package token import ( "crypto" "crypto/x509" "encoding/base64" "encoding/json" "errors" "fmt" "strings" "time" log "github.com/Sirupsen/logrus" "github.com/docker/libtrust" "github.com/docker/docker-registry/auth" "github.com/docker/docker-registry/common" ) const ( // TokenSeparator is the value which separates the header, claims, and // signature in the compact serialization of a JSON Web Token. TokenSeparator = "." ) // Errors used by token parsing and verification. var ( ErrMalformedToken = errors.New("malformed token") ErrInvalidToken = errors.New("invalid token") ) // ResourceActions stores allowed actions on a named and typed resource. type ResourceActions struct { Type string `json:"type"` Name string `json:"name"` Actions []string `json:"actions"` } // ClaimSet describes the main section of a JSON Web Token. type ClaimSet struct { // Public claims Issuer string `json:"iss"` Subject string `json:"sub"` Audience string `json:"aud"` Expiration int64 `json:"exp"` NotBefore int64 `json:"nbf"` IssuedAt int64 `json:"iat"` JWTID string `json:"jti"` // Private claims Access []*ResourceActions } // Header describes the header section of a JSON Web Token. type Header struct { Type string `json:"typ"` SigningAlg string `json:"alg"` KeyID string `json:"kid,omitempty"` RawJWK json.RawMessage `json:"jwk"` SigningKey libtrust.PublicKey `json:"-"` } // CheckSigningKey parses the `jwk` field of a JOSE header and sets the // SigningKey field if it is valid. func (h *Header) CheckSigningKey() (err error) { if len(h.RawJWK) == 0 { // No signing key was specified. return } h.SigningKey, err = libtrust.UnmarshalPublicKeyJWK([]byte(h.RawJWK)) h.RawJWK = nil // Don't need this anymore! return } // Token describes a JSON Web Token. type Token struct { Raw string Header *Header Claims *ClaimSet Signature []byte Valid bool } // VerifyOptions is used to specify // options when verifying a JSON Web Token. type VerifyOptions struct { TrustedIssuers common.StringSet AccpetedAudiences common.StringSet Roots *x509.CertPool TrustedKeys map[string]libtrust.PublicKey } // NewToken parses the given raw token string // and constructs an unverified JSON Web Token. func NewToken(rawToken string) (*Token, error) { parts := strings.Split(rawToken, TokenSeparator) if len(parts) != 3 { return nil, ErrMalformedToken } var ( rawHeader, rawClaims = parts[0], parts[1] headerJSON, claimsJSON []byte err error ) defer func() { if err != nil { log.Errorf("error while unmarshalling raw token: %s", err) } }() if headerJSON, err = joseBase64UrlDecode(rawHeader); err != nil { err = fmt.Errorf("unable to decode header: %s", err) return nil, ErrMalformedToken } if claimsJSON, err = joseBase64UrlDecode(rawClaims); err != nil { err = fmt.Errorf("unable to decode claims: %s", err) return nil, ErrMalformedToken } token := new(Token) token.Header = new(Header) token.Claims = new(ClaimSet) token.Raw = strings.Join(parts[:2], TokenSeparator) if token.Signature, err = joseBase64UrlDecode(parts[2]); err != nil { err = fmt.Errorf("unable to decode signature: %s", err) return nil, ErrMalformedToken } if err = json.Unmarshal(headerJSON, token.Header); err != nil { return nil, ErrMalformedToken } if err = token.Header.CheckSigningKey(); err != nil { return nil, ErrMalformedToken } if err = json.Unmarshal(claimsJSON, token.Claims); err != nil { return nil, ErrMalformedToken } return token, nil } // Verify attempts to verify this token using the given options. // Returns a nil error if the token is valid. func (t *Token) Verify(verifyOpts VerifyOptions) error { if t.Valid { // Token was already verified. return nil } // Verify that the Issuer claim is a trusted authority. if !verifyOpts.TrustedIssuers.Contains(t.Claims.Issuer) { log.Errorf("token from untrusted issuer: %q", t.Claims.Issuer) return ErrInvalidToken } // Verify that the Audience claim is allowed. if !verifyOpts.AccpetedAudiences.Contains(t.Claims.Audience) { log.Errorf("token intended for another audience: %q", t.Claims.Audience) return ErrInvalidToken } // Verify that the token is currently usable and not expired. currentUnixTime := time.Now().Unix() if !(t.Claims.NotBefore <= currentUnixTime && currentUnixTime <= t.Claims.Expiration) { log.Errorf("token not to be used before %d or after %d - currently %d", t.Claims.NotBefore, t.Claims.Expiration, currentUnixTime) return ErrInvalidToken } // Verify the token signature. if len(t.Signature) == 0 { log.Error("token has no signature") return ErrInvalidToken } // If the token header has a SigningKey field, verify the signature // using that key and its included x509 certificate chain if necessary. // If the Header's SigningKey field is nil, try using the KeyID field. signingKey := t.Header.SigningKey if signingKey == nil { // Find the key in the given collection of trusted keys. trustedKey, ok := verifyOpts.TrustedKeys[t.Header.KeyID] if !ok { log.Errorf("token signed by untrusted key with ID: %q", t.Header.KeyID) return ErrInvalidToken } signingKey = trustedKey } // First verify the signature of the token using the key which signed it. if err := signingKey.Verify(strings.NewReader(t.Raw), t.Header.SigningAlg, t.Signature); err != nil { log.Errorf("unable to verify token signature: %s", err) return ErrInvalidToken } // Next, check if the signing key is one of the trusted keys. if _, isTrustedKey := verifyOpts.TrustedKeys[signingKey.KeyID()]; isTrustedKey { // We're done! The token was signed by a trusted key and has been verified! t.Valid = true return nil } // Otherwise, we need to check the sigining keys included certificate chain. return t.verifyCertificateChain(signingKey, verifyOpts.Roots) } // verifyCertificateChain attempts to verify the token using the "x5c" field // of the given leafKey which was used to sign it. Returns a nil error if // the key's certificate chain is valid and rooted an one of the given roots. func (t *Token) verifyCertificateChain(leafKey libtrust.PublicKey, roots *x509.CertPool) error { // In this case, the token signature is valid, but the key that signed it // is not in our set of trusted keys. So, we'll need to check if the // token's signing key included an x509 certificate chain that can be // verified up to one of our trusted roots. x5cVal, ok := leafKey.GetExtendedField("x5c").([]interface{}) if !ok || x5cVal == nil { log.Error("unable to verify token signature: signed by untrusted key with no valid certificate chain") return ErrInvalidToken } // Ensure each item is of the correct type. x5c := make([]string, len(x5cVal)) for i, val := range x5cVal { certString, ok := val.(string) if !ok || len(certString) == 0 { log.Error("unable to verify token signature: signed by untrusted key with malformed certificate chain") return ErrInvalidToken } x5c[i] = certString } // Ensure the first element is encoded correctly. leafCertDer, err := base64.StdEncoding.DecodeString(x5c[0]) if err != nil { log.Errorf("unable to decode signing key leaf cert: %s", err) return ErrInvalidToken } // And that it is a valid x509 certificate. leafCert, err := x509.ParseCertificate(leafCertDer) if err != nil { log.Errorf("unable to parse signing key leaf cert: %s", err) return ErrInvalidToken } // Verify that the public key in the leaf cert *is* the signing key. leafCryptoKey, ok := leafCert.PublicKey.(crypto.PublicKey) if !ok { log.Error("unable to get signing key leaf cert public key value") return ErrInvalidToken } leafPubKey, err := libtrust.FromCryptoPublicKey(leafCryptoKey) if err != nil { log.Errorf("unable to make libtrust public key from signing key leaf cert: %s", err) return ErrInvalidToken } if leafPubKey.KeyID() != leafKey.KeyID() { log.Error("token signing key ID and leaf certificate public key ID do not match") return ErrInvalidToken } // The rest of the x5c array are intermediate certificates. intermediates := x509.NewCertPool() for i := 1; i < len(x5c); i++ { intermediateCertDer, err := base64.StdEncoding.DecodeString(x5c[i]) if err != nil { log.Errorf("unable to decode signing key intermediate cert: %s", err) return ErrInvalidToken } intermediateCert, err := x509.ParseCertificate(intermediateCertDer) if err != nil { log.Errorf("unable to parse signing key intermediate cert: %s", err) return ErrInvalidToken } intermediates.AddCert(intermediateCert) } verifyOpts := x509.VerifyOptions{ Intermediates: intermediates, Roots: roots, KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageAny}, } // TODO: this call returns certificate chains which we ignore for now, but // we should check them for revocations if we have the ability later. if _, err = leafCert.Verify(verifyOpts); err != nil { log.Errorf("unable to verify signing key certificate: %s", err) return ErrInvalidToken } // The signing key's x509 chain is valid! t.Valid = true return nil } // accessSet returns a set of actions available for the resource // actions listed in the `access` section of this token. func (t *Token) accessSet() accessSet { if t.Claims == nil { return nil } accessSet := make(accessSet, len(t.Claims.Access)) for _, resourceActions := range t.Claims.Access { resource := auth.Resource{ Type: resourceActions.Type, Name: resourceActions.Name, } set, exists := accessSet[resource] if !exists { set = newActionSet() accessSet[resource] = set } for _, action := range resourceActions.Actions { set.Add(action) } } return accessSet } func (t *Token) compactRaw() string { return fmt.Sprintf("%s.%s", t.Raw, joseBase64UrlEncode(t.Signature)) }