package acme import ( "bytes" "crypto" "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/rsa" "crypto/x509" "crypto/x509/pkix" "encoding/binary" "encoding/pem" "errors" "fmt" "io/ioutil" "math/big" "net/http" "time" "golang.org/x/crypto/ocsp" "golang.org/x/crypto/sha3" ) type keyType int type derCertificateBytes []byte const ( eckey keyType = iota rsakey ) const ( // OCSPGood means that the certificate is valid. OCSPGood = ocsp.Good // OCSPRevoked means that the certificate has been deliberately revoked. OCSPRevoked = ocsp.Revoked // OCSPUnknown means that the OCSP responder doesn't know about the certificate. OCSPUnknown = ocsp.Unknown // OCSPServerFailed means that the OCSP responder failed to process the request. OCSPServerFailed = ocsp.ServerFailed ) // GetOCSPForCert takes a PEM encoded cert or cert bundle returning the raw OCSP response, // the status code of the response and an error, if any. // This []byte can be passed directly into the OCSPStaple property of a tls.Certificate. // If the bundle only contains the issued certificate, this function will try // to get the issuer certificate from the IssuingCertificateURL in the certificate. func GetOCSPForCert(bundle []byte) ([]byte, int, error) { certificates, err := parsePEMBundle(bundle) if err != nil { return nil, OCSPUnknown, err } // We only got one certificate, means we have no issuer certificate - get it. if len(certificates) == 1 { // TODO: build fallback. If this fails, check the remaining array entries. if len(certificates[0].IssuingCertificateURL) == 0 { return nil, OCSPUnknown, errors.New("no issuing certificate URL") } resp, err := http.Get(certificates[0].IssuingCertificateURL[0]) if err != nil { return nil, OCSPUnknown, err } defer resp.Body.Close() issuerBytes, err := ioutil.ReadAll(resp.Body) if err != nil { return nil, OCSPUnknown, err } issuerCert, err := x509.ParseCertificate(issuerBytes) if err != nil { return nil, OCSPUnknown, err } // Insert it into the slice on position 0 // We want it ordered right SRV CRT -> CA certificates = append(certificates, issuerCert) } // We expect the certificate slice to be ordered downwards the chain. // SRV CRT -> CA. We need to pull the cert and issuer cert out of it, // which should always be the last two certificates. issuedCert := certificates[0] issuerCert := certificates[1] // Finally kick off the OCSP request. ocspReq, err := ocsp.CreateRequest(issuedCert, issuerCert, nil) if err != nil { return nil, OCSPUnknown, err } reader := bytes.NewReader(ocspReq) req, err := http.Post(issuedCert.OCSPServer[0], "application/ocsp-request", reader) if err != nil { return nil, OCSPUnknown, err } defer req.Body.Close() ocspResBytes, err := ioutil.ReadAll(req.Body) ocspRes, err := ocsp.ParseResponse(ocspResBytes, issuerCert) if err != nil { return nil, OCSPUnknown, err } if ocspRes.Certificate == nil { err = ocspRes.CheckSignatureFrom(issuerCert) if err != nil { return nil, OCSPUnknown, err } } return ocspResBytes, ocspRes.Status, nil } // Derive the shared secret according to acme spec 5.6 func performECDH(priv *ecdsa.PrivateKey, pub *ecdsa.PublicKey, outLen int, label string) []byte { // Derive Z from the private and public keys according to SEC 1 Ver. 2.0 - 3.3.1 Z, _ := priv.PublicKey.ScalarMult(pub.X, pub.Y, priv.D.Bytes()) if len(Z.Bytes())+len(label)+4 > 384 { return nil } if outLen < 384*(2^32-1) { return nil } // Derive the shared secret key using the ANS X9.63 KDF - SEC 1 Ver. 2.0 - 3.6.1 hasher := sha3.New384() buffer := make([]byte, outLen) bufferLen := 0 for i := 0; i < outLen/384; i++ { hasher.Reset() // Ki = Hash(Z || Counter || [SharedInfo]) hasher.Write(Z.Bytes()) binary.Write(hasher, binary.BigEndian, i) hasher.Write([]byte(label)) hash := hasher.Sum(nil) copied := copy(buffer[bufferLen:], hash) bufferLen += copied } return buffer } // parsePEMBundle parses a certificate bundle from top to bottom and returns // a slice of x509 certificates. This function will error if no certificates are found. func parsePEMBundle(bundle []byte) ([]*x509.Certificate, error) { var certificates []*x509.Certificate remaining := bundle for len(remaining) != 0 { certBlock, rem := pem.Decode(remaining) // Thanks golang for having me do this :[ remaining = rem if certBlock == nil { return nil, errors.New("Could not decode certificate.") } cert, err := x509.ParseCertificate(certBlock.Bytes) if err != nil { return nil, err } certificates = append(certificates, cert) } if len(certificates) == 0 { return nil, errors.New("No certificates were found while parsing the bundle.") } return certificates, nil } func generatePrivateKey(t keyType, keyLength int) (crypto.PrivateKey, error) { switch t { case eckey: return ecdsa.GenerateKey(elliptic.P384(), rand.Reader) case rsakey: return rsa.GenerateKey(rand.Reader, keyLength) } return nil, fmt.Errorf("Invalid keytype: %d", t) } func generateCsr(privateKey *rsa.PrivateKey, domain string, san []string) ([]byte, error) { template := x509.CertificateRequest{ Subject: pkix.Name{ CommonName: domain, }, } if len(san) > 0 { template.DNSNames = san } return x509.CreateCertificateRequest(rand.Reader, &template, privateKey) } func pemEncode(data interface{}) []byte { var pemBlock *pem.Block switch key := data.(type) { case *rsa.PrivateKey: pemBlock = &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(key)} break case derCertificateBytes: pemBlock = &pem.Block{Type: "CERTIFICATE", Bytes: []byte(data.(derCertificateBytes))} } return pem.EncodeToMemory(pemBlock) } func pemDecode(data []byte) (*pem.Block, error) { pemBlock, _ := pem.Decode(data) if pemBlock == nil { return nil, fmt.Errorf("Pem decode did not yield a valid block. Is the certificate in the right format?") } return pemBlock, nil } func pemDecodeTox509(pem []byte) (*x509.Certificate, error) { pemBlock, err := pemDecode(pem) if pemBlock == nil { return nil, err } return x509.ParseCertificate(pemBlock.Bytes) } // GetPEMCertExpiration returns the "NotAfter" date of a PEM encoded certificate. // The certificate has to be PEM encoded. Any other encodings like DER will fail. func GetPEMCertExpiration(cert []byte) (time.Time, error) { pemBlock, err := pemDecode(cert) if pemBlock == nil { return time.Time{}, err } return getCertExpiration(pemBlock.Bytes) } // getCertExpiration returns the "NotAfter" date of a DER encoded certificate. func getCertExpiration(cert []byte) (time.Time, error) { pCert, err := x509.ParseCertificate(cert) if err != nil { return time.Time{}, err } return pCert.NotAfter, nil } func generatePemCert(privKey *rsa.PrivateKey, domain string) ([]byte, error) { derBytes, err := generateDerCert(privKey, time.Time{}, domain) if err != nil { return nil, err } return pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: derBytes}), nil } func generateDerCert(privKey *rsa.PrivateKey, expiration time.Time, domain string) ([]byte, error) { serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128) serialNumber, err := rand.Int(rand.Reader, serialNumberLimit) if err != nil { return nil, err } if expiration.IsZero() { expiration = time.Now().Add(365) } template := x509.Certificate{ SerialNumber: serialNumber, Subject: pkix.Name{ CommonName: "ACME Challenge TEMP", }, NotBefore: time.Now(), NotAfter: expiration, KeyUsage: x509.KeyUsageKeyEncipherment, BasicConstraintsValid: true, DNSNames: []string{domain}, } return x509.CreateCertificate(rand.Reader, &template, &template, &privKey.PublicKey, privKey) }