rfc6979/rfc6979.go
2013-08-20 17:39:06 -07:00

126 lines
2.8 KiB
Go

/*
Paraphrasing RFC6979:
This package implements a deterministic digital signature generation
procedure. Such signatures are compatible with standard Digital
Signature Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA) digital signatures and can be processed with
unmodified verifiers, which need not be aware of the procedure
described therein. Deterministic signatures retain the cryptographic
security features associated with digital signatures but can be more
easily implemented in various environments, since they do not need
access to a source of high-quality randomness.
Provides functions similar to crypto/dsa and crypto/ecdsa.
*/
package rfc6979
import (
"bytes"
"crypto/hmac"
"hash"
"math/big"
)
// A function which provides a fresh Hash (e.g., sha256.New).
type HashAlgorithm func() hash.Hash
func (alg HashAlgorithm) digest(m []byte) []byte {
h := alg()
h.Write(m)
return h.Sum(nil)
}
func (alg HashAlgorithm) mac(k []byte, m []byte) []byte {
h := hmac.New(alg, k)
h.Write(m)
return h.Sum(nil)
}
// https://tools.ietf.org/html/rfc6979#section-2.3.2
func bits2int(in []byte, qlen int) *big.Int {
vlen := len(in) * 8
v := new(big.Int).SetBytes(in)
if vlen > qlen {
v = new(big.Int).Rsh(v, uint(vlen-qlen))
}
return v
}
// https://tools.ietf.org/html/rfc6979#section-2.3.3
func int2octets(v *big.Int, rolen int) []byte {
out := v.Bytes()
// pad with zeros if it's too short
if len(out) < rolen {
out2 := make([]byte, rolen)
copy(out2[rolen-len(out):], out)
return out2
}
// drop most significant bytes if it's too long
if len(out) > rolen {
out2 := make([]byte, rolen)
copy(out2, out[len(out)-rolen:])
return out2
}
return out
}
// https://tools.ietf.org/html/rfc6979#section-2.3.4
func bits2octets(in []byte, q *big.Int, qlen, rolen int) []byte {
z1 := bits2int(in, qlen)
z2 := new(big.Int).Sub(z1, q)
if z2.Sign() < 0 {
return int2octets(z1, rolen)
}
return int2octets(z2, rolen)
}
// https://tools.ietf.org/html/rfc6979#section-3.2
func generateSecret(q, x *big.Int, alg HashAlgorithm, hash []byte, test func(*big.Int) bool) {
qlen := q.BitLen()
holen := alg().Size()
rolen := (qlen + 7) >> 3
bx := append(int2octets(x, rolen), bits2octets(hash, q, qlen, rolen)...)
// Step B
v := bytes.Repeat([]byte{0x01}, holen)
// Step C
k := bytes.Repeat([]byte{0x00}, holen)
// Step D
k = alg.mac(k, append(append(v, 0x00), bx...))
// Step E
v = alg.mac(k, v)
// Step F
k = alg.mac(k, append(append(v, 0x01), bx...))
// Step G
v = alg.mac(k, v)
// Step H
for {
// Step H1
t := make([]byte, 0)
// Step H2
for len(t) < qlen/8 {
v = alg.mac(k, v)
t = append(t, v...)
}
// Step H3
secret := bits2int(t, qlen)
if secret.Cmp(big.NewInt(1)) >= 0 && secret.Cmp(q) < 0 && test(secret) {
return
}
k = alg.mac(k, append(v, 0x00))
v = alg.mac(k, v)
}
}