package policy import ( "bytes" "crypto/x509" "crypto/x509/pkix" "fmt" "net" "net/url" "reflect" "strings" "go.step.sm/crypto/x509util" "golang.org/x/crypto/ssh" "golang.org/x/net/idna" ) type NamePolicyReason int const ( // NotAuthorizedForThisName results when an instance of // NamePolicyEngine determines that there's a constraint which // doesn't permit a DNS or another type of SAN to be signed // (or otherwise used). NotAuthorizedForThisName NamePolicyReason = iota // CannotParseDomain is returned when an error occurs // when parsing the domain part of SAN or subject. CannotParseDomain // CannotParseRFC822Name is returned when an error // occurs when parsing an email address. CannotParseRFC822Name // CannotMatch is the type of error returned when // an error happens when matching SAN types. CannotMatchNameToConstraint ) type NamePolicyError struct { Reason NamePolicyReason Detail string } func (e NamePolicyError) Error() string { switch e.Reason { case NotAuthorizedForThisName: return "not authorized to sign for this name: " + e.Detail case CannotParseDomain: return "cannot parse domain: " + e.Detail case CannotParseRFC822Name: return "cannot parse rfc822Name: " + e.Detail case CannotMatchNameToConstraint: return "error matching name to constraint: " + e.Detail default: return "unknown error: " + e.Detail } } // NamePolicyEngine can be used to check that a CSR or Certificate meets all allowed and // denied names before a CA creates and/or signs the Certificate. // TODO(hs): the X509 RFC also defines name checks on directory name; support that? // TODO(hs): implement Stringer interface: describe the contents of the NamePolicyEngine? // TODO(hs): implement matching URI schemes, paths, etc; not just the domain part of URI domains type NamePolicyEngine struct { // verifySubjectCommonName is set when Subject Common Name must be verified verifySubjectCommonName bool // allowLiteralWildcardNames allows literal wildcard DNS domains allowLiteralWildcardNames bool // permitted and exluded constraints similar to x509 Name Constraints permittedDNSDomains []string excludedDNSDomains []string permittedIPRanges []*net.IPNet excludedIPRanges []*net.IPNet permittedEmailAddresses []string excludedEmailAddresses []string permittedURIDomains []string excludedURIDomains []string permittedPrincipals []string excludedPrincipals []string // some internal counts for housekeeping numberOfDNSDomainConstraints int numberOfIPRangeConstraints int numberOfEmailAddressConstraints int numberOfURIDomainConstraints int numberOfPrincipalConstraints int totalNumberOfPermittedConstraints int totalNumberOfExcludedConstraints int totalNumberOfConstraints int } // NewNamePolicyEngine creates a new NamePolicyEngine with NamePolicyOptions func New(opts ...NamePolicyOption) (*NamePolicyEngine, error) { e := &NamePolicyEngine{} for _, option := range opts { if err := option(e); err != nil { return nil, err } } e.permittedDNSDomains = removeDuplicates(e.permittedDNSDomains) e.permittedIPRanges = removeDuplicateIPRanges(e.permittedIPRanges) e.permittedEmailAddresses = removeDuplicates(e.permittedEmailAddresses) e.permittedURIDomains = removeDuplicates(e.permittedURIDomains) e.permittedPrincipals = removeDuplicates(e.permittedPrincipals) e.excludedDNSDomains = removeDuplicates(e.excludedDNSDomains) e.excludedIPRanges = removeDuplicateIPRanges(e.excludedIPRanges) e.excludedEmailAddresses = removeDuplicates(e.excludedEmailAddresses) e.excludedURIDomains = removeDuplicates(e.excludedURIDomains) e.excludedPrincipals = removeDuplicates(e.excludedPrincipals) e.numberOfDNSDomainConstraints = len(e.permittedDNSDomains) + len(e.excludedDNSDomains) e.numberOfIPRangeConstraints = len(e.permittedIPRanges) + len(e.excludedIPRanges) e.numberOfEmailAddressConstraints = len(e.permittedEmailAddresses) + len(e.excludedEmailAddresses) e.numberOfURIDomainConstraints = len(e.permittedURIDomains) + len(e.excludedURIDomains) e.numberOfPrincipalConstraints = len(e.permittedPrincipals) + len(e.excludedPrincipals) e.totalNumberOfPermittedConstraints = len(e.permittedDNSDomains) + len(e.permittedIPRanges) + len(e.permittedEmailAddresses) + len(e.permittedURIDomains) + len(e.permittedPrincipals) e.totalNumberOfExcludedConstraints = len(e.excludedDNSDomains) + len(e.excludedIPRanges) + len(e.excludedEmailAddresses) + len(e.excludedURIDomains) + len(e.excludedPrincipals) e.totalNumberOfConstraints = e.totalNumberOfPermittedConstraints + e.totalNumberOfExcludedConstraints return e, nil } func removeDuplicates(strSlice []string) []string { if len(strSlice) == 0 { return nil } keys := make(map[string]bool) result := []string{} for _, item := range strSlice { if _, value := keys[item]; !value && item != "" { // skip empty constraints keys[item] = true result = append(result, item) } } return result } func removeDuplicateIPRanges(ipRanges []*net.IPNet) []*net.IPNet { if len(ipRanges) == 0 { return nil } keys := make(map[string]bool) result := []*net.IPNet{} for _, item := range ipRanges { key := item.String() if _, value := keys[key]; !value { keys[key] = true result = append(result, item) } } return result } // AreCertificateNamesAllowed verifies that all SANs in a Certificate are allowed. func (e *NamePolicyEngine) AreCertificateNamesAllowed(cert *x509.Certificate) (bool, error) { dnsNames, ips, emails, uris := cert.DNSNames, cert.IPAddresses, cert.EmailAddresses, cert.URIs // when Subject Common Name must be verified in addition to the SANs, it is // added to the appropriate slice of names. if e.verifySubjectCommonName { appendSubjectCommonName(cert.Subject, &dnsNames, &ips, &emails, &uris) } if err := e.validateNames(dnsNames, ips, emails, uris, []string{}); err != nil { return false, err } return true, nil } // AreCSRNamesAllowed verifies that all names in the CSR are allowed. func (e *NamePolicyEngine) AreCSRNamesAllowed(csr *x509.CertificateRequest) (bool, error) { dnsNames, ips, emails, uris := csr.DNSNames, csr.IPAddresses, csr.EmailAddresses, csr.URIs // when Subject Common Name must be verified in addition to the SANs, it is // added to the appropriate slice of names. if e.verifySubjectCommonName { appendSubjectCommonName(csr.Subject, &dnsNames, &ips, &emails, &uris) } if err := e.validateNames(dnsNames, ips, emails, uris, []string{}); err != nil { return false, err } return true, nil } // AreSANSAllowed verifies that all names in the slice of SANs are allowed. // The SANs are first split into DNS names, IPs, email addresses and URIs. func (e *NamePolicyEngine) AreSANsAllowed(sans []string) (bool, error) { dnsNames, ips, emails, uris := x509util.SplitSANs(sans) if err := e.validateNames(dnsNames, ips, emails, uris, []string{}); err != nil { return false, err } return true, nil } // IsDNSAllowed verifies a single DNS domain is allowed. func (e *NamePolicyEngine) IsDNSAllowed(dns string) (bool, error) { if err := e.validateNames([]string{dns}, []net.IP{}, []string{}, []*url.URL{}, []string{}); err != nil { return false, err } return true, nil } // IsIPAllowed verifies a single IP domain is allowed. func (e *NamePolicyEngine) IsIPAllowed(ip net.IP) (bool, error) { if err := e.validateNames([]string{}, []net.IP{ip}, []string{}, []*url.URL{}, []string{}); err != nil { return false, err } return true, nil } // ArePrincipalsAllowed verifies that all principals in an SSH certificate are allowed. func (e *NamePolicyEngine) ArePrincipalsAllowed(cert *ssh.Certificate) (bool, error) { dnsNames, ips, emails, principals, err := splitSSHPrincipals(cert) if err != nil { return false, err } if err := e.validateNames(dnsNames, ips, emails, []*url.URL{}, principals); err != nil { return false, err } return true, nil } // appendSubjectCommonName appends the Subject Common Name to the appropriate slice of names. The logic is // similar as x509util.SplitSANs: if the subject can be parsed as an IP, it's added to the ips. If it can // be parsed as an URL, it is added to the URIs. If it contains an @, it is added to emails. When it's none // of these, it's added to the DNS names. func appendSubjectCommonName(subject pkix.Name, dnsNames *[]string, ips *[]net.IP, emails *[]string, uris *[]*url.URL) { commonName := subject.CommonName if commonName == "" { return } subjectDNSNames, subjectIPs, subjectEmails, subjectURIs := x509util.SplitSANs([]string{commonName}) *dnsNames = append(*dnsNames, subjectDNSNames...) *ips = append(*ips, subjectIPs...) *emails = append(*emails, subjectEmails...) *uris = append(*uris, subjectURIs...) } // splitPrincipals splits SSH certificate principals into DNS names, emails and usernames. func splitSSHPrincipals(cert *ssh.Certificate) (dnsNames []string, ips []net.IP, emails, principals []string, err error) { dnsNames = []string{} ips = []net.IP{} emails = []string{} principals = []string{} var uris []*url.URL switch cert.CertType { case ssh.HostCert: dnsNames, ips, emails, uris = x509util.SplitSANs(cert.ValidPrincipals) if len(uris) > 0 { err = fmt.Errorf("URL principals %v not expected in SSH host certificate ", uris) } case ssh.UserCert: // re-using SplitSANs results in anything that can't be parsed as an IP, URI or email // to be considered a username principal. This allows usernames like h.slatman to be present // in the SSH certificate. We're exluding IPs and URIs, because they can be confusing // when used in a SSH user certificate. principals, ips, emails, uris = x509util.SplitSANs(cert.ValidPrincipals) if len(uris) > 0 { err = fmt.Errorf("URL principals %v not expected in SSH user certificate ", uris) } default: err = fmt.Errorf("unexpected SSH certificate type %d", cert.CertType) } return } // validateNames verifies that all names are allowed. // Its logic follows that of (a large part of) the (c *Certificate) isValid() function // in https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go func (e *NamePolicyEngine) validateNames(dnsNames []string, ips []net.IP, emailAddresses []string, uris []*url.URL, principals []string) error { // nothing to compare against; return early if e.totalNumberOfConstraints == 0 { return nil } // TODO: implement check that requires at least a single name in all of the SANs + subject? // TODO: set limit on total of all names validated? In x509 there's a limit on the number of comparisons // that protects the CA from a DoS (i.e. many heavy comparisons). The x509 implementation takes // this number as a total of all checks and keeps a (pointer to a) counter of the number of checks // executed so far. // TODO: gather all errors, or return early? Currently we return early on the first wrong name; check might fail for multiple names. // Perhaps make that an option? for _, dns := range dnsNames { // if there are DNS names to check, no DNS constraints set, but there are other permitted constraints, // then return error, because DNS should be explicitly configured to be allowed in that case. In case there are // (other) excluded constraints, we'll allow a DNS (implicit allow; currently). if e.numberOfDNSDomainConstraints == 0 && e.totalNumberOfPermittedConstraints > 0 { return NamePolicyError{ Reason: NotAuthorizedForThisName, Detail: fmt.Sprintf("dns %q is not explicitly permitted by any constraint", dns), } } didCutWildcard := false if strings.HasPrefix(dns, "*.") { dns = dns[1:] didCutWildcard = true } parsedDNS, err := idna.Lookup.ToASCII(dns) if err != nil { return NamePolicyError{ Reason: CannotParseDomain, Detail: fmt.Sprintf("dns %q cannot be converted to ASCII", dns), } } if didCutWildcard { parsedDNS = "*" + parsedDNS } if _, ok := domainToReverseLabels(parsedDNS); !ok { return NamePolicyError{ Reason: CannotParseDomain, Detail: fmt.Sprintf("cannot parse dns %q", dns), } } if err := checkNameConstraints("dns", dns, parsedDNS, func(parsedName, constraint interface{}) (bool, error) { return e.matchDomainConstraint(parsedName.(string), constraint.(string)) }, e.permittedDNSDomains, e.excludedDNSDomains); err != nil { return err } } for _, ip := range ips { if e.numberOfIPRangeConstraints == 0 && e.totalNumberOfPermittedConstraints > 0 { return NamePolicyError{ Reason: NotAuthorizedForThisName, Detail: fmt.Sprintf("ip %q is not explicitly permitted by any constraint", ip.String()), } } if err := checkNameConstraints("ip", ip.String(), ip, func(parsedName, constraint interface{}) (bool, error) { return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet)) }, e.permittedIPRanges, e.excludedIPRanges); err != nil { return err } } for _, email := range emailAddresses { if e.numberOfEmailAddressConstraints == 0 && e.totalNumberOfPermittedConstraints > 0 { return NamePolicyError{ Reason: NotAuthorizedForThisName, Detail: fmt.Sprintf("email %q is not explicitly permitted by any constraint", email), } } mailbox, ok := parseRFC2821Mailbox(email) if !ok { return NamePolicyError{ Reason: CannotParseRFC822Name, Detail: fmt.Sprintf("invalid rfc822Name %q", mailbox), } } // According to RFC 5280, section 7.5, emails are considered to match if the local part is // an exact match and the host (domain) part matches the ASCII representation (case-insensitive): // https://datatracker.ietf.org/doc/html/rfc5280#section-7.5 domainASCII, err := idna.ToASCII(mailbox.domain) if err != nil { return NamePolicyError{ Reason: CannotParseDomain, Detail: fmt.Sprintf("cannot parse email domain %q", email), } } mailbox.domain = domainASCII if err := checkNameConstraints("email", email, mailbox, func(parsedName, constraint interface{}) (bool, error) { return e.matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string)) }, e.permittedEmailAddresses, e.excludedEmailAddresses); err != nil { return err } } // TODO(hs): fix internationalization for URIs (IRIs) for _, uri := range uris { if e.numberOfURIDomainConstraints == 0 && e.totalNumberOfPermittedConstraints > 0 { return NamePolicyError{ Reason: NotAuthorizedForThisName, Detail: fmt.Sprintf("uri %q is not explicitly permitted by any constraint", uri.String()), } } if err := checkNameConstraints("uri", uri.String(), uri, func(parsedName, constraint interface{}) (bool, error) { return e.matchURIConstraint(parsedName.(*url.URL), constraint.(string)) }, e.permittedURIDomains, e.excludedURIDomains); err != nil { return err } } for _, principal := range principals { if e.numberOfPrincipalConstraints == 0 && e.totalNumberOfPermittedConstraints > 0 { return NamePolicyError{ Reason: NotAuthorizedForThisName, Detail: fmt.Sprintf("username principal %q is not explicitly permitted by any constraint", principal), } } // TODO: some validation? I.e. allowed characters? if err := checkNameConstraints("principal", principal, principal, func(parsedName, constraint interface{}) (bool, error) { return matchUsernameConstraint(parsedName.(string), constraint.(string)) }, e.permittedPrincipals, e.excludedPrincipals); err != nil { return err } } // if all checks out, all SANs are allowed return nil } // checkNameConstraints checks that a name, of type nameType is permitted. // The argument parsedName contains the parsed form of name, suitable for passing // to the match function. // SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go func checkNameConstraints( nameType string, name string, parsedName interface{}, match func(parsedName, constraint interface{}) (match bool, err error), permitted, excluded interface{}) error { excludedValue := reflect.ValueOf(excluded) for i := 0; i < excludedValue.Len(); i++ { constraint := excludedValue.Index(i).Interface() match, err := match(parsedName, constraint) if err != nil { return NamePolicyError{ Reason: CannotMatchNameToConstraint, Detail: err.Error(), } } if match { return NamePolicyError{ Reason: NotAuthorizedForThisName, Detail: fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint), } } } permittedValue := reflect.ValueOf(permitted) ok := true for i := 0; i < permittedValue.Len(); i++ { constraint := permittedValue.Index(i).Interface() var err error if ok, err = match(parsedName, constraint); err != nil { return NamePolicyError{ Reason: CannotMatchNameToConstraint, Detail: err.Error(), } } if ok { break } } if !ok { return NamePolicyError{ Reason: NotAuthorizedForThisName, Detail: fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name), } } return nil } // domainToReverseLabels converts a textual domain name like foo.example.com to // the list of labels in reverse order, e.g. ["com", "example", "foo"]. // SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) { for len(domain) > 0 { if i := strings.LastIndexByte(domain, '.'); i == -1 { reverseLabels = append(reverseLabels, domain) domain = "" } else { reverseLabels = append(reverseLabels, domain[i+1:]) domain = domain[:i] } } if len(reverseLabels) > 0 && reverseLabels[0] == "" { // An empty label at the end indicates an absolute value. return nil, false } for _, label := range reverseLabels { if label == "" { // Empty labels are otherwise invalid. return nil, false } for _, c := range label { if c < 33 || c > 126 { // Invalid character. return nil, false } } } return reverseLabels, true } // rfc2821Mailbox represents a “mailbox” (which is an email address to most // people) by breaking it into the “local” (i.e. before the '@') and “domain” // parts. // SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go type rfc2821Mailbox struct { local, domain string } // parseRFC2821Mailbox parses an email address into local and domain parts, // based on the ABNF for a “Mailbox” from RFC 2821. According to RFC 5280, // Section 4.2.1.6 that's correct for an rfc822Name from a certificate: “The // format of an rfc822Name is a "Mailbox" as defined in RFC 2821, Section 4.1.2”. // SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) { if in == "" { return mailbox, false } localPartBytes := make([]byte, 0, len(in)/2) if in[0] == '"' { // Quoted-string = DQUOTE *qcontent DQUOTE // non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127 // qcontent = qtext / quoted-pair // qtext = non-whitespace-control / // %d33 / %d35-91 / %d93-126 // quoted-pair = ("\" text) / obs-qp // text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text // // (Names beginning with “obs-” are the obsolete syntax from RFC 2822, // Section 4. Since it has been 16 years, we no longer accept that.) in = in[1:] QuotedString: for { if in == "" { return mailbox, false } c := in[0] in = in[1:] switch { case c == '"': break QuotedString case c == '\\': // quoted-pair if in == "" { return mailbox, false } if in[0] == 11 || in[0] == 12 || (1 <= in[0] && in[0] <= 9) || (14 <= in[0] && in[0] <= 127) { localPartBytes = append(localPartBytes, in[0]) in = in[1:] } else { return mailbox, false } case c == 11 || c == 12 || // Space (char 32) is not allowed based on the // BNF, but RFC 3696 gives an example that // assumes that it is. Several “verified” // errata continue to argue about this point. // We choose to accept it. c == 32 || c == 33 || c == 127 || (1 <= c && c <= 8) || (14 <= c && c <= 31) || (35 <= c && c <= 91) || (93 <= c && c <= 126): // qtext localPartBytes = append(localPartBytes, c) default: return mailbox, false } } } else { // Atom ("." Atom)* NextChar: for len(in) > 0 { // atext from RFC 2822, Section 3.2.4 c := in[0] switch { case c == '\\': // Examples given in RFC 3696 suggest that // escaped characters can appear outside of a // quoted string. Several “verified” errata // continue to argue the point. We choose to // accept it. in = in[1:] if in == "" { return mailbox, false } fallthrough case ('0' <= c && c <= '9') || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '!' || c == '#' || c == '$' || c == '%' || c == '&' || c == '\'' || c == '*' || c == '+' || c == '-' || c == '/' || c == '=' || c == '?' || c == '^' || c == '_' || c == '`' || c == '{' || c == '|' || c == '}' || c == '~' || c == '.': localPartBytes = append(localPartBytes, in[0]) in = in[1:] default: break NextChar } } if len(localPartBytes) == 0 { return mailbox, false } // From RFC 3696, Section 3: // “period (".") may also appear, but may not be used to start // or end the local part, nor may two or more consecutive // periods appear.” twoDots := []byte{'.', '.'} if localPartBytes[0] == '.' || localPartBytes[len(localPartBytes)-1] == '.' || bytes.Contains(localPartBytes, twoDots) { return mailbox, false } } if in == "" || in[0] != '@' { return mailbox, false } in = in[1:] // The RFC species a format for domains, but that's known to be // violated in practice so we accept that anything after an '@' is the // domain part. if _, ok := domainToReverseLabels(in); !ok { return mailbox, false } mailbox.local = string(localPartBytes) mailbox.domain = in return mailbox, true } // SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go func (e *NamePolicyEngine) matchDomainConstraint(domain, constraint string) (bool, error) { // The meaning of zero length constraints is not specified, but this // code follows NSS and accepts them as matching everything. if constraint == "" { return true, nil } // A single whitespace seems to be considered a valid domain, but we don't allow it. if domain == " " { return false, nil } // Block domains that start with just a period if domain[0] == '.' { return false, nil } // Block wildcard domains that don't start with exactly "*." (i.e. double wildcards and such) if domain[0] == '*' && domain[1] != '.' { return false, nil } // Check if the domain starts with a wildcard and return early if not allowed if strings.HasPrefix(domain, "*.") && !e.allowLiteralWildcardNames { return false, nil } // Only allow asterisk at the start of the domain; we don't allow them as part of a domain label or as a (sub)domain label (currently) if strings.LastIndex(domain, "*") > 0 { return false, nil } // Don't allow constraints with empty labels in any position if strings.Contains(constraint, "..") { return false, nil } domainLabels, ok := domainToReverseLabels(domain) if !ok { return false, fmt.Errorf("cannot parse domain %q", domain) } // RFC 5280 says that a leading period in a domain name means that at // least one label must be prepended, but only for URI and email // constraints, not DNS constraints. The code also supports that // behavior for DNS constraints. In our adaptation of the original // Go stdlib x509 Name Constraint implementation we look for exactly // one subdomain, currently. mustHaveSubdomains := false if constraint[0] == '.' { mustHaveSubdomains = true constraint = constraint[1:] } constraintLabels, ok := domainToReverseLabels(constraint) if !ok { return false, fmt.Errorf("cannot parse domain constraint %q", constraint) } // fmt.Println(mustHaveSubdomains) // fmt.Println(constraintLabels) // fmt.Println(domainLabels) expectedNumberOfLabels := len(constraintLabels) if mustHaveSubdomains { // we expect exactly one more label if it starts with the "canonical" x509 "wildcard": "." // in the future we could extend this to support multiple additional labels and/or more // complex matching. expectedNumberOfLabels++ } if len(domainLabels) != expectedNumberOfLabels { return false, nil } for i, constraintLabel := range constraintLabels { if !strings.EqualFold(constraintLabel, domainLabels[i]) { return false, nil } } return true, nil } // SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) { // TODO(hs): this is code from Go library, but I got some unexpected result: // with permitted net 127.0.0.0/24, 127.0.0.1 is NOT allowed. When parsing 127.0.0.1 as net.IP // which is in the IPAddresses slice, the underlying length is 16. The contraint.IP has a length // of 4 instead. I currently don't believe that this is a bug in Go now, but why is it like that? // Is there a difference because we're not operating on a sans []string slice? Or is the Go // implementation stricter regarding IPv4 vs. IPv6? I've been bitten by some unfortunate differences // between the two before (i.e. IPv4 in IPv6; IP SANS in ACME) // if len(ip) != len(constraint.IP) { // return false, nil // } // for i := range ip { // if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask { // return false, nil // } // } contained := constraint.Contains(ip) // TODO(hs): validate that this is the correct behavior; also check IPv4-in-IPv6 (again) return contained, nil } // SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go func (e *NamePolicyEngine) matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) { // TODO(hs): handle literal wildcard case for emails? Does that even make sense? // If the constraint contains an @, then it specifies an exact mailbox name (currently) if strings.Contains(constraint, "*") { return false, fmt.Errorf("email constraint %q cannot contain asterisk", constraint) } if strings.Contains(constraint, "@") { constraintMailbox, ok := parseRFC2821Mailbox(constraint) if !ok { return false, fmt.Errorf("cannot parse constraint %q", constraint) } return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil } // Otherwise the constraint is like a DNS constraint of the domain part // of the mailbox. return e.matchDomainConstraint(mailbox.domain, constraint) } // SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go func (e *NamePolicyEngine) matchURIConstraint(uri *url.URL, constraint string) (bool, error) { // From RFC 5280, Section 4.2.1.10: // “a uniformResourceIdentifier that does not include an authority // component with a host name specified as a fully qualified domain // name (e.g., if the URI either does not include an authority // component or includes an authority component in which the host name // is specified as an IP address), then the application MUST reject the // certificate.” host := uri.Host if host == "" { return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String()) } // Block hosts with the wildcard character; no exceptions, also not when wildcards allowed. if strings.Contains(host, "*") { return false, fmt.Errorf("URI host %q cannot contain asterisk", uri.String()) } if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") { var err error host, _, err = net.SplitHostPort(uri.Host) if err != nil { return false, err } } if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") || net.ParseIP(host) != nil { return false, fmt.Errorf("URI with IP %q cannot be matched against constraints", uri.String()) } // TODO(hs): add checks for scheme, path, etc.; either here, or in a different constraint matcher (to keep this one simple) return e.matchDomainConstraint(host, constraint) } // matchUsernameConstraint performs a string literal match against a constraint. func matchUsernameConstraint(username, constraint string) (bool, error) { // allow any plain principal username if constraint == "*" { return true, nil } return strings.EqualFold(username, constraint), nil }