
print >> sys.stderr, 'finished sending files. generating urls'
for key in keys:
print >> OUTFILE, key.generate_url(30758400) #valid for 1 year
print >> sys.stderr, 'done'
if __name__ == '__main__':
common.setup()
try:
main()
except Exception as e:
traceback.print_exc()
common.teardown()