forked from TrueCloudLab/tzhash
104 lines
2 KiB
Go
104 lines
2 KiB
Go
|
// Copyright 2018 (c) NSPCC
|
||
|
//
|
||
|
// Package gf127 implements the GF(2^127) arithmetic
|
||
|
// modulo reduction polynomial x^127 + x^63 + 1 .
|
||
|
// This is rather straight-forward re-implementation of C library
|
||
|
// available here https://github.com/srijs/hwsl2-core .
|
||
|
// Interfaces are highly influenced by math/big .
|
||
|
package avx
|
||
|
|
||
|
import (
|
||
|
"math/bits"
|
||
|
|
||
|
"github.com/nspcc-dev/tzhash/gf127"
|
||
|
)
|
||
|
|
||
|
type GF127 = gf127.GF127
|
||
|
|
||
|
const msb64 = uint64(1) << 63
|
||
|
|
||
|
var (
|
||
|
// x127x63 represents x^127 + x^63. Used in assembly file.
|
||
|
x127x63 = GF127{msb64, msb64}
|
||
|
|
||
|
// x126x631 is reduction polynomial x^127+x^63+1
|
||
|
x127x631 = GF127{msb64 + 1, msb64}
|
||
|
)
|
||
|
|
||
|
// Inv sets b to a^-1
|
||
|
// Algorithm is based on Extended Euclidean Algorithm
|
||
|
// and is described by Hankerson, Hernandez, Menezes in
|
||
|
// https://link.springer.com/content/pdf/10.1007/3-540-44499-8_1.pdf
|
||
|
func Inv(a, b *GF127) {
|
||
|
var (
|
||
|
v = x127x631
|
||
|
u = *a
|
||
|
c, d = &GF127{1, 0}, &GF127{0, 0}
|
||
|
t = new(GF127)
|
||
|
x *GF127
|
||
|
)
|
||
|
|
||
|
// degree of polynomial is a position of most significant bit
|
||
|
for du, dv := msb(&u), msb(&v); du != 0; du, dv = msb(&u), msb(&v) {
|
||
|
if du < dv {
|
||
|
v, u = u, v
|
||
|
dv, du = du, dv
|
||
|
d, c = c, d
|
||
|
}
|
||
|
|
||
|
x = xN(du - dv)
|
||
|
|
||
|
Mul(x, &v, t)
|
||
|
Add(&u, t, &u)
|
||
|
|
||
|
// becasuse mul performs reduction on t, we need
|
||
|
// manually reduce u at first step
|
||
|
if msb(&u) == 127 {
|
||
|
Add(&u, &x127x631, &u)
|
||
|
}
|
||
|
|
||
|
Mul(x, d, t)
|
||
|
Add(c, t, c)
|
||
|
}
|
||
|
*b = *c
|
||
|
}
|
||
|
|
||
|
func xN(n int) *GF127 {
|
||
|
if n < 64 {
|
||
|
return &GF127{1 << uint(n), 0}
|
||
|
}
|
||
|
return &GF127{0, 1 << uint(n-64)}
|
||
|
}
|
||
|
|
||
|
func msb(a *GF127) (x int) {
|
||
|
x = bits.LeadingZeros64(a[1])
|
||
|
if x == 64 {
|
||
|
x = bits.LeadingZeros64(a[0]) + 64
|
||
|
}
|
||
|
return 127 - x
|
||
|
}
|
||
|
|
||
|
// Mul1 copies a to b.
|
||
|
func Mul1(a, b *GF127) {
|
||
|
b[0] = a[0]
|
||
|
b[1] = a[1]
|
||
|
}
|
||
|
|
||
|
// And sets c to a & b (bitwise-and).
|
||
|
func And(a, b, c *GF127) {
|
||
|
c[0] = a[0] & b[0]
|
||
|
c[1] = a[1] & b[1]
|
||
|
}
|
||
|
|
||
|
// Add sets c to a+b.
|
||
|
func Add(a, b, c *GF127)
|
||
|
|
||
|
// Mul sets c to a*b.
|
||
|
func Mul(a, b, c *GF127)
|
||
|
|
||
|
// Mul10 sets b to a*x.
|
||
|
func Mul10(a, b *GF127)
|
||
|
|
||
|
// Mul11 sets b to a*(x+1).
|
||
|
func Mul11(a, b *GF127)
|