frostfs-api-go-pogpp/accounting/types.go

364 lines
9.5 KiB
Go
Raw Normal View History

2019-11-18 13:34:06 +00:00
package accounting
import (
"crypto/ecdsa"
"crypto/rand"
"encoding/binary"
"reflect"
"github.com/mr-tron/base58"
2020-03-31 07:05:26 +00:00
"github.com/nspcc-dev/neofs-api-go/chain"
"github.com/nspcc-dev/neofs-api-go/decimal"
"github.com/nspcc-dev/neofs-api-go/internal"
"github.com/nspcc-dev/neofs-api-go/refs"
2019-11-18 13:34:06 +00:00
crypto "github.com/nspcc-dev/neofs-crypto"
"github.com/pkg/errors"
)
type (
// Cheque structure that describes a user request for withdrawal of funds.
Cheque struct {
ID ChequeID
Owner refs.OwnerID
Amount *decimal.Decimal
Height uint64
Signatures []ChequeSignature
}
// BalanceReceiver interface that is used to retrieve user balance by address.
BalanceReceiver interface {
Balance(accountAddress string) (*Account, error)
}
// ChequeID is identifier of user request for withdrawal of funds.
ChequeID string
// CID type alias.
CID = refs.CID
// SGID type alias.
SGID = refs.SGID
// ChequeSignature contains public key and hash, and is used to verify signatures.
ChequeSignature struct {
Key *ecdsa.PublicKey
Hash []byte
}
)
const (
// ErrWrongSignature is raised when wrong signature is passed.
ErrWrongSignature = internal.Error("wrong signature")
// ErrWrongPublicKey is raised when wrong public key is passed.
ErrWrongPublicKey = internal.Error("wrong public key")
// ErrWrongChequeData is raised when passed bytes cannot not be parsed as valid Cheque.
ErrWrongChequeData = internal.Error("wrong cheque data")
// ErrInvalidLength is raised when passed bytes cannot not be parsed as valid ChequeID.
ErrInvalidLength = internal.Error("invalid length")
u16size = 2
u64size = 8
signaturesOffset = chain.AddressLength + refs.OwnerIDSize + u64size + u64size
)
// NewChequeID generates valid random ChequeID using crypto/rand.Reader.
func NewChequeID() (ChequeID, error) {
d := make([]byte, chain.AddressLength)
if _, err := rand.Read(d); err != nil {
return "", err
}
id := base58.Encode(d)
return ChequeID(id), nil
}
// String returns string representation of ChequeID.
func (b ChequeID) String() string { return string(b) }
// Empty returns true, if ChequeID is empty.
func (b ChequeID) Empty() bool { return len(b) == 0 }
// Valid validates ChequeID.
func (b ChequeID) Valid() bool {
d, err := base58.Decode(string(b))
return err == nil && len(d) == chain.AddressLength
}
// Bytes returns bytes representation of ChequeID.
func (b ChequeID) Bytes() []byte {
d, err := base58.Decode(string(b))
if err != nil {
return make([]byte, chain.AddressLength)
}
return d
}
// Equal checks that current ChequeID is equal to passed ChequeID.
func (b ChequeID) Equal(b2 ChequeID) bool {
return b.Valid() && b2.Valid() && string(b) == string(b2)
}
// Unmarshal tries to parse []byte into valid ChequeID.
func (b *ChequeID) Unmarshal(data []byte) error {
*b = ChequeID(base58.Encode(data))
if !b.Valid() {
return ErrInvalidLength
}
return nil
}
// Size returns size (chain.AddressLength).
func (b ChequeID) Size() int {
return chain.AddressLength
}
// MarshalTo tries to marshal ChequeID into passed bytes and returns
// count of copied bytes or error, if bytes len is not enough to contain ChequeID.
func (b ChequeID) MarshalTo(data []byte) (int, error) {
if len(data) < chain.AddressLength {
return 0, ErrInvalidLength
}
return copy(data, b.Bytes()), nil
}
// Equals checks that m and tx are valid and equal Tx values.
func (m Tx) Equals(tx Tx) bool {
return m.From == tx.From &&
m.To == tx.To &&
m.Type == tx.Type &&
m.Amount == tx.Amount
}
// Verify validates current Cheque and Signatures that are generated for current Cheque.
func (b Cheque) Verify() error {
data := b.marshalBody()
for i, sign := range b.Signatures {
if err := crypto.VerifyRFC6979(sign.Key, data, sign.Hash); err != nil {
return errors.Wrapf(ErrWrongSignature, "item #%d: %s", i, err.Error())
}
}
return nil
}
// Sign is used to sign current Cheque and stores result inside b.Signatures.
func (b *Cheque) Sign(key *ecdsa.PrivateKey) error {
hash, err := crypto.SignRFC6979(key, b.marshalBody())
if err != nil {
return err
}
b.Signatures = append(b.Signatures, ChequeSignature{
Key: &key.PublicKey,
Hash: hash,
})
return nil
}
func (b *Cheque) marshalBody() []byte {
buf := make([]byte, signaturesOffset)
var offset int
offset += copy(buf, b.ID.Bytes())
offset += copy(buf[offset:], b.Owner.Bytes())
binary.LittleEndian.PutUint64(buf[offset:], uint64(b.Amount.Value))
2019-11-18 13:34:06 +00:00
offset += u64size
binary.LittleEndian.PutUint64(buf[offset:], b.Height)
2019-11-18 13:34:06 +00:00
return buf
}
func (b *Cheque) unmarshalBody(buf []byte) error {
var offset int
if len(buf) < signaturesOffset {
return ErrWrongChequeData
}
{ // unmarshal UUID
if err := b.ID.Unmarshal(buf[offset : offset+chain.AddressLength]); err != nil {
return err
}
offset += chain.AddressLength
}
{ // unmarshal OwnerID
if err := b.Owner.Unmarshal(buf[offset : offset+refs.OwnerIDSize]); err != nil {
return err
}
offset += refs.OwnerIDSize
}
{ // unmarshal amount
amount := int64(binary.LittleEndian.Uint64(buf[offset:]))
2019-11-18 13:34:06 +00:00
b.Amount = decimal.New(amount)
offset += u64size
}
{ // unmarshal height
b.Height = binary.LittleEndian.Uint64(buf[offset:])
2019-11-18 13:34:06 +00:00
offset += u64size
}
return nil
}
// MarshalBinary is used to marshal Cheque into bytes.
func (b Cheque) MarshalBinary() ([]byte, error) {
var (
count = len(b.Signatures)
buf = make([]byte, b.Size())
offset = copy(buf, b.marshalBody())
)
binary.LittleEndian.PutUint16(buf[offset:], uint16(count))
2019-11-18 13:34:06 +00:00
offset += u16size
for _, sign := range b.Signatures {
key := crypto.MarshalPublicKey(sign.Key)
offset += copy(buf[offset:], key)
offset += copy(buf[offset:], sign.Hash)
}
return buf, nil
}
// Size returns size of Cheque (count of bytes needs to store it).
func (b Cheque) Size() int {
return signaturesOffset + u16size +
len(b.Signatures)*(crypto.PublicKeyCompressedSize+crypto.RFC6979SignatureSize)
}
// UnmarshalBinary tries to parse []byte into valid Cheque.
func (b *Cheque) UnmarshalBinary(buf []byte) error {
if err := b.unmarshalBody(buf); err != nil {
return err
}
body := buf[:signaturesOffset]
count := int64(binary.LittleEndian.Uint16(buf[signaturesOffset:]))
2019-11-18 13:34:06 +00:00
offset := signaturesOffset + u16size
if ln := count * int64(crypto.PublicKeyCompressedSize+crypto.RFC6979SignatureSize); ln > int64(len(buf[offset:])) {
return ErrWrongChequeData
}
for i := int64(0); i < count; i++ {
sign := ChequeSignature{
Key: crypto.UnmarshalPublicKey(buf[offset : offset+crypto.PublicKeyCompressedSize]),
Hash: make([]byte, crypto.RFC6979SignatureSize),
}
offset += crypto.PublicKeyCompressedSize
if sign.Key == nil {
return errors.Wrapf(ErrWrongPublicKey, "item #%d", i)
}
offset += copy(sign.Hash, buf[offset:offset+crypto.RFC6979SignatureSize])
if err := crypto.VerifyRFC6979(sign.Key, body, sign.Hash); err != nil {
return errors.Wrapf(ErrWrongSignature, "item #%d: %s (offset=%d, len=%d)", i, err.Error(), offset, len(sign.Hash))
}
b.Signatures = append(b.Signatures, sign)
}
return nil
}
// ErrNotEnoughFunds generates error using address and amounts.
func ErrNotEnoughFunds(addr string, needed, residue *decimal.Decimal) error {
return errors.Errorf("not enough funds (requested=%s, residue=%s, addr=%s", needed, residue, addr)
}
func (m *Account) hasLockAcc(addr string) bool {
for i := range m.LockAccounts {
if m.LockAccounts[i].Address == addr {
return true
}
}
return false
}
// ValidateLock checks that account can be locked.
func (m *Account) ValidateLock() error {
switch {
case m.Address == "":
return ErrEmptyAddress
case m.ParentAddress == "":
return ErrEmptyParentAddress
case m.LockTarget == nil:
return ErrEmptyLockTarget
}
switch v := m.LockTarget.Target.(type) {
case *LockTarget_WithdrawTarget:
if v.WithdrawTarget.Cheque != m.Address {
return errors.Errorf("wrong cheque ID: expected %s, has %s", m.Address, v.WithdrawTarget.Cheque)
}
case *LockTarget_ContainerCreateTarget:
switch {
case v.ContainerCreateTarget.CID.Empty():
return ErrEmptyContainerID
}
}
return nil
}
// CanLock checks possibility to lock funds.
func (m *Account) CanLock(lockAcc *Account) error {
switch {
case m.ActiveFunds.LT(lockAcc.ActiveFunds):
return ErrNotEnoughFunds(lockAcc.ParentAddress, lockAcc.ActiveFunds, m.ActiveFunds)
case m.hasLockAcc(lockAcc.Address):
return errors.Errorf("could not lock account(%s) funds: duplicating lock(%s)", m.Address, lockAcc.Address)
default:
return nil
}
}
// LockForWithdraw checks that account contains locked funds by passed ChequeID.
func (m *Account) LockForWithdraw(chequeID string) bool {
switch v := m.LockTarget.Target.(type) {
case *LockTarget_WithdrawTarget:
return v.WithdrawTarget.Cheque == chequeID
}
return false
}
// LockForContainerCreate checks that account contains locked funds for container creation.
func (m *Account) LockForContainerCreate(cid refs.CID) bool {
switch v := m.LockTarget.Target.(type) {
case *LockTarget_ContainerCreateTarget:
return v.ContainerCreateTarget.CID.Equal(cid)
}
return false
}
// Equal checks that current Settlement is equal to passed Settlement.
func (m *Settlement) Equal(s *Settlement) bool {
if s == nil || m.Epoch != s.Epoch || len(m.Transactions) != len(s.Transactions) {
return false
}
return len(m.Transactions) == 0 || reflect.DeepEqual(m.Transactions, s.Transactions)
}
// GetOwnerID is an OwnerID field getter.
func (m BalanceRequest) GetOwnerID() OwnerID {
return m.OwnerID
}
// SetOwnerID is an OwnerID field setter.
func (m *BalanceRequest) SetOwnerID(owner OwnerID) {
m.OwnerID = owner
}