package compiler import ( "go/ast" "go/token" "go/types" ) // A funcScope represents the scope within the function context. // It holds al the local variables along with the initialized struct positions. type funcScope struct { // Identifier of the function. name string // Selector of the function if there is any. Only functions imported // from other packages should have a selector. selector *ast.Ident // The declaration of the function in the AST. Nil if this scope is not a function. decl *ast.FuncDecl // Package where the function is defined. pkg *types.Package // Program label of the scope label uint16 // Range of opcodes corresponding to the function. rng DebugRange // Variables together with it's type in neo-vm. variables []string // deferStack is a stack containing encountered `defer` statements. deferStack []deferInfo // Local variables vars varScope // voidCalls are basically functions that return their value // into nothing. The stack has their return value but there // is nothing that consumes it. We need to keep track of // these functions so we can cleanup (drop) the returned // value from the stack. We also need to add every voidCall // return value to the stack size. voidCalls map[*ast.CallExpr]bool // Local variable counter. i int } type deferInfo struct { finallyLabel uint16 expr *ast.CallExpr } func (c *codegen) newFuncScope(decl *ast.FuncDecl, label uint16) *funcScope { var name string if decl.Name != nil { name = decl.Name.Name } return &funcScope{ name: name, decl: decl, label: label, pkg: c.currPkg, vars: newVarScope(), voidCalls: map[*ast.CallExpr]bool{}, variables: []string{}, i: -1, } } func (c *codegen) getFuncNameFromDecl(pkgPath string, decl *ast.FuncDecl) string { name := decl.Name.Name if decl.Recv != nil { name = decl.Recv.List[0].Type.(*ast.Ident).Name + "." + name } return c.getIdentName(pkgPath, name) } // analyzeVoidCalls checks for functions that are not assigned // and therefore we need to cleanup the return value from the stack. func (c *funcScope) analyzeVoidCalls(node ast.Node) bool { switch n := node.(type) { case *ast.AssignStmt: for i := 0; i < len(n.Rhs); i++ { switch n.Rhs[i].(type) { case *ast.CallExpr: return false } } case *ast.ReturnStmt: if len(n.Results) > 0 { switch n.Results[0].(type) { case *ast.CallExpr: return false } } case *ast.BinaryExpr: return false case *ast.IfStmt: // we can't just return `false`, because we still need to process body ce, ok := n.Cond.(*ast.CallExpr) if ok { c.voidCalls[ce] = false } case *ast.CaseClause: for _, e := range n.List { ce, ok := e.(*ast.CallExpr) if ok { c.voidCalls[ce] = false } } case *ast.CallExpr: _, ok := c.voidCalls[n] if !ok { c.voidCalls[n] = true } return false } return true } func (c *funcScope) countLocals() int { size := 0 ast.Inspect(c.decl, func(n ast.Node) bool { switch n := n.(type) { case *ast.FuncType: num := n.Results.NumFields() if num != 0 && len(n.Results.List[0].Names) != 0 { size += num } case *ast.AssignStmt: if n.Tok == token.DEFINE { size += len(n.Lhs) } case *ast.ReturnStmt, *ast.IfStmt: size++ // This handles the inline GenDecl like "var x = 2" case *ast.ValueSpec: size += len(n.Names) case *ast.RangeStmt: if n.Tok == token.DEFINE { if n.Key != nil { size++ } if n.Value != nil { size++ } } } return true }) return size } func (c *funcScope) countArgs() int { n := c.decl.Type.Params.NumFields() if c.decl.Recv != nil { n += c.decl.Recv.NumFields() } return n } func (c *funcScope) stackSize() int64 { size := c.countLocals() numArgs := c.countArgs() return int64(size + numArgs) } // newVariable creates a new local variable or argument in the scope of the function. func (c *funcScope) newVariable(t varType, name string) int { return c.vars.newVariable(t, name) } // newLocal creates a new local variable into the scope of the function. func (c *funcScope) newLocal(name string) int { return c.newVariable(varLocal, name) }