2018-12-29 13:04:17 +00:00
|
|
|
// Copyright 2018 (c) NSPCC
|
|
|
|
//
|
|
|
|
// Package tz implements general Tillich-Zemo
|
|
|
|
package tz
|
|
|
|
|
|
|
|
import (
|
|
|
|
"errors"
|
|
|
|
"hash"
|
|
|
|
"math"
|
|
|
|
|
|
|
|
"github.com/nspcc-dev/tzhash/gf127"
|
|
|
|
)
|
|
|
|
|
|
|
|
const (
|
|
|
|
hashSize = 64
|
|
|
|
hashBlockSize = 128
|
|
|
|
)
|
|
|
|
|
|
|
|
type digest struct {
|
|
|
|
x [4]gf127.GF127
|
|
|
|
}
|
|
|
|
|
|
|
|
// type assertion
|
|
|
|
var _ hash.Hash = new(digest)
|
|
|
|
|
|
|
|
var (
|
|
|
|
minmax = [2]gf127.GF127{{0, 0}, {math.MaxUint64, math.MaxUint64}}
|
|
|
|
x127x63 = gf127.GF127{1 << 63, 1 << 63}
|
|
|
|
)
|
|
|
|
|
|
|
|
// New returns a new hash.Hash computing the Tillich-Zémor checksum.
|
|
|
|
func New() hash.Hash {
|
|
|
|
d := new(digest)
|
|
|
|
d.Reset()
|
|
|
|
return d
|
|
|
|
}
|
|
|
|
|
|
|
|
func (d *digest) Sum(in []byte) []byte {
|
|
|
|
// Make a copy of d so that caller can keep writing and summing.
|
|
|
|
d0 := *d
|
|
|
|
h := d0.checkSum()
|
|
|
|
return append(in, h[:]...)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (d *digest) checkSum() [hashSize]byte {
|
|
|
|
return d.byteArray()
|
|
|
|
}
|
|
|
|
|
|
|
|
func (d *digest) byteArray() (b [hashSize]byte) {
|
|
|
|
var t []byte
|
|
|
|
for i := 0; i < 4; i++ {
|
|
|
|
t = d.x[i].ByteArray()
|
|
|
|
copy(b[i*16:], t)
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
func (d *digest) Reset() {
|
|
|
|
d.x[0] = gf127.GF127{1, 0}
|
|
|
|
d.x[1] = gf127.GF127{0, 0}
|
|
|
|
d.x[2] = gf127.GF127{0, 0}
|
|
|
|
d.x[3] = gf127.GF127{1, 0}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (d *digest) Write(data []byte) (n int, err error) {
|
|
|
|
n = len(data)
|
|
|
|
for _, b := range data {
|
|
|
|
mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>7)&1])
|
|
|
|
mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>6)&1])
|
|
|
|
mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>5)&1])
|
|
|
|
mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>4)&1])
|
|
|
|
mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>3)&1])
|
|
|
|
mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>2)&1])
|
|
|
|
mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>1)&1])
|
|
|
|
mulBitRight(&d.x[0], &d.x[1], &d.x[2], &d.x[3], &minmax[(b>>0)&1])
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
func (d *digest) Size() int {
|
|
|
|
return hashSize
|
|
|
|
}
|
|
|
|
|
|
|
|
func (d *digest) BlockSize() int {
|
|
|
|
return hashBlockSize
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sum returnz Tillich-Zémor checksum of data
|
|
|
|
func Sum(data []byte) [hashSize]byte {
|
|
|
|
d := new(digest)
|
|
|
|
d.Reset()
|
|
|
|
d.Write(data)
|
|
|
|
return d.checkSum()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Concat performs combining of hashes based on homomorphic property.
|
|
|
|
func Concat(hs [][]byte) ([]byte, error) {
|
|
|
|
var b, c sl2
|
|
|
|
|
|
|
|
b = id
|
|
|
|
for i := range hs {
|
|
|
|
if err := c.UnmarshalBinary(hs[i]); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
b.Mul(&b, &c)
|
|
|
|
}
|
|
|
|
return b.MarshalBinary()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Validate checks if hashes in hs combined are equal to h.
|
|
|
|
func Validate(h []byte, hs [][]byte) (bool, error) {
|
|
|
|
var (
|
|
|
|
b []byte
|
|
|
|
got, expected [hashSize]byte
|
|
|
|
err error
|
|
|
|
)
|
|
|
|
|
|
|
|
if len(h) != hashSize {
|
|
|
|
return false, errors.New("invalid hash")
|
|
|
|
} else if len(hs) == 0 {
|
|
|
|
return false, errors.New("empty slice")
|
|
|
|
}
|
|
|
|
|
|
|
|
copy(expected[:], h)
|
|
|
|
|
|
|
|
b, err = Concat(hs)
|
|
|
|
if err != nil {
|
|
|
|
return false, errors.New("cant concatenate hashes")
|
|
|
|
}
|
|
|
|
|
|
|
|
copy(got[:], b)
|
|
|
|
|
|
|
|
return expected == got, nil
|
|
|
|
}
|
|
|
|
|
2019-01-29 13:11:48 +00:00
|
|
|
// SubtractR returns hash a, such that Concat(a, b) == c
|
|
|
|
// This is possible, because Tillich-Zemor hash is actually a matrix
|
|
|
|
// which can be inversed.
|
|
|
|
func SubtractR(c, b []byte) (a []byte, err error) {
|
|
|
|
var p1, p2, r sl2
|
|
|
|
|
|
|
|
if err = r.UnmarshalBinary(c); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
if err = p2.UnmarshalBinary(b); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
p1 = *Inv(&p2)
|
|
|
|
p1.Mul(&r, &p1)
|
|
|
|
|
|
|
|
return p1.MarshalBinary()
|
|
|
|
}
|
|
|
|
|
|
|
|
// SubtractL returns hash b, such that Concat(a, b) == c
|
|
|
|
// This is possible, because Tillich-Zemor hash is actually a matrix
|
|
|
|
// which can be inversed.
|
|
|
|
func SubtractL(c, a []byte) (b []byte, err error) {
|
|
|
|
var p1, p2, r sl2
|
|
|
|
|
|
|
|
if err = r.UnmarshalBinary(c); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
if err = p1.UnmarshalBinary(a); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
p2 = *Inv(&p1)
|
|
|
|
p2.Mul(&p2, &r)
|
|
|
|
|
|
|
|
return p2.MarshalBinary()
|
|
|
|
}
|
|
|
|
|
2018-12-29 13:04:17 +00:00
|
|
|
func mulBitRight(c00, c01, c10, c11, e *gf127.GF127)
|