package pilorama import ( "cmp" "slices" ) // nodeInfo couples parent and metadata. type nodeInfo struct { Parent Node Meta Meta } type move struct { Move HasOld bool Old nodeInfo } // memoryTree represents memoryTree being replicated. type memoryTree struct { operations []move tree } // newMemoryTree constructs new empty tree. func newMemoryTree() *memoryTree { return &memoryTree{ tree: tree{ infoMap: make(map[Node]nodeInfo), }, } } // undo un-does op and changes s in-place. func (s *memoryTree) undo(op *move) { if op.HasOld { s.tree.infoMap[op.Child] = op.Old } else { delete(s.tree.infoMap, op.Child) } } // Apply puts op in log at a proper position, re-applies all subsequent operations // from log and changes s in-place. func (s *memoryTree) Apply(op *Move) error { var index int for index = len(s.operations); index > 0; index-- { if s.operations[index-1].Time <= op.Time { break } } if index == len(s.operations) { s.operations = append(s.operations, s.do(op)) return nil } s.operations = append(s.operations[:index+1], s.operations[index:]...) for i := len(s.operations) - 1; i > index; i-- { s.undo(&s.operations[i]) } s.operations[index] = s.do(op) for i := index + 1; i < len(s.operations); i++ { s.operations[i] = s.do(&s.operations[i].Move) } return nil } // do performs a single move operation on a tree. func (s *memoryTree) do(op *Move) move { m := op.Meta if m.Items == nil { m.Items = []KeyValue{} } lm := move{ Move: Move{ Parent: op.Parent, Meta: m, Child: op.Child, }, } shouldPut := !s.tree.isAncestor(op.Child, op.Parent) p, ok := s.tree.infoMap[op.Child] if ok { lm.HasOld = true lm.Old = p } if !shouldPut { return lm } if !ok { p.Meta.Time = op.Time } p.Meta = m p.Parent = op.Parent s.tree.infoMap[op.Child] = p return lm } func (s *memoryTree) timestamp(pos, size int) Timestamp { if len(s.operations) == 0 { return nextTimestamp(0, uint64(pos), uint64(size)) } return nextTimestamp(s.operations[len(s.operations)-1].Time, uint64(pos), uint64(size)) } func (s *memoryTree) findSpareID() Node { id := uint64(1) for _, ok := s.infoMap[id]; ok; _, ok = s.infoMap[id] { id++ } return id } // tree is a mapping from the child nodes to their parent and metadata. type tree struct { syncHeight uint64 infoMap map[Node]nodeInfo } func (t tree) getChildren(parent Node) []Node { var children []Node for c, info := range t.infoMap { if info.Parent == parent { children = append(children, c) } } slices.SortFunc(children, func(ci, cj uint64) int { a := t.infoMap[ci] b := t.infoMap[cj] return cmp.Compare(a.Meta.Time, b.Meta.Time) }) return children } // isAncestor returns true if parent is an ancestor of a child. // For convenience, also return true if parent == child. func (t tree) isAncestor(parent, child Node) bool { for c := child; c != parent; { p, ok := t.infoMap[c] if !ok { return false } c = p.Parent } return true } // getPathPrefix descends by path constructed from values of attr until // there is no node corresponding to a path element. Returns the amount of nodes // processed and ID of the last node. func (t tree) getPathPrefix(attr string, path []string) (int, Node) { var curNode Node loop: for i := range path { children := t.getChildren(curNode) for j := range children { meta := t.infoMap[children[j]].Meta f := meta.GetAttr(attr) if len(meta.Items) == 1 && string(f) == path[i] { curNode = children[j] continue loop } } return i, curNode } return len(path), curNode } // getByPath returns list of nodes which have the specified path from root // descending by values of attr from meta. // If latest is true, only the latest node is returned. func (t tree) getByPath(attr string, path []string, latest bool) []Node { if len(path) == 0 { return nil } i, curNode := t.getPathPrefix(attr, path[:len(path)-1]) if i < len(path)-1 { return nil } var nodes []Node var lastTs Timestamp children := t.getChildren(curNode) for i := range children { info := t.infoMap[children[i]] fileName := string(info.Meta.GetAttr(attr)) if fileName == path[len(path)-1] { if latest { if info.Meta.Time >= lastTs { nodes = append(nodes[:0], children[i]) } } else { nodes = append(nodes, children[i]) } } } return nodes }