package crypto // Original work completed by @vsergeev: https://github.com/vsergeev/btckeygenie // Expanded and tweaked upon here under MIT license. import ( "encoding/hex" "errors" "fmt" "math/big" ) type ( // EllipticCurve represents the parameters of a short Weierstrass equation elliptic // curve. EllipticCurve struct { A *big.Int B *big.Int P *big.Int G EllipticCurvePoint N *big.Int H *big.Int } // EllipticCurveEllipticCurvePoint represents a point on the EllipticCurve. EllipticCurvePoint struct { X *big.Int Y *big.Int } ) // NewEllipticCurve returns a ready to use EllipticCurve with preconfigured // fields for the NEO protocol. func NewEllipticCurve() EllipticCurve { c := EllipticCurve{} c.P, _ = new(big.Int).SetString( "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF", 16, ) c.A, _ = new(big.Int).SetString( "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC", 16, ) c.B, _ = new(big.Int).SetString( "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B", 16, ) c.G.X, _ = new(big.Int).SetString( "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296", 16, ) c.G.Y, _ = new(big.Int).SetString( "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5", 16, ) c.N, _ = new(big.Int).SetString( "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", 16, ) c.H, _ = new(big.Int).SetString("01", 16) return c } func (p *EllipticCurvePoint) format() string { if p.X == nil && p.Y == nil { return "(inf,inf)" } bx := hex.EncodeToString(p.X.Bytes()) by := hex.EncodeToString(p.Y.Bytes()) return fmt.Sprintf("(%s, %s)", bx, by) } // IsInfinity checks if point P is infinity on EllipticCurve ec. func (c *EllipticCurve) IsInfinity(P EllipticCurvePoint) bool { if P.X == nil && P.Y == nil { return true } return false } // IsOnCurve checks if point P is on EllipticCurve ec. func (c *EllipticCurve) IsOnCurve(P EllipticCurvePoint) bool { if c.IsInfinity(P) { return false } lhs := mulMod(P.Y, P.Y, c.P) rhs := addMod( addMod( expMod(P.X, big.NewInt(3), c.P), mulMod(c.A, P.X, c.P), c.P), c.B, c.P) if lhs.Cmp(rhs) == 0 { return true } return false } // Add computes R = P + Q on EllipticCurve ec. func (c *EllipticCurve) Add(P, Q EllipticCurvePoint) (R EllipticCurvePoint) { // See rules 1-5 on SEC1 pg.7 http://www.secg.org/collateral/sec1_final.pdf if c.IsInfinity(P) && c.IsInfinity(Q) { R.X = nil R.Y = nil } else if c.IsInfinity(P) { R.X = new(big.Int).Set(Q.X) R.Y = new(big.Int).Set(Q.Y) } else if c.IsInfinity(Q) { R.X = new(big.Int).Set(P.X) R.Y = new(big.Int).Set(P.Y) } else if P.X.Cmp(Q.X) == 0 && addMod(P.Y, Q.Y, c.P).Sign() == 0 { R.X = nil R.Y = nil } else if P.X.Cmp(Q.X) == 0 && P.Y.Cmp(Q.Y) == 0 && P.Y.Sign() != 0 { num := addMod( mulMod(big.NewInt(3), mulMod(P.X, P.X, c.P), c.P), c.A, c.P) den := invMod(mulMod(big.NewInt(2), P.Y, c.P), c.P) lambda := mulMod(num, den, c.P) R.X = subMod( mulMod(lambda, lambda, c.P), mulMod(big.NewInt(2), P.X, c.P), c.P) R.Y = subMod( mulMod(lambda, subMod(P.X, R.X, c.P), c.P), P.Y, c.P) } else if P.X.Cmp(Q.X) != 0 { num := subMod(Q.Y, P.Y, c.P) den := invMod(subMod(Q.X, P.X, c.P), c.P) lambda := mulMod(num, den, c.P) R.X = subMod( subMod( mulMod(lambda, lambda, c.P), P.X, c.P), Q.X, c.P) R.Y = subMod( mulMod(lambda, subMod(P.X, R.X, c.P), c.P), P.Y, c.P) } else { panic(fmt.Sprintf("Unsupported point addition: %v + %v", P.format(), Q.format())) } return R } // ScalarMult computes Q = k * P on EllipticCurve ec. func (c *EllipticCurve) ScalarMult(k *big.Int, P EllipticCurvePoint) (Q EllipticCurvePoint) { // Implementation based on pseudocode here: // https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder var R0 EllipticCurvePoint var R1 EllipticCurvePoint R0.X = nil R0.Y = nil R1.X = new(big.Int).Set(P.X) R1.Y = new(big.Int).Set(P.Y) for i := c.N.BitLen() - 1; i >= 0; i-- { if k.Bit(i) == 0 { R1 = c.Add(R0, R1) R0 = c.Add(R0, R0) } else { R0 = c.Add(R0, R1) R1 = c.Add(R1, R1) } } return R0 } // ScalarBaseMult computes Q = k * G on EllipticCurve ec. func (c *EllipticCurve) ScalarBaseMult(k *big.Int) (Q EllipticCurvePoint) { return c.ScalarMult(k, c.G) } // Decompress decompresses coordinate x and ylsb (y's least significant bit) into a EllipticCurvePoint P on EllipticCurve ec. func (c *EllipticCurve) Decompress(x *big.Int, ylsb uint) (P EllipticCurvePoint, err error) { /* y**2 = x**3 + a*x + b % p */ rhs := addMod( addMod( expMod(x, big.NewInt(3), c.P), mulMod(c.A, x, c.P), c.P), c.B, c.P) y := sqrtMod(rhs, c.P) if y.Bit(0) != (ylsb & 0x1) { y = subMod(big.NewInt(0), y, c.P) } P.X = x P.Y = y if !c.IsOnCurve(P) { return P, errors.New("compressed (x, ylsb) not on curve") } return P, nil }