forked from TrueCloudLab/neoneo-go
318 lines
7 KiB
Go
318 lines
7 KiB
Go
|
/*
|
||
|
This file has been modified under the MIT license.
|
||
|
Original: https://github.com/vsergeev/btckeygenie
|
||
|
*/
|
||
|
|
||
|
package elliptic
|
||
|
|
||
|
import (
|
||
|
nativeelliptic "crypto/elliptic"
|
||
|
"encoding/hex"
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"math/big"
|
||
|
)
|
||
|
|
||
|
// Point represents a point on an EllipticCurve.
|
||
|
type Point struct {
|
||
|
X *big.Int
|
||
|
Y *big.Int
|
||
|
}
|
||
|
|
||
|
/* y**2 = x**3 + a*x + b % p */
|
||
|
// Curve represents the parameters of a short Weierstrass equation elliptic curve.
|
||
|
type Curve struct {
|
||
|
A *big.Int
|
||
|
B *big.Int
|
||
|
P *big.Int
|
||
|
G Point
|
||
|
N *big.Int
|
||
|
H *big.Int
|
||
|
Name string
|
||
|
}
|
||
|
|
||
|
// dump dumps the bytes of a point for debugging.
|
||
|
func (p *Point) dump() {
|
||
|
fmt.Print(p.format())
|
||
|
}
|
||
|
|
||
|
// format formats the bytes of a point for debugging.
|
||
|
func (p *Point) format() string {
|
||
|
if p.X == nil && p.Y == nil {
|
||
|
return "(inf,inf)"
|
||
|
}
|
||
|
return fmt.Sprintf("(%s,%s)", hex.EncodeToString(p.X.Bytes()), hex.EncodeToString(p.Y.Bytes()))
|
||
|
}
|
||
|
|
||
|
func (ec Curve) Params() *nativeelliptic.CurveParams {
|
||
|
return &nativeelliptic.CurveParams{
|
||
|
P: ec.P,
|
||
|
N: ec.N,
|
||
|
B: ec.B,
|
||
|
Gx: ec.G.X,
|
||
|
Gy: ec.G.Y,
|
||
|
BitSize: 256,
|
||
|
Name: ec.Name,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*** Modular Arithmetic ***/
|
||
|
|
||
|
/* NOTE: Returning a new z each time below is very space inefficient, but the
|
||
|
* alternate accumulator based design makes the point arithmetic functions look
|
||
|
* absolutely hideous. I may still change this in the future. */
|
||
|
|
||
|
// addMod computes z = (x + y) % p.
|
||
|
func addMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
|
||
|
z = new(big.Int).Add(x, y)
|
||
|
z.Mod(z, p)
|
||
|
return z
|
||
|
}
|
||
|
|
||
|
// subMod computes z = (x - y) % p.
|
||
|
func subMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
|
||
|
z = new(big.Int).Sub(x, y)
|
||
|
z.Mod(z, p)
|
||
|
return z
|
||
|
}
|
||
|
|
||
|
// mulMod computes z = (x * y) % p.
|
||
|
func mulMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
|
||
|
n := new(big.Int).Set(x)
|
||
|
z = big.NewInt(0)
|
||
|
|
||
|
for i := 0; i < y.BitLen(); i++ {
|
||
|
if y.Bit(i) == 1 {
|
||
|
z = addMod(z, n, p)
|
||
|
}
|
||
|
n = addMod(n, n, p)
|
||
|
}
|
||
|
|
||
|
return z
|
||
|
}
|
||
|
|
||
|
// invMod computes z = (1/x) % p.
|
||
|
func invMod(x *big.Int, p *big.Int) (z *big.Int) {
|
||
|
z = new(big.Int).ModInverse(x, p)
|
||
|
return z
|
||
|
}
|
||
|
|
||
|
// expMod computes z = (x^e) % p.
|
||
|
func expMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
|
||
|
z = new(big.Int).Exp(x, y, p)
|
||
|
return z
|
||
|
}
|
||
|
|
||
|
// sqrtMod computes z = sqrt(x) % p.
|
||
|
func sqrtMod(x *big.Int, p *big.Int) (z *big.Int) {
|
||
|
/* assert that p % 4 == 3 */
|
||
|
if new(big.Int).Mod(p, big.NewInt(4)).Cmp(big.NewInt(3)) != 0 {
|
||
|
panic("p is not equal to 3 mod 4!")
|
||
|
}
|
||
|
|
||
|
/* z = sqrt(x) % p = x^((p+1)/4) % p */
|
||
|
|
||
|
/* e = (p+1)/4 */
|
||
|
e := new(big.Int).Add(p, big.NewInt(1))
|
||
|
e = e.Rsh(e, 2)
|
||
|
|
||
|
z = expMod(x, e, p)
|
||
|
return z
|
||
|
}
|
||
|
|
||
|
/*** Point Arithmetic on Curve ***/
|
||
|
|
||
|
// IsInfinity checks if point P is infinity on EllipticCurve ec.
|
||
|
func (ec *Curve) IsInfinity(P Point) bool {
|
||
|
/* We use (nil,nil) to represent O, the point at infinity. */
|
||
|
|
||
|
if P.X == nil && P.Y == nil {
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// IsOnCurve checks if point P is on EllipticCurve ec.
|
||
|
func (ec Curve) IsOnCurve(P1, P2 *big.Int) bool {
|
||
|
P := Point{P1, P2}
|
||
|
if ec.IsInfinity(P) {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
/* y**2 = x**3 + a*x + b % p */
|
||
|
lhs := mulMod(P.Y, P.Y, ec.P)
|
||
|
rhs := addMod(
|
||
|
addMod(
|
||
|
expMod(P.X, big.NewInt(3), ec.P),
|
||
|
mulMod(ec.A, P.X, ec.P), ec.P),
|
||
|
ec.B, ec.P)
|
||
|
|
||
|
if lhs.Cmp(rhs) == 0 {
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Add computes R = P + Q on EllipticCurve ec.
|
||
|
func (ec Curve) Add(P1, P2, Q1, Q2 *big.Int) (R1 *big.Int, R2 *big.Int) {
|
||
|
/* See rules 1-5 on SEC1 pg.7 http://www.secg.org/collateral/sec1_final.pdf */
|
||
|
P := Point{P1, P2}
|
||
|
Q := Point{Q1, Q2}
|
||
|
R := Point{}
|
||
|
if ec.IsInfinity(P) && ec.IsInfinity(Q) {
|
||
|
/* Rule #1 Identity */
|
||
|
/* R = O + O = O */
|
||
|
|
||
|
R.X = nil
|
||
|
R.Y = nil
|
||
|
|
||
|
} else if ec.IsInfinity(P) {
|
||
|
/* Rule #2 Identity */
|
||
|
/* R = O + Q = Q */
|
||
|
|
||
|
R.X = new(big.Int).Set(Q.X)
|
||
|
R.Y = new(big.Int).Set(Q.Y)
|
||
|
|
||
|
} else if ec.IsInfinity(Q) {
|
||
|
/* Rule #2 Identity */
|
||
|
/* R = P + O = P */
|
||
|
|
||
|
R.X = new(big.Int).Set(P.X)
|
||
|
R.Y = new(big.Int).Set(P.Y)
|
||
|
|
||
|
} else if P.X.Cmp(Q.X) == 0 && addMod(P.Y, Q.Y, ec.P).Sign() == 0 {
|
||
|
/* Rule #3 Identity */
|
||
|
/* R = (x,y) + (x,-y) = O */
|
||
|
|
||
|
R.X = nil
|
||
|
R.Y = nil
|
||
|
|
||
|
} else if P.X.Cmp(Q.X) == 0 && P.Y.Cmp(Q.Y) == 0 && P.Y.Sign() != 0 {
|
||
|
/* Rule #5 Point doubling */
|
||
|
/* R = P + P */
|
||
|
|
||
|
/* Lambda = (3*P.X*P.X + a) / (2*P.Y) */
|
||
|
num := addMod(
|
||
|
mulMod(big.NewInt(3),
|
||
|
mulMod(P.X, P.X, ec.P), ec.P),
|
||
|
ec.A, ec.P)
|
||
|
den := invMod(mulMod(big.NewInt(2), P.Y, ec.P), ec.P)
|
||
|
lambda := mulMod(num, den, ec.P)
|
||
|
|
||
|
/* R.X = lambda*lambda - 2*P.X */
|
||
|
R.X = subMod(
|
||
|
mulMod(lambda, lambda, ec.P),
|
||
|
mulMod(big.NewInt(2), P.X, ec.P),
|
||
|
ec.P)
|
||
|
/* R.Y = lambda*(P.X - R.X) - P.Y */
|
||
|
R.Y = subMod(
|
||
|
mulMod(lambda, subMod(P.X, R.X, ec.P), ec.P),
|
||
|
P.Y, ec.P)
|
||
|
|
||
|
} else if P.X.Cmp(Q.X) != 0 {
|
||
|
/* Rule #4 Point addition */
|
||
|
/* R = P + Q */
|
||
|
|
||
|
/* Lambda = (Q.Y - P.Y) / (Q.X - P.X) */
|
||
|
num := subMod(Q.Y, P.Y, ec.P)
|
||
|
den := invMod(subMod(Q.X, P.X, ec.P), ec.P)
|
||
|
lambda := mulMod(num, den, ec.P)
|
||
|
|
||
|
/* R.X = lambda*lambda - P.X - Q.X */
|
||
|
R.X = subMod(
|
||
|
subMod(
|
||
|
mulMod(lambda, lambda, ec.P),
|
||
|
P.X, ec.P),
|
||
|
Q.X, ec.P)
|
||
|
|
||
|
/* R.Y = lambda*(P.X - R.X) - P.Y */
|
||
|
R.Y = subMod(
|
||
|
mulMod(lambda,
|
||
|
subMod(P.X, R.X, ec.P), ec.P),
|
||
|
P.Y, ec.P)
|
||
|
} else {
|
||
|
panic(fmt.Sprintf("Unsupported point addition: %v + %v", P.format(), Q.format()))
|
||
|
}
|
||
|
|
||
|
return R.X, R.Y
|
||
|
}
|
||
|
|
||
|
// ScalarMult computes Q = k * P on EllipticCurve ec.
|
||
|
func (ec Curve) ScalarMult(P1, P2 *big.Int, l []byte) (Q1, Q2 *big.Int) {
|
||
|
/* Note: this function is not constant time, due to the branching nature of
|
||
|
* the underlying point Add() function. */
|
||
|
|
||
|
/* Montgomery Ladder Point Multiplication
|
||
|
*
|
||
|
* Implementation based on pseudocode here:
|
||
|
* See https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder */
|
||
|
|
||
|
P := Point{P1, P2}
|
||
|
k := big.Int{}
|
||
|
k.SetBytes(l)
|
||
|
|
||
|
var R0 Point
|
||
|
var R1 Point
|
||
|
|
||
|
R0.X = nil
|
||
|
R0.Y = nil
|
||
|
R1.X = new(big.Int).Set(P.X)
|
||
|
R1.Y = new(big.Int).Set(P.Y)
|
||
|
|
||
|
for i := ec.N.BitLen() - 1; i >= 0; i-- {
|
||
|
if k.Bit(i) == 0 {
|
||
|
R1.X, R1.Y = ec.Add(R0.X, R0.Y, R1.X, R1.Y)
|
||
|
R0.X, R0.Y = ec.Add(R0.X, R0.Y, R0.X, R0.Y)
|
||
|
} else {
|
||
|
R0.X, R0.Y = ec.Add(R0.X, R0.Y, R1.X, R1.Y)
|
||
|
R1.X, R1.Y = ec.Add(R1.X, R1.Y, R1.X, R1.Y)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return R0.X, R0.Y
|
||
|
}
|
||
|
|
||
|
// ScalarBaseMult computes Q = k * G on EllipticCurve ec.
|
||
|
func (ec Curve) ScalarBaseMult(k []byte) (Q1, Q2 *big.Int) {
|
||
|
|
||
|
return ec.ScalarMult(ec.G.X, ec.G.Y, k)
|
||
|
}
|
||
|
|
||
|
// Decompress decompresses coordinate x and ylsb (y's least significant bit) into a Point P on EllipticCurve ec.
|
||
|
func (ec *Curve) Decompress(x *big.Int, ylsb uint) (P Point, err error) {
|
||
|
/* y**2 = x**3 + a*x + b % p */
|
||
|
rhs := addMod(
|
||
|
addMod(
|
||
|
expMod(x, big.NewInt(3), ec.P),
|
||
|
mulMod(ec.A, x, ec.P),
|
||
|
ec.P),
|
||
|
ec.B, ec.P)
|
||
|
|
||
|
/* y = sqrt(rhs) % p */
|
||
|
y := sqrtMod(rhs, ec.P)
|
||
|
|
||
|
/* Use -y if opposite lsb is required */
|
||
|
if y.Bit(0) != (ylsb & 0x1) {
|
||
|
y = subMod(big.NewInt(0), y, ec.P)
|
||
|
}
|
||
|
|
||
|
P.X = x
|
||
|
P.Y = y
|
||
|
|
||
|
if !ec.IsOnCurve(P.X, P.Y) {
|
||
|
return P, errors.New("Compressed (x, ylsb) not on curve.")
|
||
|
}
|
||
|
|
||
|
return P, nil
|
||
|
}
|
||
|
|
||
|
func (ec Curve) Double(x1, y1 *big.Int) (x, y *big.Int) {
|
||
|
x = &big.Int{}
|
||
|
x.SetBytes([]byte{0x00})
|
||
|
y = &big.Int{}
|
||
|
y.SetBytes([]byte{0x00})
|
||
|
return x, y
|
||
|
}
|