package certcrypto import ( "crypto" "crypto/ecdsa" "crypto/ed25519" "crypto/elliptic" "crypto/rand" "crypto/rsa" "crypto/x509" "crypto/x509/pkix" "encoding/asn1" "encoding/pem" "errors" "fmt" "math/big" "strings" "time" "golang.org/x/crypto/ocsp" ) // Constants for all key types we support. const ( EC256 = KeyType("P256") EC384 = KeyType("P384") RSA2048 = KeyType("2048") RSA4096 = KeyType("4096") RSA8192 = KeyType("8192") ) const ( // OCSPGood means that the certificate is valid. OCSPGood = ocsp.Good // OCSPRevoked means that the certificate has been deliberately revoked. OCSPRevoked = ocsp.Revoked // OCSPUnknown means that the OCSP responder doesn't know about the certificate. OCSPUnknown = ocsp.Unknown // OCSPServerFailed means that the OCSP responder failed to process the request. OCSPServerFailed = ocsp.ServerFailed ) // Constants for OCSP must staple. var ( tlsFeatureExtensionOID = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 1, 24} ocspMustStapleFeature = []byte{0x30, 0x03, 0x02, 0x01, 0x05} ) // KeyType represents the key algo as well as the key size or curve to use. type KeyType string type DERCertificateBytes []byte // ParsePEMBundle parses a certificate bundle from top to bottom and returns // a slice of x509 certificates. This function will error if no certificates are found. func ParsePEMBundle(bundle []byte) ([]*x509.Certificate, error) { var certificates []*x509.Certificate var certDERBlock *pem.Block for { certDERBlock, bundle = pem.Decode(bundle) if certDERBlock == nil { break } if certDERBlock.Type == "CERTIFICATE" { cert, err := x509.ParseCertificate(certDERBlock.Bytes) if err != nil { return nil, err } certificates = append(certificates, cert) } } if len(certificates) == 0 { return nil, errors.New("no certificates were found while parsing the bundle") } return certificates, nil } // ParsePEMPrivateKey parses a private key from key, which is a PEM block. // Borrowed from Go standard library, to handle various private key and PEM block types. // https://github.com/golang/go/blob/693748e9fa385f1e2c3b91ca9acbb6c0ad2d133d/src/crypto/tls/tls.go#L291-L308 // https://github.com/golang/go/blob/693748e9fa385f1e2c3b91ca9acbb6c0ad2d133d/src/crypto/tls/tls.go#L238) func ParsePEMPrivateKey(key []byte) (crypto.PrivateKey, error) { keyBlockDER, _ := pem.Decode(key) if keyBlockDER.Type != "PRIVATE KEY" && !strings.HasSuffix(keyBlockDER.Type, " PRIVATE KEY") { return nil, fmt.Errorf("unknown PEM header %q", keyBlockDER.Type) } if key, err := x509.ParsePKCS1PrivateKey(keyBlockDER.Bytes); err == nil { return key, nil } if key, err := x509.ParsePKCS8PrivateKey(keyBlockDER.Bytes); err == nil { switch key := key.(type) { case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey: return key, nil default: return nil, fmt.Errorf("found unknown private key type in PKCS#8 wrapping: %T", key) } } if key, err := x509.ParseECPrivateKey(keyBlockDER.Bytes); err == nil { return key, nil } return nil, errors.New("failed to parse private key") } func GeneratePrivateKey(keyType KeyType) (crypto.PrivateKey, error) { switch keyType { case EC256: return ecdsa.GenerateKey(elliptic.P256(), rand.Reader) case EC384: return ecdsa.GenerateKey(elliptic.P384(), rand.Reader) case RSA2048: return rsa.GenerateKey(rand.Reader, 2048) case RSA4096: return rsa.GenerateKey(rand.Reader, 4096) case RSA8192: return rsa.GenerateKey(rand.Reader, 8192) } return nil, fmt.Errorf("invalid KeyType: %s", keyType) } func GenerateCSR(privateKey crypto.PrivateKey, domain string, san []string, mustStaple bool) ([]byte, error) { template := x509.CertificateRequest{ Subject: pkix.Name{CommonName: domain}, DNSNames: san, } if mustStaple { template.ExtraExtensions = append(template.ExtraExtensions, pkix.Extension{ Id: tlsFeatureExtensionOID, Value: ocspMustStapleFeature, }) } return x509.CreateCertificateRequest(rand.Reader, &template, privateKey) } func PEMEncode(data interface{}) []byte { return pem.EncodeToMemory(PEMBlock(data)) } func PEMBlock(data interface{}) *pem.Block { var pemBlock *pem.Block switch key := data.(type) { case *ecdsa.PrivateKey: keyBytes, _ := x509.MarshalECPrivateKey(key) pemBlock = &pem.Block{Type: "EC PRIVATE KEY", Bytes: keyBytes} case *rsa.PrivateKey: pemBlock = &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(key)} case *x509.CertificateRequest: pemBlock = &pem.Block{Type: "CERTIFICATE REQUEST", Bytes: key.Raw} case DERCertificateBytes: pemBlock = &pem.Block{Type: "CERTIFICATE", Bytes: []byte(data.(DERCertificateBytes))} } return pemBlock } func pemDecode(data []byte) (*pem.Block, error) { pemBlock, _ := pem.Decode(data) if pemBlock == nil { return nil, errors.New("PEM decode did not yield a valid block. Is the certificate in the right format?") } return pemBlock, nil } func PemDecodeTox509CSR(data []byte) (*x509.CertificateRequest, error) { pemBlock, err := pemDecode(data) if pemBlock == nil { return nil, err } if pemBlock.Type != "CERTIFICATE REQUEST" { return nil, errors.New("PEM block is not a certificate request") } return x509.ParseCertificateRequest(pemBlock.Bytes) } // ParsePEMCertificate returns Certificate from a PEM encoded certificate. // The certificate has to be PEM encoded. Any other encodings like DER will fail. func ParsePEMCertificate(cert []byte) (*x509.Certificate, error) { pemBlock, err := pemDecode(cert) if pemBlock == nil { return nil, err } // from a DER encoded certificate return x509.ParseCertificate(pemBlock.Bytes) } func ExtractDomains(cert *x509.Certificate) []string { var domains []string if cert.Subject.CommonName != "" { domains = append(domains, cert.Subject.CommonName) } // Check for SAN certificate for _, sanDomain := range cert.DNSNames { if sanDomain == cert.Subject.CommonName { continue } domains = append(domains, sanDomain) } return domains } func ExtractDomainsCSR(csr *x509.CertificateRequest) []string { var domains []string if csr.Subject.CommonName != "" { domains = append(domains, csr.Subject.CommonName) } // loop over the SubjectAltName DNS names for _, sanName := range csr.DNSNames { if containsSAN(domains, sanName) { // Duplicate; skip this name continue } // Name is unique domains = append(domains, sanName) } return domains } func containsSAN(domains []string, sanName string) bool { for _, existingName := range domains { if existingName == sanName { return true } } return false } func GeneratePemCert(privateKey *rsa.PrivateKey, domain string, extensions []pkix.Extension) ([]byte, error) { derBytes, err := generateDerCert(privateKey, time.Time{}, domain, extensions) if err != nil { return nil, err } return pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: derBytes}), nil } func generateDerCert(privateKey *rsa.PrivateKey, expiration time.Time, domain string, extensions []pkix.Extension) ([]byte, error) { serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128) serialNumber, err := rand.Int(rand.Reader, serialNumberLimit) if err != nil { return nil, err } if expiration.IsZero() { expiration = time.Now().Add(365) } template := x509.Certificate{ SerialNumber: serialNumber, Subject: pkix.Name{ CommonName: "ACME Challenge TEMP", }, NotBefore: time.Now(), NotAfter: expiration, KeyUsage: x509.KeyUsageKeyEncipherment, BasicConstraintsValid: true, DNSNames: []string{domain}, ExtraExtensions: extensions, } return x509.CreateCertificate(rand.Reader, &template, &template, &privateKey.PublicKey, privateKey) }